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Abstract. This paper presents a new side-channel attack (SCA) on unrolled imple-
mentations of stream ciphers, with a particular focus on Trivium. Most conventional
SCAs predominantly concentrate on leakage of some first rounds prior to the suffi-
cient diffusion of the secret key and initial vector (IV). However, recently, unrolled
hardware implementation has become common and practical, which achieves higher
throughput and energy efficiency compared to a round-based hardware. The ap-
plicability of conventional SCAs to such unrolled hardware is unclear because the
leakage of the first rounds from unrolled hardware is hardly observed. In this paper,
focusing on Trivium, we propose a novel SCA on unrolled stream cipher hardware,
which can exploit leakage of rounds latter than 80, while existing SCAs exploited
intermediate values earlier than 80 rounds. We first analyze the algebraic equations
representing the intermediate values of these rounds and present the recursive re-
stricted linear decomposition (RRLD) strategy. This approach uses correlation power
analysis (CPA) to estimate the intermediate values of latter rounds. Furthermore, we
present a chosen-IV strategy for a successful key recovery through linearization. We
experimentally demonstrate that the proposed SCA achieves the key recovery of a
288-round unrolled Trivium hardware implementation using 360,000 traces. Finally,
we evaluate the performance of unrolled Trivium hardware implementations to clarify
the trade-off between performance and SCA (in)security. The proposed SCA requires
34.5 M traces for a key recovery of 384-round unrolled Trivium implementation and
is not applicable to 576-round unrolled hardware.

Keywords: Stream cipher · Trivium · Unrolled implementation · Side-channel
attack (SCA) · Correlation power analysis (CPA)

1 Introduction

1.1 Background
Trivium. Trivium is a major hardware-oriented stream cipher [DCP08,Can06] included
in the ISO/IEC 29192-3 standard [iso] and the portfolio of eSTREAM project [eST]. Given
an 80-bit secret key and an 80-bit initial vector (IV), Trivium performs initialization phase,
following by key stream generation phase. The initialization randomizes a 288-bit internal
state determined by the secret key and IV over 1152 rounds. Then, the key stream is
generated with a throughput of one bit per round.
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Hardware implementation of Trivium. Initially, Trivium hardware was implemented
with a round-based architecture, which serially performs one round per clock cycle using a
round datapath similar to a common hardware implementation of block ciphers. Then,
round unrolling has been a common technique to implement Trivium with a practical
latency and throughput as well as an acceptable area overhead [CMM+23]. Recently, some
studies further showed its usefulness in terms of energy efficiency [BMA+18,CBT+21]. In
this paper, we refer to the number of unrolled rounds as unrolling degree, and denote it by
r. An r-round unrolled implementation, which executes r rounds per clock cycle using an
r-round datapath, can reduce the initialization latency (i.e., clock cycles) and can improve
the key stream generation throughput by a factor of r compared to the round-based
implementation. In [BMA+18, CBT+21], it was experimentally showed that Trivium
unrolled hardware implementation achieves a higher energy efficiency up to r = 288 than
the round-based hardware, and r = 288 is optimal in terms of energy efficiency. Thus,
round unrolling is a common technique to implement practical stream cipher hardware
regarding the trade-offs between throughput (latency), area, and energy.

Side-channel attack on Trivium. Some SCAs on Trivium have been studied and
evaluated, including differential power analysis (DPA), correlation power analysis (CPA),
and profiled SCA [FGKV06,SPK09,JHWW12,TSA15a,TSA15b,SJB21,KDB+22]. However,
the existing SCAs have not considered the unrolled implementation, and their applicability
is unclear, whereas there are some studies on the unrolled implementation of block
ciphers [BGSD10, YMHA16, MS16, YMUM+21]. In fact, the above DPAs/CPAs have
focused on the leakage from some first rounds of initialization for estimating intermediate
bits, but such leakage would not be available in the case of unrolled implementation, because
they are not stored in register. Furthermore, the state-of-the-art profiled SCA in [KDB+22],
which aims to recover the internal state, focused on a round-based implementation and
assumed that the leakage of consecutive rounds is available. Thus, there is little study on
the evaluation of the side-channel (in)security of unrolled Trivium, while round unrolling
is common and practical for implementing Trivium on hardware. In the field of block
ciphers, the unrolled implementation was thought to yield a higher side-channel resistance
compared to the round-based counterpart because it does not store intermediate values
targeted by SCAs in registers [BGSD10]. However, it is unclear whether this thought
applies to stream ciphers as well due to the differences in SCA strategies and unrolled
hardware architectures. Therefore, it is highly desirable to investigate the SCA (in)security
of unrolled stream cipher hardware.
Remark 1 (SCA on wire values). Some SCAs have used side-channel information from
wire values and glitches [MPO05,YMHA16,YMUM+21]. Specifically, for Trivium, DPAs
focused on a wire value of a two-input XOR output were presented in [TSA15a,TSA15b].
If it could be available, an SCA on earlier rounds would be feasible even on unrolled
hardware. However, these were only evaluated by simulation; their practical feasibility was
unclear. In addition, in [Moo20], Moos discussed static side-channel leakages of unrolled
block cipher implementation and its practicality. No reset attack in the paper would be
infeasible to standard stream cipher implementation even unrolled, because the internal
state (and wires) are diffused/randomized and not observable to the attacker. By contrast,
if attacker can reset the target module, it may be a threat as well as case of unrolled block
ciphers.

1.2 Our contributions
New SCA on unrolled stream cipher implementation. We present a new chosen-IV
SCA methodology on stream ciphers focusing on Trivium, named side-channel linearization
attack. The existing SCAs estimated intermediate bits depending on a few bits of secret
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key by CPA [FGKV06,SPK09,JHWW12,TSA15a,TSA15b]. The proposed SCA is their
extension/generalization and also uses CPA to estimate the intermediate bits of the r-th
round internal state, as they would be stored in registers of r-round unrolled hardware.
There are two major technical challenges addressed by the proposed SCA.

Estimation of internal state bits of rounds latter than 80. It is non-trivial how to
estimate the intermediate bits at rounds latter than 80 by CPA due to the diffusion, as
these bits are represented by high-degree non-linear polynomials with many bits of the
secret key and IV. To recover the intermediate bits by CPA with a feasible guess, we
analyze the polynomials and present a recursive restricted linear decomposition (RRLD)
strategy, which linearly separates the polynomials to guess the intermediate bits by CPA
with practical complexity. Using the RRLD strategy, we determine the chosen IVs to
estimate the intermediate bits by CPA with the help of SAT/SMT solver.

Feasible key recovery. For the case of a large unrolling degree, it is non-trivial to reverse
the secret key from the intermediate bits by CPA is too high to solve it with a practical
complexity. To fully recover a secret key, we propose another chosen-IV strategy based on
linearization. In restricting the IV in the RRLD strategy, we use two sets of chosen-IV
patterns dedicated to the linearization. From the results of two CPAs using each chosen-IV
set, we derive a linear equation of key bits. As a result, we can achieve the full key recovery
by means of Gaussian elimination with a practical complexity.

Validation. We demonstrate the validity of the proposed SCA through experimental
attacks on a 288-round unrolled hardware implementation of Trivium on an FPGA. We
confirm that the proposed SCA can successfully obtain the linear equation of key bits by
RRLD and linearization, and consequently reduce the Trivium key space from 280 to 229

with a total of 360,000 traces. Furthermore, we evaluate the relation between success rate,
the number of guessed bits, and the number of available chosen-IV patterns (i.e., the size
of the chosen-IV set). As a result, we reveal that a CPA is not successful if the attacker
cannot use a sufficient number of IV patterns. Such an insufficiency occurs in attacking
more diffused rounds, namely, attacking unrolled hardware with larger unrolling degrees.

Quantitative discussion of SCA (in)security of unrolled Trivium. We evaluate the
total number of traces for different unrolling degrees through our experiment. Specifically,
evaluations for r = 384 and 576, which are divisors of 1152 grater than 288, are included.
We confirmed that the total number of traces for full key recovery at r = 384 would
be significantly greater than that for r = 288. Moreover, key recovery at r = 576 is
deemed unfeasible by the proposed SCA, as we find too few chosen IVs for the proposed
SCA at this degree. We finally evaluate the unrolled hardware of Trivium with different
unrolling degrees to clarify the trade-off between performance and SCA security (whereas
the previous studies did not report the performance in detail for r > 288).

The source code for our experiments is available at https://github.com/ECSIS-lab
/CiC_KUTH24.

2 Preliminaries
2.1 Notations
Let k = (k1, k2, . . . , k80) and v = (v1, v2, . . . , v80) denote the 80-bit secret key and IV
of Trivium, where kj and vj denote the j-th bit of the secret key and IV, respectively.
Let si = (si1, s

i
2, . . . , s

i
288) denote the 288-bit internal state at the i-th round, where sij

denotes its j-th bit (we may omit the superscript i in some contexts if it is not needed).
A calligraphic letter (e.g., X ) denotes a set, and a corresponding lower letter (i.e., x) is
its element unless defined differently. In particular, K and V (= {0, 1}80) denote the sets

https://github.com/ECSIS-lab/CiC_KUTH24
https://github.com/ECSIS-lab/CiC_KUTH24
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Algorithm 1 Trivium initialization
Input: Secret key k = (k1, k2, . . . , k80) and IV v = (v1, v2, . . . , v80);
Output: Initialized internal state s = (s1, s2, . . . , s288);
1: (s1, s2, . . . , s93)← (k1, k2, . . . , k80, 0, . . . , 0); . Internal state setup
2: (s94, s95, . . . , s177)← (v1, v2, . . . , v80, 0, . . . , 0);
3: (s178, s179, . . . , s288)← (0, 0 . . . , 0, 1, 1, 1);
4: for i = 1 to 1152 do . Round function
5: t1 ← s66 + s93 + s91s92 + s171;
6: t2 ← s162 + s177 + s175s176 + s264;
7: t3 ← s243 + s288 + s286s287 + s69;
8: (s1, s2, . . . , s93)← (t3, s1, . . . , s92);
9: (s94, s95, . . . , s177)← (t1, s94, . . . , s176);

10: (s178, s179, . . . , s288)← (t2, s178, . . . , s287);
11: end for
12: return s;

of all secret keys and IVs, respectively. Given a function f : X → Y and an element of
its range y ∈ Y, a subset {x | f(x) = y } ⊆ X may be denoted by {f(x) = y}. Given a
function f : X → Y, its restriction to A ⊆ X is denoted by f |A : A → Y. Note that, for
functions f , g, and h, if g = f |A, h = g|B and B ⊆ A hold, then h = f |B holds. Moreover,
for a function f : X → Y and y ∈ Y , it always holds that f |{f(x)=y} = y. In this paper, a
restricted function domain corresponds to a chosen-IV set. Finally, we use + as an XOR
operator for cryptographic computation over F2.

2.2 Trivium specification
Algorithm 1 describes the Trivium initialization specification, with the key stream gen-
eration being similar, except for the output of the key stream bit as oi = si66 + si93 +
si162 + si177 + si243 + si288. Trivium uses a 288-bit internal state, composed of 93-bit, 84-bit,
and 111-bit non-linear feedback registers (NLFSRs), interconnected via a round function.
During the initialization phase, as described at Lines 1–3 in Algorithm 1, the internal
state (i.e., the NLFSRs seed) is set up using an 80-bit secret key k = (k1, k2, . . . , k80), an
80-bit IV v = (v1, v2, . . . , v80), and constants. This initialization consists of 1152 rounds.
In the round function, three intermediate bits denoted by t1, t2, and t3 are generated
from 15 state bits and stored in the tails of NLFSRs. These intermediate values t1, t2,
and t3 are crucial for existing and proposed SCAs, which are utilized in the key recovery
by CPA. After the internal state is updated 1152 times using the round function, the
initialized internal state is output. In the key stream generation phase, a one-bit key
stream oi = si66+ si93+ si162+ si177+ si243+ si288 (i > 1152) is generated per round, whereas
the internal state is updated similarly to the initialization phase.

2.3 Unrolled hardware implementation of Trivium
Historically, hardware implementations of stream ciphers were based on a round-based
architecture, serially executing the round function per clock cycle using one round datapath.
However, recent studies [BMA+18, CBT+21] have been demonstrated that an unrolled
implementation, executing multiple rounds per clock cycle using multiple round datapaths,
achieves a higher energy efficiency. Figure 1 shows overviews of (a) the round-based,
(b) 64-round unrolled, and (c) 64p-round unrolled data flows, where p is an integer such
that p = r/64. With an unrolling degree of r, the initialization latency is reduced to
b1152/rc, and the key stream generation throughput increases by a factor of r, compared
to a round-based implementation. Note that the input for the Trivium round function
consists of only 15 bits from the 288-bit internal state. A round input is independent of
the previous 65 rounds, which means that we can simultaneously execute up to 64 rounds
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288-bit	internal	state	register

1-round	datapath

(a) Round-based

288-bit	internal	state	register

64-round	parallel	datapath

(b) 64-round unrolled

288-bit	internal	state	register

64-round	parallel	datapath

64-round	parallel	datapath

⋮ ×	𝑝

(c) 64p-round unrolled

Figure 1: Overview of round-based and unrolled data flows of Trivium.

Table 1: Comparison of Trivium hardware architectures
Round-based 64-round unrolled 64p-round unrolled

Area for combinational logic 1 round datapath 64 round datapaths 64p round datapaths
Area for internal state regs. 288 bits 288 bits 288 bits

Initialization clock cycles 1152 18 (= 1152/64) 18/p (= 1152/64p)
Throughput per cycle 1 bit 64 bits 64p bits

Critical delay 1 round 1 round p rounds
Masked implementation Known Known Unknown and non-trivial

Side-channel attack Known Known This paper

using a parallel datapath1, as illustrated in Figure 1(b). For an unrolling degree of 64p,
p 64-round parallel datapaths need to be used in a serial manner, as shown in Figure 1(c).

Table 1 displays a comparison of the aforementioned three types of Trivium hardware
architectures. The Trivium round function is considerably smaller than those of block
ciphers, and it is implemented using only a few logic gates, while the circuit area is
mostly occupied with sequential logic for the internal state registers. Therefore, round-
based hardware consumes most of the energy for the sequential logic, namely, storing
the internal state in every clock cycle. By contrast, unrolled hardware significantly
accelerates the completion of initialization and key stream generation compared to the
round-based counterpart, whereas it requires a larger area for the unrolled datapath(s). This
unrolled architecture saves energy by reducing computational time, notwithstanding modest
increase in area and power consumption incurred by unrolled datapath(s). Therefore,
unrolled Trivium hardware surpasses its round-based counterpart in energy efficiency.
In [BMA+18,CBT+21], it has been indicated that unrolling degrees ranging from 64 to 288
are not only practical in terms of performance but also result in higher energy efficiency.

Masking of round-based implementation, as presented in [SA15,MHBM+18], can be
trivially extended to 64-round unrolled implementation because 64-round unrolled datapath
has the algebraic degree same as round-based one. However, masked 64p-round unrolled
implementations, which has a datapath of higher algebraic degree, remain unknown. It
remains as the practical challenges in masking the 64p-round datapath due to its high
algebraic degree, as discussed in [MS16,Moo20].

2.4 Existing SCAs on Trivium
2.4.1 CPA/DPA on initialization

Major existing SCAs on Trivium focus on the first few rounds of the initialization, before
the secret key and IV are sufficiently diffused [FGKV06,SPK09,JHWW12,TSA15a,TSA15b,
SJB21]. The attacker presumably can trigger the encryption/decryption with different IVs
and an unknown fixed key, given the nature of Trivium as a synchronous stream cipher.

1Reference and practical software implementations of Trivium on r-bit microcontroller/CPU execute r
rounds in parallel using r-bit registers in a word-slicing manner.
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The existing CPAs target the secret intermediate values ti1 for i = 1 to 80.2 The
intermediate value of ti1 is represented as ti1 = si66 + si93 + si91s

i
92 + si171 as in Algorithm 1.

Using the secret key k and IV v, the intermediate polynomial ti1 is represented by

t11 = k66 + 0 + 0 · 0 + v78, t21 = k65 + 0 + 0 · 0 + v77,

. . .

t791 = k57 + k15 + k13k14 + k66 + v78, t801 = k56 + k14 + k12k13 + k65 + v77.

As observed here, ti1 is given as a sum of terms of k and a term of v. Therefore, these
intermediate values are linearly decomposed into two subpolynomial functions f i(k) and
gi(v) consisting of partial bits of k and v, respectively. Thus, ti1 is represented as

ti1(k, v) = f i(k) + gi(v) = σi + gi(v). (1)

where σi = f i is the target key polynomial. We use CPA and the leakage of computation of
ti1 to estimate σi, as v is known. We consider ti1 as a selection function, v as a known value
like a plaintext, and σi as the secret value to be guessed, similarly to the CPA on AES.
Accordingly, the attacker calculates the Pearson’s correlation coefficient between the leakage
and hypothetical power consumption of ti1, based on a hypothesis of σi. Note that the
estimation of σi can be performed by a multi-bit CPA in case of unrolled implementation.

This CPA and key recovery method exploit (σ1, σ2, . . . , σ80), derived from some first
rounds of initialization. In unrolled hardware implementations with a large unrolling degree
(exceeding 192), estimating these values from side-channel leakage becomes difficult, as
intermediate values of some first rounds are not stored in the state register. Furthermore,
reversing the secret key from the latter internal states estimated by CPA, whose values
are more diffused and given from higher-degree polynomials, is nontrivial. Nevertheless,
no study on the SCA security of unrolled Trivium hardware implementation with large
unrolling degree (i.e., 288), which is deemed practical and most energy-efficient, is known.

2.4.2 SCA for internal state recovery

In TCHES 2022, Kumar et al. presented a profiled SCA on stream ciphers to recover
the internal state [KDB+22]. This attack does not necessarily focus on the initialization
(although possible), but it requires to trigger only a single encryption/decryption with an IV.
The SCA attacker exploits leakage (i.e., HW or HD) of internal states of consecutive rounds
from i-th to (i+N)-th, where i is an arbitrary integer and N is an integer determined
for attack success. The attacker first performs a deep-learning training to develop a
neural network that predicts the Hamming weight (HW) for software implementations or
Hamming distance (HD) for hardware implementations. Subsequently, a MILP modeling
and solver are used to correct the errors in estimated HWs/HDs. Finally, the attacker
estimates the internal state from the predicted HW/HD using an SMT solver.

However, this attack assumes the availability of leakages of consecutive rounds (i.e.,
si, si+1, . . . , si+N ), which corresponds to a round-based implementation. As aforemen-
tioned, practical Trivium software implementation uses word-slicing to exploit the par-
allelism of Trivium and CPU/microcontroller. For unrolled implementations, the round-
by-round leakage is unavailable because r rounds are simultaneously computed and these
internal states is not stored in register. This indicates that, for an r-round unrolled
implementation, HW/HD used in the SMT/MILP solver is only observable once per r
rounds, but HW/HD from r − 1 rounds between them rounds are unavailable for the
attacker. Namely, the attacker can obtains only leakages of si, si+r, si+2r . . . , si+Nr for
an r-round unrolled implementation. The error-correcting strategy using MILP solver

2Note that both conventional and proposed attack can exploit ti2 and ti3 similarly to ti1, while we here
focus on ti1 for the explanation.
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makes no sense because the MILP modeling includes no constraint about relationship
between HWs/HDs. In addition, as the intermediate state is diffused by r − 1 rounds, it
would be infeasible for an SMT solver to find a unique secret key. In fact, we tried a key
recovery using a noise-free leakage of 288-round unrolled implementation by an SMT solver
Z3 in Section 3.3.1, but we found it infeasible. Therefore, the profiled SCA is validated
only for a round-based implementation, but its applicability to the (practical) unrolled
implementation of Trivium is unknown.

3 Proposed side-channel linearization attack
3.1 Attack scenario and assumptions
There are two major requirements/assumptions for the attacker to mount the proposed
SCA:

• The attacker can arbitrarily choose the input (i.e., IV).

• The attacker can trigger the execution of Trivium initialization of the target device
with the chosen IV many times.

These requirements have been frequently used in previous studies on SCA on stream
ciphers [FGKV06, SPK09, JHWW12, HHN+13, TSA15a, TSA15b, KUH+17, SJB21], as
introduced in Section 2.4.1. Such an attack is mainly possible if the attacker targets a
decryption device. The IV (nonce) of ciphers is usually given by an upcounter to avoid
reuse of IV [BZD+16]. Therefore, an encryption module is frequently stateful to generate
the IV securely inside the device, and the attacker cannot control it in this case. However,
decryption device basically performs cryptographic operations for a given query. Even
if the query is malicious, the decryption device cannot detect the invalidity of queries
until completing decryption (or authentication). Thus, such assumptions are sometimes
practical for SCA attacker, as many SCA studies have evaluated ciphers in this scenario
(even for AES).

Note that decryption device may also be stateful to check the validity of IV for
the protection against adaptive attacks (i.e., detect malicious/invalid queries prior to
decryption) like [UHIM23, Section 3.2]. The proposed SCA cannot be carried out even on
decryption device in such a case. However, having a state for IV on embedded devices
incurs a non-negligible cost of non-volatile and secure memory in addition to its operational
cost. Thus, evaluation of SCA in this scenario is very important to assess the side-channel
vulnerability of practical cryptographic implementation.

3.2 Estimation of σi at latter rounds
3.2.1 Problem statement

An r-round unrolled implementation updates the internal state by r rounds within a single
clock cycle. The diffusion of the entire internal state in Trivium is achieved over 111 rounds,
equivalent to the bit length of NLFSR-3. This implies that the outputs of the first few
rounds are not stored in registers if the implementation uses more-than 111-round unrolling.
Specifically, for an r-round unrolled implementation, the output bits (i.e., ti1, ti2, and ti3)
of the first r − 111 rounds are not stored in registers, rendering their side-channel leakage
unavailable. Consequently, an SCA attacker is required to estimate σi for ti1 of the latter
rounds, specifically for i > r − 111. However, this poses a significant challenge for existing
SCAs, as they exploit the fact that the intermediate values of the first few rounds, which
are the primary targets of these attacks, can be represented by a linear composition of a
key polynomial and an IV polynomial. By contrast, the intermediate values of the latter
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rounds are represented by non-linear polynomials. Thus, we developed the RRLD strategy
for the estimation of ti1 of the latter rounds, which is designed to linearly decompose ti1
by restricting (i.e., choosing) the IV such that the key–IV polynomial transforms into a
linear composition. Our proposal includes a methodology for determining and computing
such a chosen-IV set.

Available leakage. The attacker only uses the leakage of intermediate values stored in
register. More precisely, the attacker exploits the register transition and estimate HD of
intermediate values as in many conventional CPAs. In contrast, leakage of wire transition
is supposed to be unavailable as mentioned in Section 1. This indicates that intermediate
values which are not stored in register is unavailable for the attacker through leakage;
and therefore, intermediate values at earlier rounds are assumed to be unexploitable by
SCA on unrolled implementations. This assumption is because the CPA focusing on wire
value/glitches is far more difficult than that focusing on register value.

3.2.2 Example of proposed CPA: Determination of σ168 and its estimation

The proposed algorithm recursively applies the following procedure, named restricted linear
decomposition (RLD).

Let us first describe an example with i = 168 to briefly explain our idea before describing
the proposed algorithm. Note that the proposed algorithm is very general for unrolled
Trivium implementation with any unrolling degree, although we take some example values
and polynomials for explanation. To develop the RRLD strategy, we first symbolically
represent the intermediate value ti1 in a Product of Sum (PoS) form3, derived through a
repeated substitution of k and v into the Trivium round function ti1 = si66+si93+si91s

i
92+si171.

Subsequently, we linearly decompose the resultant polynomial into three polynomials. The
PoS representation of t1681 is given by

t1681 = k37 + k64 + k46 + k55 + k4 + k2k3

+ v34 + v49 + v47v48 + v61 + v76 + v74v75 + v67

+ (k62 + v59 + v74 + v72v73)(k63 + v60 + v75 + v73v74).

As well as Equation (1), we aim to linearly decompose t1681 into the polynomial function
of key f168(k) and IV g168(v). However, we cannot obtain such a linear decomposition
because t1681 includes a non-linear term related to bits of k and v. Thus, t1681 can be
represented as

t1681 (k, v) = f168(k) + g168(v) + h168(k, v), (2)

where f168
1 : K → F2, g1681 : V → F2, and h168

1 : K × V → F2 are given by

f168(k) = k37 + k64 + k46 + k55 + k4 + k2k3,

g168(v) = v34 + v49 + v47v48 + v61 + v76 + v74v75 + v67,

h168(k, v) = (k62 + v59 + v74 + v72v73)(k63 + v60 + v75 + v73v74).

Note that such a representation involving three polynomials generally exists in ti1 for all i,
and some of them can be 0.

The value of h168 varies depending on some bits of k and v, and thus it is not constant.
Consequently, an attacker cannot guess the value of σ168 = f168 by CPA, as the side-
channel leakage depends on the unknown variable h168. Unlike CPAs on block ciphers, we

3In this paper, the PoS form did not necessarily need to be canonical or reduced; it could include
redundancies.
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should estimate a key polynomial for Trivium but not secret key itself, as guessing all key
bits in ti1 becomes infeasible for larger i. Therefore, the impact of h168 is critical, resulting
in difficulty of SCA on the latter rounds of Trivium.

We remove the above difficulty using a well-calibrated chosen-IV set, determined by
the RRLD strategy. First, we linearly decompose hi(k, v) into d product polynomials
hi
1, h

i
2, . . . , h

i
l, . . . , h

i
d. Namely, we represent hi in a sum of PoS form as

hi(k, v) =
∑
l

hi
l(k, v), hi

l(k, v) =
∏
u

(
f i
l,u(k) + gil,u(v) + hi

l,u(k, v)
)
, (3)

because of the structural recursiveness of the PoS form (i.e., a product of PoS polynomials
should be a PoS polynomial). In case of i = 168, we derive d = 1 and h168

1 = h168, and it
holds that

h168
1 (k, v) =

(
f168
1,1 (k) + g1681,1 (v) + h168

1,1 (k, v)
) (

f168
1,2 (k) + g1681,2 (v) + h168

1,2 (k, v)
)
,

where the subpolynomials are given by

f168
1,1 = k62, f168

1,2 = k63, h168
1,1 = h168

1,2 = 0,

g1681,1 = v59 + v74 + v72v73, g1681,2 = v60 + v75 + v73v74.

Here, if g1681,1 and g1681,2 are fixed, then t1681 can be expressed as a sum of key polynomials
and IV polynomials. In the proposed SCA, we set the value of g1681,1 and g1681,2 as c1681,1 and
c1681,2 ∈ F2, respectively, indicating that g1681,1 (v) = c1681,1 and g1681,2 (v) = c1681,2 (c1681,u can be
either 0 or 1). Recall that h168

1 is defined as a polynomial function h168
1 : K × V → F2. In

the proposed SCA, we use a restriction of h168
1 to

V168 =
{
g1681,1 (v) = c1681,1

}
∩
{
g1681,2 (v) = c1681,2

}
⊆ V,

corresponding to a chosen-IV set. Note that, for any function g : V → F2 and element
c ∈ F2, it always holds that g|{g(v)=c} = c, as mentioned in Section 2.1. Let c1681,1 = c1681,2 = 0

for example. The restricted h168
1 is given by

h168
1

∣∣
K×V168 =

(
f168
1,1 (k) + 0 + 0

) (
f168
1,2 (k) + 0 + 0

)
= f168

1,1 f168
1,2 .

For simplicity, we hereafter write h|K×V′ for a given function h : K × V → F2 and set
V ′ ⊆ V as h|V′ , because we did not consider any subset of K at all in this paper. Note
that the computation to derive Vi can be readily realized using a common SAT or SMT
solver such as Z3 [dMB08,Mic23].

Finally, we identify the target key polynomial σi to be estimated by CPA. As we use a
chosen-IV set of V168, we should consider t1681 restricted to V168, denoted by

t1681 (k, v)
∣∣
V168 = f168(k) + g168(v)

∣∣
V168 + h168(k, v)

∣∣
V168

= f168 + f168
1,1 f168

1,2 + g168
∣∣
V168 , (4)

if c1681,1 = c1681,2 = 0. In this case, the target key polynomial is given by

σ168 = f168 + f168
1,1 f168

1,2 = k37 + k64 + k46 + k55 + k4 + k2k3 + k62k63.

Meanwhile, Equation (4) is represented by

t1681 (k, v)
∣∣
V168 = σ168 + g168

∣∣
V168 .

Thus, t1681 is linearly decomposed into a key polynomial and restricted IV polynomial; the
attacker can estimate σ168 by CPA with a chosen-IV set of V168. This strategy is termed
as restricted linear decomposition (RLD). Here, it suffices for σ168 estimation to set c1681,1

and c1681,2 to an arbitrary value of 0 or 1. Then, we present another strategy about how to
determine the above constants for feasible full key recovery in Section 3.3.
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Remark 2 (Infeasibility of naïve CPA). An attacker may mount a CPA that directly
guesses all key bits in hi. However, such a naïve CPA is feasible only for earlier rounds,
but guess of all key bits in hi is infeasible to estimate σi for latter rounds due to the
diffusion. For example, one-bit CPA focusing on σ264 and σ288 needs to guess 16 and 26
bits, respectively. It takes non-negligible cost for full key recovery to repeat such CPA of
high complexity for all target rounds. For larger i, we have to guess more bits, resulting in
an infeasible attack. In contrast, the proposed CPA requires only one-bit guess per one-bit
CPA (and eight-bit guess per eight-bit CPA) independently of i. Thus, our RRLD strategy
realizes the estimation of σi for large i with a feasible complexity. Moreover, an increase
in the number of key candidates would degrade the success rate of SCA.

3.2.3 Algorithmic description

In the example of Section 3.2.2, the key–IV polynomial h168 does not contain key–IV
subpolynomials (i.e., h168

1,1 = h168
1,2 = 0). Generally, for larger i, the key–IV polynomial

hi is likely to contain non-trivial key–IV subpolynomials, with hi
l,u 6= 0, due to diffusion,

as expressed in Equation (3). This means that one application of RLD does not always
result in h = 0 if we consider a general polynomials. Consequently, the proposed RRLD
strategy applies RLD recursively to the key–IV subpolynomials. The degree of h obtained
by an RLD is always smaller than the input polynomial; therefore, by recursively applying
the RLD to h, the degree of RLD output eventually becomes 0, indicating a complete
linear decomposition. Thus, RRLD can always achieve a complete linear decomposition
for general polynomials thanks to the recursion of RLD. Finally, we identify σi (to be
estimated by CPA) using all the key subpolynomials, and use a restriction (i.e., chosen-IV
set) as an intersection of all {gil,u(v) = cil,u} for each RLD. For example, let us consider
ti1 = f i + gi + hi, where hi is given by

hi =
(
f i
1,1 + gi1,1 + hi

1,1

) (
f i
1,2 + gi1,2 + hi

1,2

)
+
(
f i
2,1 + gi2,1 + hi

2,1

) (
f i
2,2 + gi2,2 + hi

2,2

)
,

with non-zero hi
l,u. Using a restriction to Vi = {gi1,1(v) = ci1,1}∩{gi1,2(v) = ci1,2}∩{gi2,1(v) =

ci2,1} ∩ {gi2,2(v) = ci2,2} ⊆ V, where cil,u denotes a constant value of 0 or 1, it can be
represented as

hi
∣∣
Vi =

(
f i
1,1 + ci1,1 + hi

1,1

∣∣
Vi

)(
f i
1,2 + ci1,2 + hi

1,2

∣∣
Vi

)
+
(
f i
2,1 + ci2,1 + hi

2,1

∣∣
Vi

)(
f i
2,2 + ci2,2 + hi

2,2

∣∣
Vi

)
,

because gil,u|{gi
l,u(v)=cil,u} = cil,u holds. For all (l, u), the degree of hi

l,u|Vi should be smaller
than that of hi. In addition, each hi

l,u can be represented in the form of Equation (2)
(with the restriction). Thus, by applying RLD to its subpolynomials in a recursive manner,
we can finally obtain the restricted linear decomposition of ti1 as

ti1
∣∣
Vi = f i + gi

∣∣
Vi + hi

∣∣
Vi = σi + gi

∣∣
Vi ,

where σi = f i+ hi
∣∣
Vi represents the target key polynomial and Vi indicates the restriction

(i.e., chosen-IV set) in estimating σi derived as the intersection of all {g(v) = c} during
RLDs.

Algorithm 2 describes the determination of σi and the corresponding chosen-IV set for
a general i based on RRLD, given a target ti1 as input. Note that the determination of
constant values of cl,u is described in Section 3.3 since Algorithm 2 works with arbitrary
values of cl,u. Algorithm 2 consists of recursive calls of the main function RLDi. At Line 2,
we first represent the input polynomial using f , g, and h like Equation (2), which implies
that we do not have any restriction to the function domain initially. At Line 4, if h = 0,
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Algorithm 2 Identification of σi and chosen-IV set based on RRLD
Input: Polynomial function t : K× V ′ → F2 (where V ′ ⊆ V)
Output: Target key polynomial σi and chosen-IV set Vi

1: Function RLDi(t)
2: f, g, h← LinearlyDecompose(t);
3: Vi = {0, 1}80;
4: if h = 0 then
5: return f + c, {g(v) = c};
6: else
7: for each l do
8: for each u do
9: fl,u, gl,u, hl,u ← Extract(h; l, u); . Extract (l, u)-th tuple of subpolynomials of h

10: Vl,u ← {gl,u(v) = cl,u}; . cl,u ∈ {0, 1} is constant
11: f̃l,u, Ṽl,u ← RLDi

(
hl,u

)
; . Apply RLD to hl,u recursively

12: σl,u ← fl,u + cl,u + f̃l,u;
13: Vi ← Vi ∩ Vl,u ∩ Ṽl,u;
14: end for
15: end for
16: σi ← f +

∑
l

∏
u σl,u;

17: return σi,Vi;
18: end if
19: end Function

we return f + c and {g(v) = c} for a fixed c ∈ F2 as the input polynomial no longer needs
decomposing. Otherwise, at Line 9, for each (l, u), we first extract the subpolynomials
fl,u, gl,u, and hl,u from h as in Equation (3). At Line 10, we derive the restriction for the
subpolynomial gl,u from fixed cl,u ∈ F2, as {gl,u(v) = cl,u}. Line 11 is the core part of
this algorithm, where we recursively call the function RLDi for hl,u to reduce it until hl,u

contains no non-linear composition of k and v. Then, at Lines 12 and 13, we derive the
target key polynomial and the restriction for the (l, u)-th subpolynomial. Here, we take the
intersection of Vl,u for all (l, u) because the IV should be restricted simultaneously with
regard to all gl,u to estimate the key polynomial corresponding to the input polynomial. At
Line 16, we compute the resulting key polynomial corresponding to the input polynomial,
as in the form of Equation (3). Finally, the RLD function returns the key polynomial and
chosen-IV set for the input polynomial. Using Algorithm 2, we can exploit the leakage of
ti1 relating to the corresponding key polynomial, which indicates an SCA on the i-th round
intermediate value in the unrolled implementation, without using the leakage from prior
rounds. Note that, for practical computation, sets Vi, Vl,u, and Vl,u should be represented
by their corresponding function gl,u. The actual elements of the input set (i.e., chosen
IVs) should be finally computed from the functions after the execution of Algorithm 2.

Algorithm 2 always terminates within a finite number of steps, because one application
of RLD eliminates at least one non-linear term of k and v, and the recurrence ends if there
are no remaining non-linear terms. However, for large i (and multi-bit CPA), the size of
chosen-IV set Vi can be small because Vi is given by the intersection of {g(v) = c} and
the number of RLD calls becomes greater due to the diffusion. Ultimately, Vi can be an
empty set if the internal state is sufficiently diffused, which indicates that the attack is
inapplicable to such i. As well, if gi|Vi = 0 or gi|Vi = 1 (i.e., if we cannot control the
value of gi with Vi), then the attack is deemed infeasible, which indicates that the size of
the chosen-IV set determines the feasibility of the proposed SCA with regard to larger i.
Additionally, the success rate of CPA in estimating σi depends on the number of available
chosen-IV patterns (i.e., the size of the chosen-IV set), similar to the SCA on AES [FPS12].
In other words, the CPA success rate gets worse if the variety of IVs is insufficient.

In Section 4, we experimentally evaluate the relation between the success rate and the
size of the chosen-IV set, in addition to the bit length of CPA, using an actual Trivium
unrolled hardware implementation. Moreover, in Section 5, we discuss the relation between
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the unrolling degree and the size of the chosen-IV set to analyze the leakage resilience of
unrolled Trivium hardware.

Extension to multi-bit CPA. Algorithm 2 corresponds to one-bit CPA; however, it
can be readily extended to an n-bit CPA, which estimates σi for the i-th to (i+ n− 1)-th
rounds simultaneously, by executing Algorithm 2 for ti1, t

i+1
1 , . . . , ti+n−1

1 and taking the
intersection of the respective chosen-IV sets (i.e., Vi ∩ Vi+1 ∩ · · · ∩ Vi+n−1).

3.3 Feasible key recovery based on linearization
3.3.1 Problem statement and basic concept

Although the SCA attacker can successfully estimate σi’s by CPA, it is non-trivial to
recover the secret key from them, especially for larger value of i, corresponding to the
unrolling degree. This is because, if i is large, σi is given by a high degree polynomial
due to diffusion. Although we have many equations of σi = f i(k) + hi(k, v)

∣∣
Vi by CPA,

it would be infeasible to solve the system of equations due to their high degree. In fact,
for a fixed key k, then we derived σ209, σ210, . . . , σ288, created the system of equations,
and then attempted to solve it using Z3Py with the aforementioned CPU. However, we
found that we could not recover the secret key within a week. Therefore, we needed a new
strategy to recover the secret key from CPA results with a practical complexity.

Our basic idea is to directly derive the value of a linear relation between two key bits
kj + kj′ by removing its non-linear term kjkj′ using two CPA results for different constant
cl,u. In Section 3.2, we did not mention how the constant cl,u should be determined, but
always let cl,u = 0 for a simple explanation. We show that we can directly obtain the value
of kj + kj′ for some j and j′ by carefully determining the value of cl,u. After obtaining
these values for many kj and kj′ pairs, we solve the system of equations using Gaussian
elimination, which has a complexity of O(m3), where m denotes the number of variables
in the equations. We first explain our idea using a linearization example of σ168 and then
generalize the proposed linearization method as well as Section 3.2.

3.3.2 Example of σ168

Recall that t1681 = f168 + g168 + h168, where h168 = h168
1 = (f168

1,1 + g1681,1 + h168
1,1 )(f

168
1,2 +

g1681,2 + h168
1,2 ) with h168

1,1 = h168
1,2 = 0. In the RLD described in Section 3.2.2, we fixed

g1681,1 = g1681,2 = 0 using a restriction of {g1681,1 (v) = 0} ∩ {g1681,2 (v) = 0}. In this case, σ168 is
given by f168+f168

1,1 f168
1,2 = k37+k64+k46+k55+k4+k2k3+k62k63. Thus, by estimating σ168

using one CPA, we can derive an equation of σ168 = k37+k64+k46+k55+k4+k2k3+k62k63,
but it contains non-linear terms.

We then explain how to derive a linear relation between key bits by two CPAs. For c ∈
F2, let V168(c) = {g1681,1 (v) = c}∩{g1681,2 (v) = c} and let σ168(c) = f168+(f168

1,1 +c)(f168
1,2 +c).

When c = 0 and 1, they are given by

σ168(0) = f168 + f168
1,1 f168

1,2 , (5)
σ168(1) = f168 + (f168

1,1 + 1)(f168
1,2 + 1)

= f168 + f168
1,1 f168

1,2 + f168
1,1 + f168

1,2 + 1, (6)

respectively. Both of them can be estimated by CPA if V168(c) is not empty (which is
actually true). Then, by taking the difference between σ168(0) and σ168(1), Equations (5)
and (6) are followed by

σ168(0) + σ168(1) = f168
1,1 + f168

1,2 + 1 = k62 + k63 + 1,
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which indicates that we can eliminate the non-linear term f168
1,1 f168

1,2 (= k62k63) if both
σ168(0) and σ168(1) are available. Thus, in the proposed side-channel linearization attack
on i = 168, we perform CPA twice on

t1681

∣∣
V168(0)

= σ168(0) + g168
∣∣
V168(0)

, t1681

∣∣
V168(1)

= σ168(1) + g168
∣∣
V168(1)

,

to estimate σ168(0) and σ168(1), respectively. Finally, we derive the linear relation k62+k63
as σ168(0) + σ168(1) + 1.

3.3.3 General description

Recall that, in general, the key–IV subpolynomial of ti1, namely hi, is given in the form of

hi =
∑
l

hi
l, hi

l =
∏
u

(
f i
l,u + gil,u + hi

l,u

)
.

For Trivium, we empirically confirmed that, for most i up to 576, there exists λ such that
hi
λ = (kj+giλ,1)(kj′ +giλ,2) for some j and j′ (i.e., f i

λ,1 = kj , f i
λ,2 = kj′ , and hi

l,1 = hi
l,2 = 0

hold like h168
1 )4. Thus, the subpolynomial hi is generally represented as

hi =
∑
l 6=λ

hi
l + (kj + giλ,1)(kj′ + giλ,2).

Therefore, we define σi(0) and σi(1) to obtain σi(0) + σi(1) = kj + kj′ + 1 such that we
apply the linearization strategy to hi

λ, while
∑

l 6=λ h
i
l is fixed for both σi(0) and σi(1). Let

Vi
l,u = {gil,u(v) = cil,u} and Ṽi

l,u denote the output set of RLDi(hi
l,u) (i.e., the restriction

for the key–IV subpolynomial hi
l,u), as defined in Algorithm 2. Formally, for c ∈ F2, the

restriction for CPA estimation with linearization is defined as

Vi(c) =
⋂
l 6=λ

⋂
u

(
Vi
l,u ∩ Ṽi

l,u

)
∩
({

giλ,1(v) = c
}
∩
{
giλ,2(v) = c

})
.

Here, it suffices to use arbitrary constant values for cil,u ∈ F2 for each l 6= λ and u; therefore,
we omitted them from the input. For example, we can set cil,u = 0 for all l 6= λ and u (this
is the same for its key–IV subpolynomial during the recurrent calls of RLD). Accordingly,
the restricted target polynomial ti1|Vi(c) is given by

ti1
∣∣
Vi(c)

= f i + gi
∣∣
Vi(c)

+
∑
l 6=λ

hi
l

∣∣
Vi

l

+ (f i
λ,1 + giλ,1

∣∣{
gi
λ,1(v)=c

})(f i
λ,2 + giλ,2

∣∣{
gi
λ,2(v)=c

})
= f i + gi

∣∣
Vi(c)

+
∑
l 6=λ

hi
l

∣∣
Vi

l

+ (kj + c)(kj′ + c),

where Vi
l =

⋂
u(Vi

l,u ∩ Ṽi
l,u). The target key polynomial σi(c) is defined as

σi(c) = f i +
∑
l 6=λ

hi
l

∣∣
Vi

l

+ (kj + c)(kj′ + c).

Note that
∑

l 6=λ hi
l

∣∣
Vi

l

is a key polynomial because of the restriction by RRLD. Therefore,
for both c = 0 and 1, we can derive σi(c) as a concrete polynomial and its corresponding

4A few i do not have such λ utilized in the proposed SCA, as giλ,1 and giλ,2 are not controllable by the
chosen-IV set derived by RRLD for such i.
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chosen-IV set Vi(c) using Algorithm 2 by letting ciλ,1 = ciλ,2 = c, while cil,u = 0 for all
l 6= λ and u. We can easily confirm that

σi(0) = f i +
∑
l 6=λ

hi
l

∣∣
Vi

l

+ kjkj′ ,

σi(1) = f i +
∑
l 6=λ

hi
l

∣∣
Vi

l

+ kjkj′ + kj + kj′ + 1,

which are followed by

σi(0) + σi(1) = kj + kj′ + 1,

because f i +
∑

l 6=λ hi
l

∣∣
Vi

l

is a fixed value for the restriction.

3.4 Wrap up: Flow of side-channel linearization attack
The proposed SCA consists of five steps, among which the first, second, fourth, and fifth
are offline computations, whereas the third step requires online side-channel measurements.
We also mention estimated time for each step in attacking a 288-round unrolled hardware,
as mainly targeted in Section 4.

1. We identify a polynomial of (kj + giλ,1)(kj′ + giλ,2) in ti1 for targeted i values5. The
target i is determined directly from the unrolling degree of the implementation, and
it took little time to identify the polynomials because it is a symbolic computation.

2. We derive σi(c) and its chosen-IV set Vi(c) using Algorithm 2 for each c ∈ F2. The
execution of Algorithm 2 in our environment took only several minutes.

3. We acquire the side-channel traces with controlling inputs as an online phase. This
step was bottleneck of our attack in terms of attack duration for our environment;
it took about eight hours to acquire 360,000 traces, which is required for full-key
recovery.

4. For each target i, we perform CPA twice to estimate σi(0) and σi(1) (which can
be multi-bit CPA to reduce the total number of traces) and obtain the value of
kj + kj′ + 1 for the corresponding (j, j′). In case of attack on 288-round unrolled
hardware, it only requires 2× 9 byte-wise CPAs, which were completed in several
minutes.

5. After collecting a sufficient number of linear relations between key bits, we recover
the secret key by solving the system of linear equations using Gaussian elimination.
In case of attack on 288-round unrolled implementation, the execution of this step
was completed by a symbolic computation followed by a brute-force of 229 key guesses
(see Section 4). The brute-force would be computational intensive but sufficiently
feasible.

4 Experimental validation
4.1 Experimental setup
We demonstrate the validity of the proposed SCA through experimental attacks using an
unrolled Trivium hardware implementation on an FPGA. Table 2 presents a summary

5Here, λ should be selected such that (kj + giλ,1)(kj′ + giλ,2) should not be included in other subpoly-
nomials of hi

l,u. For multi-bit CPAs, this exclusion should be considered for all target i.
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Table 2: Experimental setup
Device Xilinx Kintex-7
Board SAKURA-X

Oscilloscope KEYSIGHT InfiniiVision DSOX6004A
Clock frequency 24 MHz

Number of traces 700,000

Table 3: Target polynomials and corresponding linear relation between key bits in the
proposed SCA on the 288-round unrolled hardware implementation

Target key polynomial Corresponding linear relation between key bits
z2191 = (σ219

1 , σ220
1 , . . . , σ226

1 ) k11 + k12, k10 + k11, . . . , k4 + k5
z2361 = (σ236

1 , σ237
1 , . . . , σ243

1 ) k4, k2 + k3, k1 + k2, k69 + k1, k68 + k69, . . . , k65 + k66
z2441 = (σ244

1 , σ245
1 , . . . , σ251

1 ) k64 + k65, k63 + k64, . . . , k57 + k58
z2521 = (σ252

1 , σ253
1 , . . . , σ259

1 ) k56 + k57, k55 + k56, . . . , k49 + k50
z2571 = (σ257

1 , σ258
1 , . . . , σ264

1 ) k51 + k52, k50 + k51, . . . , k44 + k45
z2562 = (σ256

2 , σ257
2 , . . . , σ263

2 ) k43 + k44, k42 + k43, . . . , k36 + k37
z2642 = (σ264

2 , σ265
2 , . . . , σ271

2 ) k35 + k36, k34 + k35, . . . , k28 + k29
z2722 = (σ272

2 , σ273
2 , . . . , σ279

2 ) k27 + k28, k26 + k27, . . . , k20 + k21
z2802 = (σ280

2 , σ281
2 , . . . , σ287

2 ) k19 + k20, k18 + k19, . . . , k12 + k13

of the experimental setup. In this experiment, we used the 288-round unrolled hardware,
which was identified as optimal in energy efficiency [CBT+21], as discussed in Section 2.3.
We specifically designed the target implementation for this experiment6. The target
hardware completes its initialization with 4 (= 1152/288) clock cycles. We obtained
power traces during the first clock cycle, which includes the execution of the first 288
rounds and register update. At this time, (t2051 , t2061 , . . . , t2881 ), (t1782 , t1792 , . . . , t2882 ), and
(t1963 , t1973 , . . . , t2883 ) are computed and stored in NLFSRs, which indicates that leakage of
these intermediate values are available. More precisely, in attacking an r-round unrolled
implementation, leakages of ti11 , ti22 , and ti33 for r − 93 ≤ i1 ≤ r, r − 84 ≤ i2 ≤ r, and
r − 111 ≤ i3 ≤ r, are available from the first round computation. For clarity, we denote
the target key polynomial and its chosen-IV set corresponding to tiτ (τ ∈ {1, 2, 3}) by σi

τ

and Vi
τ , respectively (this notation is consistent for other polynomials).

Thus, to perform the proposed SCA on the 288-round unrolled hardware, we focus
on t2191 , t2201 , . . . , t2261 and t2361 , t2371 , . . . , t2641 as well as t2562 , t2572 , . . . , t2872 and execute Al-
gorithm 2 for them. Note that some other intermediate values are also available (e.g.,
t2883 ), but they are sufficient for full key recovery. This process derived the corresponding
target polynomials and chosen-IV sets, which are sufficient for full key recovery. Table 3
illustrates the linear relations between key bits obtained from the target σi

1 or σi
2. Notably,

k4 was directly obtained instead of linear relation when using t2361 (c) for CPA. Table 3
lists the target polynomials in an eight-bit-wise manner, as we here performed eight-bit
CPAs. Let zi,nτ (c) = (σi

τ (c), σ
i+1
τ (c), . . . , σi+n−1

τ (c)) represent the tuple of eight target key
polynomials corresponding to tiτ , t

i+1
τ , . . . , ti+n−1

τ estimated simultaneously using an n-bit
CPA. The notation Vi,n

τ (c) =
⋂n−1

ν=0 Vi+ν
τ (c) signifies the number of available chosen-IV

patterns for an n-bit CPA to estimate σi
τ , σ

i+1
τ , . . . , σi+n−1

τ . Utilizing Z3, the same SMT
solver used in Section 3.2, we successfully found over 300,000 IVs for the CPA on zi,8τ (c)
for both c = 0 and 1 listed in Table 3. This finding confirms that the proposed SCA is
applicable to the 288-round unrolled hardware.

In the CPA, we used the eight-bit HD between the first round internal state s1e(v), s1e+1(v),
. . . , s1e+7(v) and the target polynomials tiτ , ti+1

τ , . . . , ti+7
τ , where e denotes the bit position of

the register storing tiτ on the hardware. We calculated the hypothetical power consumption
of tiτ , ti+1

τ , . . . , ti+7
τ with an eight-bit guess of zi,8τ (considering tiτ = σi

τ + giτ (v)) for each IV.

6The source code will be publicly available upon acceptance.
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Figure 2: Sample-point-wise eight-bit CPA result on z2571 (0) with 250,000 traces.

Subsequently, we computed the empirical Pearson’s correlation coefficient between this
hypothetical power consumption and observed side-channel traces, similarly to standard
CPAs. Here, we guessed only eight bits out of the 288-bit internal state. Therefore, the
CPA result would be influenced by the key values, as those not included in the estimate
would have a non-trivial effect on the resulting side-channel trace. Therefore, we evaluated
the CPAs using 30 different keys, to marginalize (or average) the influence of the key value.

4.2 Evaluation of eight-bit CPA
Figure 2 reports the sample-point-wise CPA result, exemplified through the estimation of
z257,81 (0) using 250,000 IVs in V257,8

1 (0). The horizontal axis represents the sample point
index, and the vertical axis indicates the correlation coefficient value. The green and gray
curves correspond to the correlation coefficient values for the correct and incorrect guesses,
respectively. Notably, the correct guess yields the highest absolute correlation coefficient
value around the 2200–2400 point range among all candidates and points, as highlighted.
Therefore, we confirm that the eight-bit value of z257,81 (0) can be correctly estimated by
CPA. Note that we have the same results on zi,8τ (c) for different τ , i, and c, given that a
sufficient number of chosen-IV patterns are available.

Here, some incorrect guesses yielded in high correlation coefficient values due to the
target polynomial tiτ (i.e., selection function) being an XOR of the guessed value and
input IV, differing from SCAs on block ciphers like AES. More precisely, the hypothetical
power consumption guessed with wrong keys actually have correlation (although they are
expected to be as high as that of correct key). The magnitude of correlation for wrong
keys mainly depends on the selection function (rather than what the leakage includes
information others than target intermediate value). Here, if the selection function includes
non-linear function (e.g., Sbox), the correlation would be weak. However, in the proposed
SCA, the selection function is linear (as it is derived by RRLD), which results in a high
correlation for wrong keys. See [Pro05,FDLZ15] for analyses on correlation for wrong keys.
Furthermore, for given candidates ẑi,8τ , the correlation coefficient of another guess z̄i,8τ , with
all bits inverted, equaled the sign-reversed correlation coefficient of ẑi,8τ with an identical
absolute value, due to the same reason. Consequently, the attacker should ascertain the
polarity of the largest peak for the correct guess, based on the leakage characteristics of
the device. Otherwise, the attacker cannot distinguish which candidate with a positive or
negative peak is correct. In the following, we assume that the attacker is aware of such
leakage characteristics7.

7However, this assumption is not essential. If the attacker is unaware of the leakage characteristics,
such an attacker can guess two patterns of leakage characteristics (i.e., guess whether the polarity for the
correct guess is negative or positive). Additionally, the success of the linearization attack does not rely on
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Figure 3: Result of eight-bit CPAs on z257,81 (c) and z288,11 (c).

We then evaluated the CPA success rate and complexity. Figure 3 reports the (a)
success rate and (b) average rank8 of CPA for estimating z257,81 . For each key value, we
acquired 700,000 traces, computed its CPA success rate using 100 trials using the bootstrap
method for varying number of traces, and finally averaged the success rate across 30 key
patterns. To determine the key rank in the CPA, we used the average of correlation
coefficients for 10 sample points exhibiting high negative values, as shown in Figure 2.
From Figure 3(a), we confirm that the averaged success rate eventually approximates
to 0.9. Specifically, the proposed SCA achieved significant success for 28 out of the 30
keys, whereas little success was observed for the remaining 2 keys. Moreover, as observed
in Figure 3(b), the average ranks of both z257,81 (0) and z257,81 (1) were very close to zero.
Remarkably, the aforementioned two keys had a rank of one in this experiment. In other
words, we can reduce the number of key candidates to one or two. Consequently, the CPA
results suggest that the value of eight linear relations k51 + k52, k50 + k51, . . . , k44 + k45
corresponding to z257,81 (0) and z257,81 (1) can take at most 22 patterns. The result on
z257,81 (c) is almost the same for other bytes listed in Table 3, as a sufficient number of
chosen-IV patterns are available for them. Therefore, the total number of candidate values
of the linear relations can be reduced to (22)9 = 218 patterns, as the attacker should
perform the CPA 2× 9 times. As 11 bits of the secret key are not included in the linear
relations in Table 3, the proposed SCA can reduce the key space from 280 to 218×211 = 229,
which is sufficiently small to perform an exhaustive search. Additionally, we achieve a
successful estimation of zi,8τ (c) with approximately 20,000 traces for each CPA and need 18
(= 2× 9) CPAs. This result indicates that the total number of traces for key recovery is at
most 360,000, which is also sufficiently practical. Thus, we confirm that the proposed SCA
can recover the secret key of the 288-round unrolled Trivium hardware implementation.

4.3 Effect of the number of available chosen-IV patterns on CPA
We then evaluated the impact of the number of available chosen-IV patterns on the
success rate. For the 288-round unrolled Trivium, the number of chosen-IV patterns was
limited to 84 and 72 for z281,81 (0) and z281,81 (1), respectively (i.e., |V281,8

1 (0)| = 84 and
|V281,8

1 (1)| = 72), because the internal state is more diffused for larger i. Note that z281,81 (c)
is not included in Table 3, while z280,82 (c) is. Typically, t1 would be more diffused than t2
and t3 even at the same round. We evaluated the CPA on z281,81 (0) and z281,81 (1) using
the aforementioned 84 and 72 chosen-IV patterns, respectively.

Figure 3 also presents the success rate and average rank of CPA on z281,81 (c), averaged
across 15 different keys. Here, IVs were randomly sampled from V281,8

1 (c) repeatedly, which
means that each chosen IV in V281,8

1 (c) is used multiple times. We found no successful
attack and confirmed that the average ranks were significantly worse than those on z257,81 (c),
even when using 250,000 traces, maybe because of the algorithmic noise. Thus, we confirm

the success of this guess, as σi(0) + σi(1) = (σi(0) + 1) + (σi(1) + 1).
8Commonly referred to the guessing entropy.
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Figure 4: Success rate of one-bit CPA to estimate zi,11 (c) for i = 257, 258, . . . , 264.

Table 4: Number of traces to achieve the success rate of 1.0 for one-bit CPA on zi,11 (c)
i 257 258 259 260 261 262 263 264
c = 0 9,201 92,240 220,845 2,089 3,315 1,977 157,371 51,976
c = 1 18,518 43,833 204,575 2,438 5,429 1,714 225,725 53,185

the importance of the number of chosen-IV patterns, which gets smaller for larger i, because
we should have more restriction to the IV due to the diffusion.

4.4 Evaluation of one-bit CPA

Section 4.3 demonstrated that an eight-bit CPA on z281,81 (c) was unsuccessful owing to
an insufficient number of chosen-IV patterns. For an eight-bit CPA, the restriction to
the IV set is defined by V281,8

1 , as we should simultaneously restrict g2811 , g2821 , . . . , g2881 .
However, for a one-bit CPA, the IV restriction is determined by Vi,1

1 = Vi
1, the size of

which is always greater than (or equal to) |V281,8
1 | (i.e., |Vi,1

1 | ≥ |Vi,8
1 | for any i). Indeed,

we found a sufficient number of chosen-IV patterns for a one-bit CPA on zi,11 for each
i = 281, 282, . . . , 288 (where zi,11 = σi

1); specifically, we confirmed that |Vi,1
1 | is greater

than 10,000. Refer to Section 5 for detailed information. Thus, a one-bit CPA on zi,11 for
each i = 281, 282, . . . , 288 is likely to be successful owing to the larger size of Vi,1

1 .
Then, we experimentally evaluated the one-bit CPA on zi,11 . First, to assess the case

with a sufficient number of chosen-IV patterns, we performed one-bit CPA on zi,11 for
i = 257, 258, . . . , 264. Figure 4 displays the success rates of these one-bit CPAs, averaged
across 30 different keys. We can confirm that the empirical success rates for each bit
eventually reached one with the use of 250,000 traces. However, the stability of the CPA
result was worse than that observed in the eight-bit CPA. Table 4 lists the number of
traces required to achieve an empirical success rate of one for each i and c. We required
more than 100,000 traces for recovering z259,11 and z263,11 , whereas less than 10,000 traces
sufficed for CPAs on z260,11 , z261,11 , and z262,11 . This variation would be likely because of
the increased sensitivity of one-bit CPA to noise, as the signal component is confined to a
single bit. Nonetheless, we confirm the feasibility of a one-bit CPA, given that a sufficient
number of IV patterns are available.

We finally evaluate one-bit CPA with a restricted number of chosen-IV patterns. We
executed one-bit CPA on zi,11 (c) for c = 0 and c = 1 using 84 and 72 chosen-IV patterns
(which are the same ones as those in Section 4.3), respectively. Figure 5 presents the
empirical success rates of these CPAs, averaged across 15 different keys. Although the
success rates were non-trivial, they did not reach one in our experiment and were insufficient
for reliable key recovery. Thus, we confirm that the number of available chosen-IV patterns
has a significant impact on the success rate for both one-bit and multi-bit CPAs.
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Figure 5: Success rate of one-bit CPA to estimate zi,11 (c) with limited chosen-IV patterns.
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Figure 6: Size of Vi,n
τ (0) for n-bit CPAs on r-round unrolled implementation with r = 384.

5 Discussion
5.1 SCA (in)feasibility evaluation about larger unrolling degrees
We here consider unrolling degrees of 384 and 576, divisors of 1152 exceeding 288.

In an n-bit CPA for the i-th round, the subsequent n rounds beginning with the i-th
round are the target. For example, for i = 320 and n = 6, the target polynomials are
t320τ (0), t321τ (0), . . . , t325τ (0), with the key polynomial being z320,6τ , and the chosen-IV set is
V320,6
τ . Figure 6 and Figure 7 illustrate the size of Vi,n

τ (0) for one- to eight-bit CPAs on
r-round unrolled Trivium hardware (i.e., i = 274 to 384 and i = 466 to 576, respectively).
These values were derived using Algorithm 2 and the SMT solver Z3. We terminated the
IV search upon finding 10,000 chosen IVs; therefore, the maximum value is 10,000. Note
that the results for Vi,n

τ (1) are nearly identical. The hatched rounds in these figures cannot
be targeted by SCA for r = 384 and 576, as they are not stored in registers (these values
provided merely for reference).

We confirm that the number of available chosen-IV patterns decreases with an increase
in n for an n-bit CPA. Specifically, for r = 384 depicted in Figure 6, no variety of available
chosen-IV patterns was found for n = 8 when i exceeded 309, and the number of available
chosen-IV patterns was deemed insufficient for n ≥ 2. Eight-bit CPA is feasible only for
274 ≤ i ≤ 309 and τ , which is insufficient for key recovery. Conversely, we found a sufficient
number of chosen IVs for n = 1, suggesting the feasibility of one-bit CPA on 384-round
unrolled hardware for full key recovery. However, a one-bit CPA attacker should obtain
traces to estimate zi,1τ with IVs from Vi,1

τ for each i, which results in n times more traces
than an n-bit CPA. Moreover, as observed in Section 4.4, one-bit CPA requires a greater
number of traces for reliable estimation of zi+ν,1

τ for each ν compared to an eight-bit CPA.
Regarding these facts, we can quantitatively evaluate its SCA resistance in terms of the
total number of traces for full key recovery.

For r = 576, a considerably limited number of chosen-IV patterns were available. Even
for one-bit CPA, we found at most 22 = 4 IV patterns, which is too few for CPA to estimate
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Figure 7: Size of Vi,n
τ (0) for n-bit CPAs on r-round unrolled implementation with r = 576.

Table 5: Performance evaluation result of unrolled Trivium hardware on Nangate 45 nm
Open Cell Library (Power is evaluated at 100 MHz)

r Critical delay Initialization latency Throughput Area Power Energy SCA security
[ns] [Clock cycles] [ns] [Gbits/s] [GE] [mW] [fJ/bit] [# traces]

288 1.04 4 4.16 277 11,358 2.58 89.58 360,000
384 1.26 3 3.78 305 14,428 3.91 101.82 34,500,000
576 1.86 2 3.72 310 19,391 7.49 130.03 N/A
1152 3.16 1 3.16 364 38,608 24.0 208.33 N/A

σi
τ . Therefore, we conclude that 576-round unrolled Trivium hardware is resistant to the

proposed SCA, and the round unrolling would be useful for achieving leakage resilience.

5.2 Tradeoff between energy consumption and SCA security
We evaluate the performance and SCA security of unrolled Trivium hardware using Nangate
45 nm Open Cell Library and the Synopsys Design Compiler. Table 5 provides the logic
synthesis results, power/energy consumption estimations, and SCA security assessments,
where Power is estimated at 100 MHz, and SCA security is defined as the number of traces
required for full key recovery by the proposed SCA. “N/A” indicates that the proposed
SCA is not applicable, which implies an unbounded security against the proposed SCA.
To determine the number of traces for r = 384, we assumed that one-bit CPA requires
250,000 traces to reliably estimate zi,1τ (c) for each i and c, as per the experimental results
in Table 4. In total, 69×2 CPAs are required to collect key linear relations for key recovery.

We confirm that the larger round unrolling contributes to the high throughput and low
latency at a cost of area and power consumption. The energy consumption escalates with
an increase in the unrolling degree for r ≥ 288. Therefore, as demonstrated in [CBT+21],
the 288-round unrolled hardware is optimal in terms of energy. Concurrently, the number
of traces for key recovery (i.e., SCA security) increases significantly with r. The key
recovery from a 384-round unrolled implementation would require 34.5 M traces, which
is almost 100 times greater than that of the 288-round unrolled variant. Therefore, key
lifetime against SCA substantially improves by the round unrolling, contributing to the
reduction of rekeying cost [UHIM23]. Moreover, the proposed SCA is inapplicable to
576- and 1152-round unrolled implementations, which indicates their unbounded security
against the proposed SCA. Thus, we confirm that round unrolling in stream ciphers thus
would be promising to achieve SCA security in addition to high throughput, low energy
with practical implementation costs.

5.3 Relation to reduced-round cryptanalyses
SCA on stream cipher focusing on the initialization would be closely related to the reduced-
round cryptanalaysis. SCAs focus on some intermediate bits to estimate the secret key
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from the leakage of these bits, while reduced-round cryptanalyses focus on keystream bits.
Therefore, they focus on different target bits. Besides, there is a fundamental difference.

Cube attacks. Most reduced-round cryptanalyses on Trivium are based on the cube
attack [DS09]. The first cube attack [DS09], which requires data and time complexities of
218.6 and 217 for the key recovery of 672-round Trivium, respectively, is most efficient in
terms of these complexities. A state-of-the-art cube attack in [HHLW24] achieved the key
recovery of 851-round Trivium with data and time complexities of 244 and 279, respectively.
The cube attack (and its variant) first takes all possible values for specific bits in IV and
gets these keystreams (without any noise). Then, it exploits the sum of these keystreams
can be represented by a polynomial with a low-degree key monomial. Since the attacker
can get each keystream without noise, he/she can compute the sum over massive data.

In contrast, the proposed SCA utilizes the key polynomials σi to be estimated by CPA
from practical leakages with noise. In the context of the cube attack, this indicates that
the attacker observes keystreams with noise. Without eliminating the noise, the attacker
cannot recover the keystream and compute the sum. Our proposal in Section 3.2 focuses
on how to estimate σi from practical leakages, different from the cube attack. Contrarily,
once a sufficient number of σi’s are estimated, the linearization for feasible key recovery
shares the same observation of the cube attack. Namely, when σi contains high-degree key
monomials, we decrease the degree of key monomials by exploiting the sum of σi.

Although the sum of σi is a low-degree polynomial, note that we cannot estimate
the sum directly by the SCA because the sum never appears on the encryption device.
Therefore, the feasibility of the proposed SCA depends on whether σi can be estimated
or not. Section 5.1 actually discussed the infeasibility evaluation about large unrolling.
Consequently, the proposed SCA strategy addressed a problem different from reduced-round
cryptanalyses to feasibily estimate σi via power/EM side-channel, while the reduced-round
cryptanalyses assume that the output bits are directly available for the attacker.

Linear cryptanalysis. Our attack can be regarded as linear cryptanalysis, where the
outputs of any nonlinear AND gates are conditionally computed, instead of approximation.
Importantly, our attack approximates no AND gates. If we approximate x AND gates like
standard linear cryptanalysis, the correlation is 2−x and 22x samples are roughly required
even if we observe noise-free states, which implies the number of traces for SCA is 22x-times.
For example, an AND gate approximation leads to 4-times more traces. If several gates
are approximated, SCA immediately gets infeasible. Hence, our attack is, now, regarded
as chosen-IV linear cryptanalysis with correlation 1. IVs are chosen to control output of
AND gates to be constant (rather than approximation). Note that our attack would be
trivial in the blackbox analysis context, where the main focuses are to show contradiction
to the 80-bit security and to detect better approximation whose correlation is higher than
2−40. So far, our analysis has not been deeply done in some non-trivial contexts.

Conditional differential. Our linearization technique would be roughly similar condi-
tional differential. We focus on an intermediate bit and exploit difference between two
chosen-IVs to linearize the key polynomial. However, noise of side-channel measurement
makes non-trivial difference. If noise-free, we can compute exact difference. Otherwise,
the noise of difference is amplified. In the blackbox analysis context, when noise is 2−x

and 2−y for each bit, a well-known piling-up lemma states the noise of difference is 2−xy.
Then, we need 22xy-times traces. In blackbox analysis, we can explore the conditional
differential probability, while the amplified noise in SCA renders it difficult.
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Table 6: Applicability of proposed attack to major stream ciphers
Type w/o arithmetic operations w/ arithmetic operations

Examples Trivium, Enocoro, Trivium-LE, ChaCha20, Salsa,
Kreyvium, Lizard, Grain RC4, KCipher-2

Applicability Maybe Unclear

6 Conclusion

We presented a side-channel linearization attack to evaluate the SCA security of unrolled
implementations of stream ciphers, with a focus on Trivium. Given the unavailability
of side-channel leakage of the first rounds from unrolled hardware, we proposed RRLD
with linearization, estimating the internal state bits of latter rounds, and recovering the
full secret key with feasible complexity. Based on our experimental results obtained from
an actual unrolled hardware implementation, we reported that the key recovery on the
288-round unrolled hardware implementation, which was recognized as the most energy-
efficient unrolling degree, is sufficiently feasible with the proposed SCA. Furthermore, we
evaluated the SCA (in)feasibility for 384- and 576-round unrolled Trivium hardware to
analyze its leakage resilience. The 576-round unrolled hardware implementation is found
to be unboundedly secure against the proposed SCA. Additionally, the 384-round unrolled
variant is deemed more secure than its 288-round unrolled counterpart in terms of the
number of traces for key recovery.

The proposed SCA and our discussions would be potentially applicable to other
stream ciphers based on bit-wise (N)LFSR(s), such as Trivium-LE [CBT+21], while
feasibility/applicability to other types of stream ciphers (e.g., ChaCha20 and KCipher-2) is
unclear, as listed in Table 6. This is because we can apply the RRLD strategy if we derive
the logic representation of intermediate bits, by expanding the round function, and it would
be too complicated to express intermediate bits of unrolled arithmetic-oriented streams
ciphers. However, note that unrolled hardware implementation of such arithmetic-oriented
stream cipher is not common due to the large logic depth and area of arithmetic adders,
and our strategy would offer applicability to most stream ciphers suitable to unrolled
implementation. The application and evaluation of the proposed SCA on these ciphers
remain as important future work.

Additionally, SCAs using other distinguishers (e.g., deep-learning based SCA) would
be available to estimate the intermediate values more efficiently than CPA, which would
contribute to a reduction of the number of traces in key recovery and may be able to
exploit the leakage from wires. However, the usefulness and applicability of such SCAs to
stream ciphers and/or exploitation of wire values are yet to be studied, because there have
been no previous studies on these aspects (as far as we know). For example, the condition
that a profiling DL-based SCA successfully works/fails on block cipher has been widely
studied (e.g., [PHJ+19, ISUH21, IUH21]), the condition is unknown for stream ciphers
(and actually some conditions may not be satisfied in SCA on stream cipher such as KIC
in [IUH21]). These SCAs are to be studied for more severe evaluation of stream cipher
implementations in future.
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