[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
NGC 4839: Galaxies Go on a Deep Dive and Leave Fiery Tail Behind
NGC 4839
Visual Description:

  • Scientists have confirmed that the tail of hot gas behind a galaxy group is the longest yet seen.

  • NGC 4839 is plunging into the Coma Cluster and leaving a streak that glows in X-rays.

  • A new study using NASA’s Chandra X-ray Observatory confirmed the extraordinary length (1.5 million light-years) of the tail.

  • This result is helping astronomers learn more about how galaxy clusters grow to their enormous sizes.

A group of galaxies is plunging into the Coma galaxy cluster and leaving behind an enormous tail of superheated gas. Astronomers have confirmed this is the longest known tail behind a galaxy group and used it to gain a deeper understanding of how galaxy clusters – some of the largest structures in the universe – grow to their enormous sizes.

Astronomers trained NASA’s Chandra X-ray Observatory on the galaxy group NGC 4839. Galaxy groups are collections of about 50 galaxies or less that are bound together by gravity. Galaxy clusters are even larger and can contain hundreds or thousands of individual galaxies.

Both galaxy clusters and galaxy groups are enveloped by huge amounts of hot gas that are best studied using X-rays. These superheated pools of gas, though extremely thin and diffuse, represent a significant portion of the mass in galaxy groups or clusters and are crucial for understanding these systems.

The main image of this release with labels showing features.
X-ray: Chandra: NASA/SAO/Univ. of Alabama/M. S. Mirakhor et al.; XMM: ESA/XMM-Newton; Optical: SDSS; Image processing: N. Wolk

NGC 4839 is located near the edge of the Coma galaxy cluster, one of the largest known clusters in the universe about 340 million light-years away. As NGC 4839 moves toward the center of the Coma cluster, the hot gas in the galaxy group is stripped away by its collision with gas in the cluster. This results in a tail forming behind the galaxy group.

The image on the left shows an X-ray view of the Coma galaxy cluster taken with ESA’s (European Space Agency’s) XMM-Newton (blue), along with optical data from the Sloan Digital Sky Survey (yellow). The galaxy group NGC 4839 is located in the lower right of that image. The inset on the right is the Chandra image (purple) of the region outlined by the square. The head of NGC 4839’s tail is on the left side of the Chandra image and contains the brightest galaxy in the group and the densest gas. The tail trails to the right. (The Chandra image has been rotated so that north is about 30 degrees to the left of vertical.)

X-rays from the hot gas in the outer regions of the Coma cluster — that NGC 4839 is traveling through — are too faint to be seen in the XMM image shown here, but are highlighted in a supplementary, XMM-only image. This mosaic of images shows gaps between individual images where data was not obtained, and dark holes where point sources of X-rays were removed.

This tail is, in fact, 1.5 million light-years long, or hundreds of thousands of times the distance between the Sun and the nearest star, making it the longest tail ever seen trailing behind a group of galaxies.

The current brightness of the tail gives astronomers a special chance to study the physics of the tail’s gas before it mixes in with the hot gas in the cluster and becomes too faint to study. The gas in the tail behind NGC 4839 will ultimately merge with the large amount of hot gas already present in the Coma Cluster.

A 4-panel image showing different views with features labeled.
Credit: NASA/SAO/Univ. of Alabama/M. S. Mirakhor et al.

Using the Chandra data to analyze the gas in front of the galaxy group, the researchers found a shock wave – similar to a sonic boom from a supersonic jet – showing that NGC 4839 is traveling at about 3 million miles per hour through the galaxy cluster. The shock wave’s location is highlighted in a labeled version of the image.

They also studied the amount of turbulence in the tail’s gas. For a familiar analogy, turbulence describes the irregular air movements in our atmosphere that can make for bumpy rides on airplanes. They found a mild amount of turbulence, which implies that heat conduction in NGC 4839 is low.

The team also saw possible evidence for special structures called Kelvin-Helmholtz instabilities on one side of the tail. Scientists find these structures in various settings in space and on Earth, including in cloud shapes. They are caused by differences in speed of adjacent layers of moving gas or fluid. The presence of Kelvin-Helmholtz instabilities in NGC 4839 suggest that the gas in the tail has a weak magnetic field or a low level of viscosity. (Water, for example, is less viscous than honey.) The locations of the Kelvin-Helmholtz instabilities are given in a labeled Chandra image and a version of the Chandra image that has been processed to emphasize regions in the image with sharper edges.

Researchers looking at earlier observations of NGC 4839 had estimated its tail to be at least one million light-years long. The new Chandra data reveals the new record-holding 1.5 million light-years length. (Tails behind three other groups of galaxies falling into galaxy clusters are between 800,000 and one million light-years long.)

Stephen Walker of the University of Alabama at Huntsville presented these results at the 242nd meeting of the American Astronomical Society in Albuquerque, New Mexico. These results also appear in a paper by Mohammad Mirakhor, Walker, and James Runge in the June issue of the Monthly Notices of the Royal Astronomical Society. Mirakhor and Runge are also from the University of Alabama at Huntsville. The paper is available online at https://arxiv.org/abs/2304.05419.

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

 

Visual Description:

This release features a pair of composite images of a galaxy group plunging into a galaxy cluster, one of the largest structures in the universe. The composite image on our left shows the NGC 4839 galaxy group approaching the heart of the Coma Galaxy cluster. The composite image on our right is a close up of the galaxy group and its extraordinary tail.

The wide shot on our left depicts the Coma galaxy cluster as a large blue gas cloud with a bright, hazy, light-purple core. Sitting to our left of center, this cloud-within-a-cloud is dotted with hundreds of glowing specks. Each speck is a distinct galaxy. At the lower right of this image, a smaller blue cloud approaches. This is the galaxy group NGC 4839 and its comet-like tail. This cloud is vaguely shaped like a slice of pie, with a bright white and purple dot at the tip. This tip points toward the bright light-purple core as it enters the outer edge of the cluster’s blue gas cloud. The cluster, the group, and the cloud around them are set against a black, starry sky. In this image they are presented using data from the XMM-Newton observatory, and the Sloan Digital Sky Survey.

On our right is a close up image of the approaching galaxy group, which looks much less pie-shaped from this perspective. This image using Chandra data has been rotated such that the cluster is traveling horizontally toward our left, not our upper left as in the previous image. At the tip of the galaxy group is a bright white dot. In a labeled version of the image, this is identified as the ‘Head’ of the galaxy group. Here, the cloud trailing behind the head is neon purple, flecked with specks of white. This is a tail of hot gas stripped off the galaxy group’s head as it plunges into the cloud of gas surrounding the Coma cluster. This comet-like tail is 1.5 million light-years long, and is filled with key ingredients to make future generations of stars and planets.

 

Fast Facts for NGC 4839:
Credit  X-ray: Chandra: NASA/SAO/Univ. of Alabama/M. S. Mirakhor et al.; XMM: ESA/XMM-Newton; Optical: SDSS; Image processing: N. Wolk
Release Date  June 6, 2023
Scale  Large Field of View: about 10 arcminutes (970,000 million light-years) across; Inset: about 18 arcsec (29,000 light-years) across
Category  Normal Galaxies & Starburst Galaxies, Groups & Clusters of Galaxies
Coordinates (J2000)  RA 12h 57m 00.3s | Dec +27° 28´ 00.6"
Constellation  Canes Venatici
Observation Dates  8 observations from November, 2010 to November, 2020
Observation Time  64 hours 27 minutes (2 days 16 hours 27 minutes)
Obs. ID  12887, 22648, 22649, 22930, 23182, 23361, 24853, 24854
Instrument  ACIS
References Reference: Mirakhor, M. S. et al. 2023, MNRAS, 522, 2105
Color Code  X-ray: XMM-Newton: blue, Chandra: purple; Optical: Red, Green, Blue
Optical
X-ray
Distance Estimate  About 340 Million light-years (z=0.0245)
distance arrow
Rate This Image

Rating: 4.0/5
(1861 votes cast)
Download & Share

More Information
Blog: NGC 4839
More Images
X-ray Image of NGC 4839
Jpg, Tif
X-ray image

More Images
Animation & Video
A Tour of ngc4839
animation

More Videos
Related Images
imbhs
Black Hole Survey
(20 April 2022)
Centaurus A
Centaurus A
(2 May 2023)

Related Information
Related Podcast
Top Rated Images
Data Sonification

Brightest Cluster Galaxies

Timelapses: Crab Nebula and Cassiopeia A


DCSIMG