- Aastveit, K. A., C. Foroni, and F. Ravazzolo (2016). Density forecasts with MIDAS models. Journal of Applied Econometrics 32(4), 783–801.
Paper not yet in RePEc: Add citation now
Aastveit, K. A., K. Gerdrup, A. S. Jore, and L. A. Thorsrud (2014). Nowcasting GDP in real time: A density combination approach. Journal of Business and Economic Statistics 32(1), 48–68.
Aastveit, K., F. Ravazzolo, and H. van Dijk (2018). Combined density nowcasting in an uncertain economic environment. Journal of Business and Economic Statistics 36(1), 131–145.
- Aastveit, K., J. Mitchell, F. Ravazzolo, and H. van Dijk (2019). The evolution of forecast density combinations in economics. In forthcoming (Ed.), Oxford Research Encyclopedia of Economics and Finance. North-Holland.
Paper not yet in RePEc: Add citation now
Amisano, G. and J. Geweke (2010, April). Comparing and evaluating bayesian predictive distributions of asset returns. International Journal of Forecasting 26(2), 216–230.
Andrews, D. W. K. (2002). Higher-Order Improvements of a Computationally Attractive “kâ€Â-Step Bootstrap for Extremum Estimators. Econometrica 70(1), 119– 162.
- Anscombe, F. (1968). Topics in the investigation of linear relations fitted by the method of least squares. Journal of the Royal Statistical Society B 29, 1–52.
Paper not yet in RePEc: Add citation now
BanÃŒÂbura, M., D. Giannone, and L. Reichlin (2010). Large Bayesian Vector Auto Regressions. Journal of Applied Econometrics 25, 71–92.
- Barnard, G. A. (1963). New methods of quality control. Journal of the Royal Statistical Society, Series A 126, 255–259.
Paper not yet in RePEc: Add citation now
Bassetti, F., R. Casarin, and F. Ravazzolo (2018). Bayesian nonparametric calibration and combination of predictive distributions. Journal of the American Statistical Association 113(522), 675–685.
- Bates, J. and C. Granger (1969). The combination of forecasts. Operations Research Quarterly 20(4), 451–468.
Paper not yet in RePEc: Add citation now
Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal of Business and Economic Statistics 19(4), 465–474.
Berkowitz, J. and L. Kilian (2000). Recent developments in bootstrapping time series. Econometric Reviews 19(1), 1–48.
Billio, M., R. Casarin, F. Ravazzolo, and H. K. van Dijk (2013). Time-varying combinations of predictive densities using nonlinear filtering. Journal of Econometrics 177, 213–232.
- Bose, A. (1988). Edgeworth corrections by bootstrap in autoregressions. Annals of Statistics 16(4), 1709–1722.
Paper not yet in RePEc: Add citation now
- Casarin, R., R. V. Craiu, and F. Leisen (2016). Embarrassingly parallel sequential Markov-chain Monte Carlo for large sets of time series. Statistics and Its Interface 9(4), 497–508.
Paper not yet in RePEc: Add citation now
Casarin, R., S. Grassi, F. Ravazzolo, and H. K. van Dijk (2015). Parallel sequential monte carlo for efficient density combination: The deco matlab toolbox. Journal of Statistical Software 68(3).
Clements, M. P. and A. B. Galvao (2014). Measuring macroeconomic uncertainty: US inflation and output growth. ICMA Centre Discussion Papers in Finance 2014/04, Henley Business School, Reading University.
Clements, M. P. and N. Taylor (2001). Bootstrapping prediction intervals for autoregressive models. International Journal of Forecasting 17(2), 247–267.
Creel, M. (2005). User-Friendly Parallel Computations with Econometric Examples. Computational Economics 26, 107–128.
Davidson, R. and E. Flachaire (2008). The wild bootstrap, tamed at last. Journal of Econometrics 146(1), 162–169.
Davidson, R. and J. G. MacKinnon (2006). Bootstrap methods in econometrics. In Palgrave Handbooks of Econometrics: Volume 1 Econometric Theory, pp. 812– 838. Basingstoke: Palgrave Macmillan.
- Davison, A. and D. Hinkley (1997). Bootstrap Methods and their Applications. Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Dawid, A. P. (1982). Intersubjective statistical models. Exchangeability in Probability and Statistics, 217–232.
Paper not yet in RePEc: Add citation now
DeGroot, M. H. and J. Mortera (1991). Optimal linear opinion pools. Management Science 37(5), 546–558.
DeGroot, M. H., A. P. Dawid, and J. Mortera (1995). Coherent combination of experts’ opinions. Test 4, 263–313.
Del Negro, M., B. R. Hasegawa, and F. Schorfheide (2016). Dynamic prediction pools: An investigation of financial frictions and forecasting performance. Journal of Econometrics 192(2), 391–405.
- Density Forecasting 27 Geweke, J. and G. Durham (2012). Massively Parallel Sequential Monte Carlo for Bayesian Inference. Working papers, University of Technology Sydney.
Paper not yet in RePEc: Add citation now
Density Forecasting 29 Ravazzolo, F. and S. V. Vahey (2014). Forecast densities for economic aggregates from disaggregate ensembles. Studies in Nonlinear Dynamics and Econometrics 18, 367–381.
Diebold, F. and R. Mariano (1995). Comparing Predictive Accuracy. Journal of Business and Economic Statistics 13, 253–263.
Diebold, F. X., T. A. Gunther, and A. S. Tay (1998, November). Evaluating density forecasts with applications to financial risk management. International Economic Review 39(4), 863–83.
Djogbenou, A., S. Goncalves, and B. Perron (2015). Bootstrap inference in regressions with estimated factors and serial correlation. Journal of Time Series Analysis 36(3), 481–502.
Djogbenou, A., S. Goncalves, and B. Perron (2017). Bootstrap prediction intervals for factor models. Journal of Business and Economic Statistics 35(1), 53–69.
Durham, G. and J. Geweke (2014). Adaptive sequential posterior simulators for massively parallel computing environments. In I. Jeliazkov and D. J. Poirier (Eds.), Bayesian Model Comparison (Advances in Econometrics, Chapter 34. Emerald Group Publishing Limited.
- Einav, L. and J. Levin (2014). Economics in the age of big data. Science 346(6210), 715–718.
Paper not yet in RePEc: Add citation now
Geweke, J. (1989). Bayesian Inference in Econometric Models using Monte Carlo Integration. Econometrica 57, 1317–1340.
Geweke, J. and G. Amisano (2011). Optimal prediction pools. Journal of Econometrics 164(1), 130 – 141.
Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association 106, 746–762.
Gneiting, T. and A. E. Raftery (2007, March). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102, 359–378.
- Gneiting, T. and M. Katzfuss (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application 1, 125–151.
Paper not yet in RePEc: Add citation now
- Gneiting, T. and R. Ranjan (2013a). Combining Predicitve Distributions. Electronic Journal of Statistics 7, 1747–1782.
Paper not yet in RePEc: Add citation now
- Gneiting, T. and R. Ranjan (2013b). Combining predictive distributions. Electronic Journal of Statistics 7, 1747–1782.
Paper not yet in RePEc: Add citation now
Goncalves, S. and B. Perron (2014). Bootstrapping factor-augmented regression models. Journal of Econometrics 182(1), 156–173.
Goncalves, S. and L. Kilian (2004). Bootstrapping autoregressions with conditional heteroskedasticity of unknown form. Journal of Econometrics 123(1), 89–120.
Granger, C. W. J. (1998). Extracting information from mega-panels and highfrequency data. Statistica Neerlandica 52, 258–272.
- Granger, C. W. J. and M. H. Pesaran (2000). Economic and statistical measures of forecast accuracy. Journal of Forecasting 19, 537–560.
Paper not yet in RePEc: Add citation now
- Granger, C. W. J. and R. Ramanathan (1984). Improved Methods of Combining Forecasts. Journal of Forecasting 3, 197–204.
Paper not yet in RePEc: Add citation now
Groen, J. J. J., R. Paap, and F. Ravazzolo (2013). Real-Time Inflation Forecasting in a Changing World. Journal of Business & Economic Stastistics 31, 29–44.
Guidolin, M. and A. Timmermann (2009). Forecasts of US Short-term Interest Rates: A Flexible Forecast Combination Approach. Journal of Econometrics 150, 297–311.
Hall, S. G. and J. Mitchell (2007). Combining density forecasts. International Journal of Forecasting 23(1), 1–13.
Hansen, B. (2006). Interval forecasts and parameter uncertainty. Journal of Econometrics 135, 377–398.
Hoogerheide, L., R. Kleijn, R. Ravazzolo, H. K. van Dijk, and M. Verbeek (2010). Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights. Journal of Forecasting 29(1-2), 251–269.
Inoue, A. and L. Kilian (2002). Bootstrapping autoregressive processes with possible unit roots inoue. Econometrica, 377–391.
Kapetanios, G., J. Mitchell, S. Price, and N. Fawcett (2015). Generalised density forecast combinations. Journal of Econometrics 188, 150–165.
Kascha, C. and F. Ravazzolo (2010). Combining inflation density forecasts. Journal of Forecasting 29(1-2), 231–250.
Kloek, T. and H. van Dijk (1978). Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo. Econometrica 46, 1–19.
- Koop, G. (2003). Bayesian Econometrics. John Wiley and Sons.
Paper not yet in RePEc: Add citation now
Koop, G. and D. Korobilis (2013). Large time-varying Parameter VARs. Journal of Econometrics 177, 185–198.
- Kunsch, H. R. (1989). The Jackknife and the Bootstrap for General Stationary Observations. The Annals of Statistics 17(3), 1217–1241.
Paper not yet in RePEc: Add citation now
- LeSage, J. P. (1998, December). Econometrics: Matlab Toolbox of Econometrics Functions. Statistical Software Components, Boston College Department of Economics.
Paper not yet in RePEc: Add citation now
- Liu, R. (1988). Bootstrap procedures under some non-i.i.d. models. Annals of Statistics 16, 1696–1708.
Paper not yet in RePEc: Add citation now
Mazzi, G., J. Mitchell, and G. Montana (2014). Density nowcasts and model combination: nowcasting euro-area gdp growth over the 2008-9 recession. Oxford Bulletin of Economics and Statistics 76(2), 233–256.
- McAlinn, K. and M. West (2018). Dynamic bayesian predictive synthesis in time series forecasting. Journal of Econometrics forthcoming.
Paper not yet in RePEc: Add citation now
Mitchell, J. and K. Wallis (2011). Evaluating density forecasts: Forecast combinations, model mixtures, calibration and sharpness. Journal of Applied Econometrics 26(6), 1023–1040.
Mitchell, J. and S. G. Hall (2005, December). Evaluating, comparing and combining density forecasts using the klic with an application to the bank of england and niesr ’fan’ charts of inflation. Oxford Bulletin of Economics and Statistics 67(s1), 995–1033.
Morozov, S. and S. Mathur (2011). Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control. Computational Economics, 1–32.
Pascual, L., J. Romo, and E. Ruiz (2001). Effects of parameter estimation on prediction densities: a bootstrap approach. International Journal of Forecasting 17(1), 83–103.
Pettenuzzo, D. and F. Ravazzolo (2016). Optimal portfolio choice under decisionbased model combinations. Journal of Applied Econometrics 31(7), 1312–1332.
- Raftery, A. E., D. Madigan, and J. A. Hoeting (1997, March). Bayesian model averaging for linear regression models. Journal of the American Statistical Association 92(437), 179–91.
Paper not yet in RePEc: Add citation now
- Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review 133, 1155–1174.
Paper not yet in RePEc: Add citation now
- Raftery, A., M. Karny, and P. Ettler (2010). Online prediction under model uncertainty via dynamic model averaging: Application to a cold rolling mill. Technometrics 52, 52–66.
Paper not yet in RePEc: Add citation now
Ranjan, R. and T. Gneiting (2010). Combining probability forecasts. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72(1), 71–91.
- Robert, C. P. and G. Casella (2004). Monte Carlo Statistical Methods. Springer, Berlin, Second Edition.
Paper not yet in RePEc: Add citation now
- Roberts, H. V. (1965). Probabilistic prediction. Journal of American Statistical Association 60, 50–62.
Paper not yet in RePEc: Add citation now
Rossi, B. and T. Sekhposyan (2013). Conditional predictive density evaluation in the presence of instabilities. Journal of Econometrics 177(2), 199–212.
Rossi, B. and T. Sekhposyan (2014). Evaluating predictive densities of us output growth and inflation in a large macroeconomic data set. International Journal of Forecasting 30(3), 662–682.
- Rossi, B. and T. Sekhposyan (2016). Alternative tests for correct specification of conditional predictive densities. Working Paper 758, Barcelona GSE.
Paper not yet in RePEc: Add citation now
Sloughter, J., T. Gneiting, and A. E. Raftery (2010). Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging. Journal of the American Statistical Association 105, 25–35.
Stock, J. H. and W. M. Watson (1999). Forecasting inflation. Journal of Monetary Economics 44, 293–335.
Stock, J. H. and W. M. Watson (2002). Forecasting using principal components from a large number of predictors. Journal of American Statistical Association 97, 1167–1179.
Stock, J. H. and W. M. Watson (2005). Implications of dynamic factor models for VAR analysis. Technical report, NBER Working Paper No. 11467.
Stock, J. H. and W. M. Watson (2014). Estimating turning points using large data sets. Journal of Econometris 178, 368–381.
Tay, A. and K. F. Wallis (2000). Density Forecasting: A Survey. Journal of Forecasting 19, 235–254.
Terui, N. and H. K. van Dijk (2002). Combined forecasts from linear and nonlinear time series models. International Journal of Forecasting 18, 421–438.
Timmermann, A. (2006). Forecast combinations. In G. Elliot, C. W. J. Granger, and A. Timmermann (Eds.), Handbook of Forecasting, Chapter 4. Elsevier.
- Varian, H. (2014). Machine learning: New tricks for econometrics. Journal of Economics Perspectives 28, 3–28.
Paper not yet in RePEc: Add citation now
- Varian, H. and S. Scott (2014). Predicting the present with bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation 5, 4–23.
Paper not yet in RePEc: Add citation now
- VergeÃŒÂ, C., C. Dubarry, P. Del Moral, and E. Moulines (2015, Mar). On parallel implementation of sequential monte carlo methods: the island particle model. Statistics and Computing 25(2), 243–260.
Paper not yet in RePEc: Add citation now
Waggoner, D. F. and T. Zha (2012). Confronting model misspecification in macroeconomics. Journal of Econometrics 171, 167–184.
Wallis, K. F. (2003). Chi-squared tests of interval and density forecasts, and the bank of england’s fan charts. International Journal of Forecasting 19(3), 165–175.
Wallis, K. F. (2011). Combining forecasts - forty years later. Applied Financial Economics 21(1-2), 33–41.
West, K. (1996). Asymptotic inference about predictive ability. Econometrica 64, 1067–1084.
- Wu, C. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Annals of Statistics 14, 1261–1295.
Paper not yet in RePEc: Add citation now
- Yeh, A. B. (1998). A bootstrap procedure in linear regression with nonstationary errors. The Canadian Journal of Statistical Association 26(1), 149–160.
Paper not yet in RePEc: Add citation now
- Zarnowitz, V. (1969). Topics in the investigation of linear relations fitted by the method of least squares. American Statistician 23, 12–16.
Paper not yet in RePEc: Add citation now