
A common interface for multi-rule-engine distributed

systems

Pierre de Leusse, Bartosz Kwolek and Krzysztof Zieliński

Distributed System Research Group, AGH University of Science and Technology

Krakow, Poland

{pdl, bkwolek, kz}@agh.edu.pl

Abstract. The rule technological landscape is becoming ever more complex,

with an extended number of specifications and products. It is therefore

becoming increasingly difficult to integrate rule-driven components and

manage interoperability in multi-rule engine environments. The described work

presents the possibility to provide a common interface for rule-driven

components in a distributed system. The authors’ approach leverages on a set of

discovery protocol, rule interchange and user interface to alleviate the

environment’s complexity.

Keywords: Rule-Based Distributed Systems, rule interchange, RIF, Jess,

Drools

1 Introduction

In recent years, rule-based systems have become increasingly popular [1]. This

evolution has been mostly attributed to three factors, 1) better separation of concerns

between the knowledge and its implementation logic in contrast to a hard-coded

approach; 2) rule repositories that increase the visibility and readability of the

knowledge and 3) graphical user interfaces that render rules more usable while

bridging the gap between users (e.g. domain experts) and IT specialists.

Influenced by this increased interest, the technological landscape of rules is becoming

more and more complex. This is partly due to the number of technologies being

developed and the frequency in which they appear. In particular, the amount of

platforms implemented (e.g. Oracle Business Rules [2], Drools [3], Jess [4]) as well

as the various specifications related to rule expression and enactment (e.g. RuleML

[5], RIF [6]) have rendered this domain more opaque.

This abundance of technologies and products can be beneficial as different

approaches attempt to address a variety of problems (e.g. production, reaction).

However, it greatly impacts the usability of distributed systems that leverage on rule

engines in order to automate managed components behavior. The behavioral and

functional complexity reduced by rule engines at the component level (e.g. OSGI

Bundle [7]) translates into management and interoperability issues in the distributed

application plane. Indeed, rule visibility and interchange as well as reasoning

interoperability have become a new challenge in the implementation of business

logic.

The main contribution of this paper and the demonstration system it presents, is a

common user interface for multi-rule-engine distributed systems. This demonstration

addresses challenges in the domains of rule-driven component discovery, rule

interchange and multi-rule-engine usability.

The authors have implemented a web user interface along with supporting tools that

allow discovering rule engines in a distributed environment, retrieving from as well as

registering rules to them and interchanging rules between them. This approach aims at

providing an integration of different rule engine technologies as seamlessly as

possible while allowing an improved user experience with a rich interface.

This paper is organized as follows: Section 2 presents the requirements for a common

interface in multi-rule-engine distributed systems. Section 3 presents the anatomy of

the proposed demonstration system. Section 4 briefly introduces the limitations of the

proposed approach. In Section 5 the related work in this area is briefly discussed. In

Section 6 the authors conclude and highlight some future work.

2 Requirements for a common interface

Ideally, manageable components and distributed applications that leverage on them

through the use of business rules should be able to capitalize on the most appropriate

technologies and practices for each use case. In this respect, the authors have

identified four main technical challenges: a) component discovery, b) rule engine

interoperability, c) rule interchangeability and d) system usability.

In order to improve the ability to manage such systems, the first step is to learn about

the components and the domain it takes part of. Key knowledge includes location

(e.g. Unified Resource Locator URL [8]) and types of interfaces proposed (e.g.

sensors, effectors, data model discovery). As it is possible for components to be

replicated, the common interface should be able to understand the relationship

between instances. For instance, updating a rule for one instance should trigger the

update over the others, unless specified otherwise.

With the location and list of interfaces known, it is necessary for a common interface

to learn how to communicate to the rule engine. Interaction with a rule engine, for

instance, necessitates the knowledge of basic rule engine operations such as how to

register and unregister, execute, retrieve, filter and validate rules.

The interchangeability of rules can be divided into two parts, the exchange of the

rules themselves and the acquisition of the knowledge they hold. Rule interchange

requires the possibility to transform from one rule language into another. Knowledge

acquisition mandates that the data be adequately described so that an external entity

can comprehend it. In the current context, comprehension is based on representing

data elements as metrics and their capacity, for instance, to be compared, transformed,

grouped and linked.

Additionally, the common interface should expose a user-friendly view, irrespective

of the languages in which facts, actions and rules provided by the underlying domains

it is connected to are expressed. The usability aspect of the rule-driven approach is

paramount as it allows empowering non-specialists (e.g. business individuals) with

ability to design rules or manage the operation of the multi-domain system.

3 Anatomy of a common interface

The anatomy of a common interface introduces the demonstration system, based on

the requirements described in section 2. However, in order to simplify the

demonstration, in this experiment the authors assume that no semantic translation is

needed. The describe work does not investigate acquisition of the knowledge between

different systems.

3.1 Component discovery

In order to allow for the discovery and storage of the different artifacts (e.g. rule

engines, translators) the authors make use of a central repository. In this experiment,

the repository is implemented using the Atom Publication Protocol (APP) [9] and

eXist DB [10]. Thus, different atoms feeds are used to store data about rule engines

and translators. Fig. 1. illustrates how an atom entry is used to store data about a rule

engine.

Fig. 1. Rule engine registration using APP

3.2 Rule engine interoperability

The two rule engines experimented upon present similarities that allowed the

authors to design one single model of middleware interface. Thus two soap services

for each rule engine are provided, allowing to control and evaluate the state of the

engines’ working memories. The ‘Management’ service allows administration type

operations and the ‘Functional’ service allows operations on rules and facts in

specific sets of knowledge (i.e. instance of a working memory).

Fig. 2. shows the different functions per web service along with the arguments they

require. The WSDLs [11] used in the demonstration software do not implement all the

potential functionalities and can be viewed through the web user interface.

Fig. 2. Rule engine middleware description

It is noticeable that the authors do not make the assumption that a single model of

middleware is possible for every rule engines and anticipate that further

experimentation will make use of different types of interfaces. The Drools project, for

instance, already proposes a RESTful middleware [12].

3.3 Rule interchangeability

For the purpose of this experiment, the authors have chose to investigate rule

interchange between Drools and Jess using the Rule Interchange Format (RIF) core

language as platform neutral language. Drools and Jess were chosen for their

popularity and similarities (e.g. use of Rete algorithm [13], capability to handle

update of the working memory).

It is not possible to provide in this short document a full description of the translation

mechanisms used in the demonstration. However, the translators themselves can be

viewed and copied through the demonstration software as XSLT [14] documents.

Fig. 3. illustrates the different languages used to perform translations between the

Drools and Jess rule engines as well as their relationships.

Fig. 3. Rule engine registration using APP

At the time of writing, the interchange soundness is verified by a specific ‘validate’

function of the ‘functional’ service. This function makes use of the target rule engine

specific mechanism for rule validation and attempt to validate both the grammatical

validity of the rule and its relevance in the current context (e.g. presence of

concordant fact types in the working memory). For instance, in the case of the Jess

middleware used in the demonstration system, the validations process attempts to

register the rule to be validated into the working memory of the engine. Depending on

the result of this operation the middleware then retrieves any error and unregisters the

rule as relevant.

The authors understand the limitations of such approach and further work will

investigate more appropriate techniques to evaluate the soundness of the interchange.

3.4 System usability

The authors have designed a web user interface for the demonstration software

using Adobe Flex technology [15]. Fig. 4. Shows how different rule engines and their

rules can be browsed together with the different functionalities available: Add rule,

Delete rule, Translate rule and Modify rule (modifying a rule requires the use of the

clipboard feature).

Fig. 4. Web user interface

The unique added value of the demonstration software’s web interface at the time of

writing is the ability to use different technologies of rule engines through a single user

interface.

6 Limitations of the proposed approach

The demonstration software presents two main limitations: its interchange process

and its usability.

A key requirement for this approach is the availability of reliable translations between

the different rule languages and RIF core. Incremental translation can mitigate the

need for specific RIF core translators. However, even assuming that the translators

themselves do not have any errors, the approach suffers from the “least common

denominator” limit associated with the capabilities of the supported rule engines.

The web interface, in its design at the time of writing, only proposes a textual

visualization of the rules. This is not as user friendly as the editor interfaces most the

commercial rule engine, Drools included, propose.

5 Related works

In this section, work related to the three main aspects of the experiment described

in this paper and specifically related to rule-driven distributed systems are introduced.

These aspects are rule engine interoperability, rule interchange and rule based system

usability. The authors recognize that the domain of service discovery, although a key

element, is not specific to the topic of this paper.

The main solution proposed in terms of rule engine interoperability is the JSR 94 [16]

specification. JSR 94 is however specific to the Java world and does not take into

account the potential distributed nature of the rule engine’s environment. The other

relevant piece of work related to interoperability is the service oriented business rules

broker presented in [17]. The so-called business rules broker allows hiding the

heterogeneity of different rules engines and providing a service-oriented interface to

access and execute the business rules from different knowledge bases. The authors

present the implementation of a plug-in for JSR 94 compliant rule engines. However,

in [17], the authors use a XML configuration file to identify each knowledge base in

one rule engine and generate a specific web service. In the current document and its

demonstration software, the authors chose to separate in two services administration

and functionality in order to be able to provide static interfaces instead of generated

ones while enabling separation between knowledge bases.

Rule interchangeability has received a lot of interest in the past few years. Currently,

the two main initiatives for rule interchangeability are RuleML [5] and RIF [6].

The RuleML Initiative develops the Rule Markup Language (RuleML). The goal of

this initiative is to develop a canonical Web language for rules using XML markup,

formal semantics, and efficient implementations [18]. The RuleML initiative started

in 2000 and aims at becoming the standard rule markup. It already provides

translations to and from different rule languages as well as other tools such as user

interface.

The Rule Interchange Format (RIF) is developed by a dedicated World Wide Web

Consortium (W3C) Working Group since 2005. RIF focuses on rule exchange rather

than develop a specification to replace all the others. In order to address the many

challenges of rules interchangeability, RIF is meant to be extensible and is divided

into dialects that are all based on a common core and share as many properties as

possible but each specialize in a particular domain.

As underlined in the introduction section, usability is one of the key element behind

the use of business rules. It is therefore not a surprise to see that most rule engines

provide rule editors. However, without providing an extensive study on user

interfaces it is difficult to compare what advantages they each offer and provide a

benchmark.

6 Conclusions and future work

In this paper and its related demonstration software, the authors have presented a

common interface for multi-rule-engines distributed systems. The described work

includes several novel features: firstly, a rule engine-agnostic user interface, along

with its supporting tools are presented. Secondly, RIF core is used as a global

language to represent rules, with translators for specific business rule engine

technologies, such as Drools and Jess. Thirdly, the notion of a common interface was

introduced as a means to render heterogeneous rule-driven components and the

distributed systems they are part of more manageable.

Future research will focus on automated retrieval and correlation of associated rules.

To allow the common interface to understand which rules or parts of rules involve the

same fact and how they can be assembled to enable the end user to manipulate this

fact without the need for repetitive actions.

Another domain that the authors intend to investigate is security. In particular,

mechanisms are needed for rule-driven components to specify in what circumstances

a user can perform certain actions on rules, facts and rule engines. For instance,

allowing users to manipulate only specific parts of a rule based on the type or state of

a fact should be implemented on the engine or distributed system level.

The demonstration system can be accessed at: http://home.agh.edu.pl/~bkwolek/yield/

alternatively, the reader can see a video of the demonstrated system at:

http://home.agh.edu.pl/~bkwolek/yield/RuleML_demo.avi.

Acknowledgements

The authors acknowledge Joanna Kosinska, Robert Szymacha, Marek Psiuk,

Daniel Żmuda, Tomasz Szydlo and Sławek Zieliński from the Distributed System

Research Group, AGH University of Science and Technology for their significant

contribution to the development and improvement of the work presented in this paper.

This work is part of the IT SOA project founded by the European Union and the

Polish Minister Of Higher Education. More details on this project can be found at:

http://www.soa.edu.pl

References

1. McCoy, D. W. and Sinur J., Achieving Agility: The Agile Power of Business Rules,

Gartner, Special report on Driving Enterprise Agility, 20 April 2006

2. Oracle Business Rules, available at:

http://www.oracle.com/technology/products/ias/business_rules/index.html

3. Drools Business Logic integration Platform, available at: http://www.jboss.org/drools

4. Jess the Rule Engine for the Java Platform, available at: http://www.jessrules.com/

5. The Rule Markup Initiative, http://ruleml.org/

6. Rule Interchange Format (RIF), available at:

http://www.w3.org/2005/rules/wiki/RIF_Working_Group

7. Open Services Gateway initiative (OSGi) Alliance Specifications, available at:

http://www.osgi.org/About/Technology

8. W3C/IETF URI Planning Interest Group URIs, URLs, and URNs: Clarifications and

Recommendations 1.0, W3C Note, 21 September 2001, available at:

http://www.w3.org/TR/uri-clarification/ retrieved 2010-06-01.

9. The Atom Publishing Protocol, available at http://tools.ietf.org/html/rfc5023

10. eXist-db Open Source Native XML Database, available at http://exist.sourceforge.net/

11. Web Services Description Language (WSDL) 1.1, available at

http://www.w3.org/TR/wsdl

12. Fielding, Roy. Architectural Styles and the Design of Network-based Software

Architectures (PhD Thesis). s.l. : University of Irvine, California, 2000.

13. C. Forgy. Rete: A fast match algorithm for the many pattern/many object pattern match

problem. Artificial Intelligence, (19):17–37, 1982.

14. XSL Transformations (XSLT), available at http://www.w3.org/TR/xslt

15. Adobe Flex, available at http://www.adobe.com/products/flex/

16. Java Rule Engine API, JSR-94, Java Rule Engine API Specification Version: 1.0,

September 15, 2003, available at: http://jcp.org/en/jsr/detail?id=94

17. F. Rosenberg and S. Dustdar. Design and Implementation of a Service-Oriented Business

Rules Broker. In Proceedings of the 1st IEEE International Workshop on Service-oriented

Solutions for Cooperative Organizations (SoS4CO’05), 2005.

18. H. Boley, S. Tabet, and G. Wagner. Design Rationale of RuleML: A Markup Language

for Semantic Web Rules. In Proceedings of the 1st Semantic Web Working Symposium,

July/August 2001.

