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Abstract
This report details a tutorial on image-schematic analysis and functional object detection presented at the
conference. The tutorial bridges theoretical foundations with practical applications, introducing participants
to a novel framework for analyzing video content through the lens of image schemas. Through hands-on
demonstrations, participants engaged with an interactive system that processes video sequences to generate
rich semantic representations. The system produces multi-layered output including knowledge graphs of image
schematic activations, natural language descriptions, temporal event annotations, and automatically curated
storyboards with generated captions. The theoretical underpinnings of image-schematic segmentation and
functional parts detection were covered, but the tutorial focused on enabling participants to effectively utilize
these tools for their own research and applications. The tutorial successfully demonstrated how image-schematic
analysis can be practically applied to video understanding tasks, while gathering insights from participants about
desired future functionalities. This approach of combining theoretical instruction with hands-on experimentation
proved effective for both teaching the technology and collecting user requirements for future development.
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1. Introduction

The tutorial provided an in-depth exploration of a cognitively inspired approach to robotic percep-
tion and reasoning based on image schemas. At its core, image schemas represent fundamental
spatiotemporal patterns that emerge from embodied experiences and interactions with the physical
world [1, 2, 3, 4, 5, 6, 7]. These schemas, such as LINKAGE, SUPPORT, and SOURCE-PATH-GOAL rela-
tionships, serve as the building blocks for understanding how objects and agents interact in space and
time [4]. The concept originates from cognitive science research showing how humans develop these
basic patterns through early sensorimotor experiences, which then scaffold more complex reasoning
about physical interactions.

The approach presented in the tutorial addresses a significant challenge in contemporary artificial
intelligence. While modern AI systems, particularly large language models and video generators, can
produce impressively coherent outputs, they seem to fundamentally lack an understanding of physical
dynamics and spatial relationships. This limitation stems from their reliance on statistical patterns
learned from decontextualized data, rather than grounded, embodied knowledge of how the physical
world works. The tutorial demonstrated how incorporating image schemas into artificial systems can
help bridge this gap. The presenters introduced a neurosymbolic architecture that combines neural
components for perception with symbolic reasoning based on image schemas. This hybrid approach
allows the system to process raw sensory input while maintaining structured representations of spatial
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relationships and physical interactions. Moreover, the architecture includes mechanisms for knowledge
enrichment, enabling the system to learn new functional concepts through observation and interaction.

2. Image Schematic Reasoning with KHAFRE

In this section we will describe Khafre (Knowledge-driven Heideggerian AFfordance Recognition), a
neurosymbolic system to perform taskable perception. For this tutorial, we focused on how to use
khafre to perform image-schematic event segmentation and recognition of functional object parts from
video. Khafre is available under MIT license from https://github.com/heideggerian-ai-v5/khafre.

2.1. Perception Module

The perception module forms the foundation of the system, processing raw sensor data from RGB and,
optionally, depth cameras to produce qualitative descriptions of scenes. At its heart lies a sophisticated
object detection system based on YOLOv8 models, which segments the visual input into meaningful
object regions. This initial segmentation provides the basic vocabulary of objects that the system can
reason about.

Beyond simple object detection, the perception module incorporates specialized components for
analyzing interactions between objects. A dedicated contact region detector identifies areas where
objects meet or touch, providing crucial information for understanding physical relationships. The
system also employs optical flow analysis to track movement, enabling it to understand dynamic
interactions as they unfold over time. Shape registration applied to object segmentation masks is used
to estimate occluded parts of objects as well as track parts of objects that have become unoccluded,
which is important to recognize events that require an object to pass through or behind another, e.g. a
knife blade through an apple during cutting.

The module operates on a query-based paradigm, where it actively seeks specific types of information
rather than attempting to process everything at once. These queries focus on four main aspects: object
identification, detection of relative movement between objects, identification of contact relationships,
identification of (former) occlusions. This targeted approach allows the system to efficiently allocate
computational resources to the most relevant aspects of the scene. The output of the perception module
takes the form of qualitative descriptions expressed as semantic triples. For example, the system
might generate assertions like ”object A contacts object B” or ”object C moves relative to object D.”
These qualitative descriptions are complemented by contact mask annotations, which highlight specific
regions where objects interact. This combination of symbolic descriptions and spatial annotations
provides a rich foundation for higher-level reasoning.

2.2. Reasoning Module

The reasoning component builds upon the perceptual foundation by maintaining and updating beliefs
about the current situation. These beliefs are primarily expressed through image schema assertions,
which capture meaningful relationships between objects such as CONTACT and SUPPORT. The reason-
ing system employs a sophisticated rule-based inference mechanism to update these beliefs based on
new perceptual information. A key feature of the reasoning module is its use of reification mechanisms.
When the system identifies a relationship between objects, it creates a new entity representing that
relationship. This approach allows the system to reason about relationships themselves as objects,
enabling more complex forms of inference and knowledge representation. The module also incorporates
graph-based querying capabilities, allowing it to analyze dependencies between entities and relation-
ships. This feature is particularly important for understanding how different spatial relationships
interact and influence each other. For example, the system can track how a SUPPORT relationship
between two objects depends on specific Contact relationships being maintained.

https://github.com/heideggerian-ai-v5/khafre


2.3. Image Schematic Event Segmentation

By image schematic event segmentation we mean selecting frames of a video at which image schematic
relations between objects change – i.e., some relation comes into effect, or ceases to hold. An example
segmentation can be seen in figure 2.3. The selected frames will typically not have the same time
interval between them.

Such “event frames” are usually much fewer in number than the whole frames of the video, and they
represent times at which something “significant” changes. What significant means depends on the
goals that the perception system was given. In the case of the segmentation displayed in figure 2.3, the
tracked events were contacts, occlusions, and penetrations involving fruit and cutlery.

Khafre saves the selected event frames as pairs of files, one in JPEG format to store the image and one
in Turtle format to store its semantic description, and also creates, after a video analysis is complete, an
html file in which the segmentation as a whole can be viewed.

2.4. Concept Invention

One of themost innovative aspects presented in the tutorial is the system’s ability to learn new functional
concepts through observation. This capability addresses a fundamental limitation of traditional robotic
systems, which typically operate with a fixed ontology of pre-defined object categories. Instead, this
system can identify and learn about functional parts based on their roles in observed interactions.
This approach is a refinement of previous approaches as in [8, 9, 10]. The process begins when the
system observes objects interacting in specific ways. As an example which we used for a previous
paper [11], when observing a mug being supported by a hook, the system identifies not just the objects
involved, but the specific parts that enable the interaction. Through repeated observations, it builds up
a concept of what makes a part functional for a particular type of interaction. The system formalizes
these observations by creating new concept definitions. For instance, it might create a concept like
“MugSupportedByHook” for parts of mugs that can engage in support relationships with hooks. These
concepts are grounded in both geometric properties (the shape and location of the part) and functional
properties (its role in supporting relationships).

Another example is of functional parts involved in penetrating objects that are the patients of cutting
tasks. In this case, the functional part disappears from view – is occluded – while it performs the task,
and the system has to guess the occluded shape, as well as recognize when the occluded part re-emerges
into view. This is done via shape registration: the shapes of the masks for the same object at consecutive
frames are matched to each other, with areas where no overlap occurs being then subject to further
processing.

The tutorial demonstrated how the system collects training examples of these functional parts through
automated annotation of observed interactions. This collected data is then used to retrain the perception
models, enabling them to recognize these functional parts in new situations. The learned concepts
could significantly improve the system’s ability to plan and execute interactions. Rather than treating
objects as atomic wholes, it can reason about specific functional parts and their roles.

3. Knowledge Enrichment

The knowledge enrichment component of our framework operates through a two-stage process that
leverages image schemas to derive deeper semantic understanding from visual and spatial information.
The framework described here is a refinement based on [12]. This section details how the system
progressively builds richer knowledge representations from initial perceptual data.

First Stage: Spatial and Sensorimotor Knowledge Extraction The initial enrichment stage
focuses on identifying and formalizing implicit spatial and sensorimotor relationships present in the
scene. The system analyzes visual input alongside an existing RDF knowledge graph to identify instances
of fundamental image schemas, including Movement, Source-Path-Goal, Contact, Link, Containment,



Figure 1: An image schematic timeline of a video. Rows correspond to schematic relations, columns to times.
Cells mark whether a relation is active at that time.

Balance, Center-Periphery, and Blockage. Operating on both image data and the base knowledge graph
serialized in Turtle syntax, the system identifies spatial and dynamic relationships that may not be
explicitly represented in the initial perception. For instance, when observing an object being lifted, the
system not only recognizes the immediate Movement schema but also identifies the implicit Balance
relationships that must be maintained and any potential Blockage that might affect the motion. This
enrichment process extends the original knowledge graph by adding new triples that capture these
image schematic relationships. The system anchors these new assertions to existing entities in the
knowledge base, ensuring that the enriched knowledge remains grounded in the concrete objects and
situations observed in the environment.



Figure 2: An area of a cutlery item (highlighted in cyan) that was previously occluded by a fruit while in contact
with the fruit is now visible (highlighted in white). This is taken to indicate that the highlighted area penetrated
the fruit and is functionally important for cutting tasks.

Second Stage: Temporal and Causal Relationship Inference The second stage of knowledge
enrichment moves beyond immediate spatial relationships to understand deeper temporal and causal
patterns. This stage processes the enriched knowledge graph from the first stage to identify four key
types of relationships:

Causal Dependencies: The system identifies when one event directly influences or causes another.
For example, when a pushing action causes an object’s movement, this causal relationship is explicitly
encoded in the knowledge graph.

Event Sequences: Temporal ordering between events is captured, allowing the system to understand
not just what happens but the sequence in which events unfold. This temporal knowledge is crucial for
understanding process flows and action planning.
Implied Future Events: Based on current observations and known patterns, the system can infer

potential future states or events. These predictions are encoded as probabilistic relationships in the
knowledge graph.

Prevented Events: The system recognizes and represents potential events that are prevented from
occurring due to current conditions or other events. This understanding of “what could have happened”
enriches the system’s comprehension of situational dynamics.

Integration with the Knowledge Base Both enrichment stages operate within the constraints of
RDF and Turtle syntax, ensuring that all derived knowledge integrates seamlessly with the existing
knowledge base. Each new relationship is expressed through well-formed RDF triples, maintaining the
semantic structure of the knowledge representation. This enriched knowledge serves multiple purposes
within the broader system:

1. It enables more sophisticated reasoning about spatial relationships and physical interactions. By
making implicit relationships explicit, the system can better understand the consequences of
actions and the constraints of physical situations.

2. The temporal and causal knowledge supports better prediction and planning. Understanding
event sequences and their causal relationships allows the system to anticipate potential outcomes
and plan more effectively.

3. The enriched knowledge base provides a foundation for learning new concepts. By identifying



patterns in how objects participate in various image schemas and causal relationships, the system
can develop new functional categories and relationships.

The two-stage enrichment process demonstrates how combining image schematic understanding
with temporal and causal reasoning can create a rich semantic representation of physical situations. This
enhanced knowledge representation supports more sophisticated reasoning about physical interactions
and enables more adaptive behavior in complex environments.

4. Resources

Khafre is available under MIT license at https://github.com/heideggerian-ai-v5/khafre.
The tutorial colab for knowledge enrichment is available at https://colab.research.google.com/drive/
1s8BtRvLCNWL2GpHK7y50w2s2WaK6db6g?usp=sharing.
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