Abeysinghe, T. (1991). Inappropriate use of seasonal dummies in regression. Economics Letters, 36(2):175–179.
Abeysinghe, T. (1994). Deterministic seasonal models and spurious regressions. Journal of Econometrics, 61(2):259–272.
Andersen, T. G. and Bollerslev, T. (1997). Intraday periodicity and volatility persistence in financial markets. Journal of Empirical Finance, 4(2):115–158.
Andersen, T. G. and Bollerslev, T. (1998). Deutsche mark–dollar volatility: intraday activity patterns, macroeconomic announcements, and longer run dependencies. The Journal of Finance, 53(1):219–265.
Andersen, T. G., Bollerslev, T., and Das, A. (2001). Variance-ratio statistics and highfrequency data: Testing for changes in intraday volatility patterns. The Journal of Finance, 56(1):305–327.
Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2):579–625.
Arteche, J. (2002). Semiparametric robust tests on seasonal or cyclical long memory time series. Journal of Time Series Analysis, 23(3):251–285.
Arteche, J. and Robinson, P. M. (2000). Semiparametric inference in seasonal and cyclical long memory processes. Journal of Time Series Analysis, 21(1):1–25.
Baillie, R. T. and Bollerslev, T. (1991). Intra-day and inter-market volatility in foreign exchange rates. The Review of Economic Studies, 58(3):565–585.
Bollerslev, T., Li, J., and Xue, Y. (2016). Volume, volatility and public news announcements.
Bordignon, S., Caporin, M., and Lisi, F. (2007). Generalised long-memory garch models for intra-daily volatility. Computational Statistics & Data Analysis, 51(12):5900–5912.
Bordignon, S., Caporin, M., and Lisi, F. (2008). Periodic long-memory garch models. Econometric Reviews, 28(1-3):60–82.
- Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2013). Time series analysis: forecasting and control. John Wiley & Sons.
Paper not yet in RePEc: Add citation now
- Caporale, G. M., Cunado, J., and Gil-Alana, L. A. (2012). Deterministic versus stochastic seasonal fractional integration and structural breaks. Statistics and Computing, 22(2):349–358.
Paper not yet in RePEc: Add citation now
- Cogburn, R., Davis, H. T., et al. (1974). Periodic splines and spectral estimation. The Annals of Statistics, 2(6):1108–1126.
Paper not yet in RePEc: Add citation now
da Silva Lopes, A. C. (1999). Spurious deterministic seasonality and autocorrelation corrections with quarterly data: Further monte carlo results. Empirical Economics, 24(2):341–359.
Deo, R., Hurvich, C., and Lu, Y. (2006). Forecasting realized volatility using a longmemory stochastic volatility model: estimation, prediction and seasonal adjustment. Journal of Econometrics, 131(1):29–58.
Franses, P. H., Hylleberg, S., and Lee, H. S. (1995). Spurious deterministic seasonality. Economics Letters, 48(3):249–256.
- Gil-Alana, L. A. (2005). Deterministic seasonality versus seasonal fractional integration. Journal of Statistical Planning and Inference, 134(2):445–461.
Paper not yet in RePEc: Add citation now
Giot, P. (2005). Market risk models for intraday data. The European Journal of Finance, 11(4):309–324.
- Giraitis, L. and Leipus, R. (1995). A generalized fractionally differencing approach in long-memory modeling. Lithuanian Mathematical Journal, 35(1):53–65.
Paper not yet in RePEc: Add citation now
Gray, H. L., Zhang, N.-F., and Woodward, W. A. (1989). On generalized fractional processes. Journal of Time Series Analysis, 10(3):233–257.
- Hassler, U. (1994). (mis) specification of long memory in seasonal time series. Journal of Time Series Analysis, 15(1):19–30.
Paper not yet in RePEc: Add citation now
Hylleberg, S. (1992). Modelling seasonality. Oxford University Press.
Kooperberg, C., Stone, C. J., and Truong, Y. K. (1995). Rate of convergence for logspline spectral density estimation. Journal of Time Series Analysis, 16(4):389–401.
- Kuensch, H. R. (1987). Statistical aspects of self-similar processes. In Proceedings of the first World Congress of the Bernoulli Society, volume 1, pages 67–74. VNU Science Press Utrecht.
Paper not yet in RePEc: Add citation now
Leschinski, C. and Sibbertsen, P. (2014). Model order selection in seasonal/cyclical long memory models. Technical report, Discussion Paper, Wirtschaftswissenschaftliche Fakultät, Leibniz University of Hannover.
Lu, Y. K. and Perron, P. (2010). Modeling and forecasting stock return volatility using a random level shift model. Journal of Empirical Finance, 17(1):138–156.
Martens, M., Chang, Y.-C., and Taylor, S. J. (2002). A comparison of seasonal adjustment methods when forecasting intraday volatility. Journal of Financial Research, 25(2):283–299.
Ooms, M. and Hassler, U. (1997). On the effect of seasonal adjustment on the logperiodogram regression. Economics Letters, 56(2):135–141.
- Porter-Hudak, S. (1990). An application of the seasonal fractionally differenced model to the monetary aggregates. Journal of the American Statistical Association, 85(410):338–344.
Paper not yet in RePEc: Add citation now
Ray, B. K. (1993). Long-range forecasting of ibm product revenues using a seasonal fractionally differenced arma model. International Journal of Forecasting, 9(2):255– 269.
- Robinson, P. M. (1995). Gaussian semiparametric estimation of long range dependence.
Paper not yet in RePEc: Add citation now
Rossi, E. and Fantazzini, D. (2014). Long memory and periodicity in intraday volatility. Journal of Financial Econometrics, 13(4):922–961.
- Shimotsu, K., Phillips, P. C., et al. (2005). Exact local whittle estimation of fractional integration. The Annals of Statistics, 33(4):1890–1933.
Paper not yet in RePEc: Add citation now
Wood, R. A., McInish, T. H., and Ord, J. K. (1985). An investigation of transactions data for nyse stocks. The Journal of Finance, 40(3):723–739.
- Woodward, W. A., Cheng, Q. C., and Gray, H. L. (1998). A k-factor garma long-memory model. Journal of Time Series Analysis, 19(4):485–504.
Paper not yet in RePEc: Add citation now
Xu, J. and Perron, P. (2014). Forecasting return volatility: Level shifts with varying jump probability and mean reversion. International Journal of Forecasting, 30(3):449– 463.