
Exploratory Review of Quantum Computing Software
Requirements Specification and their Measurement

Tuna	Hacaloglu1,2,	Hassan	Soubra3,	Pierre	Bourque1	

1École	de	Technologie	Supérieure,	1100,	rue	Notre-Dame	Ouest,	Montréal,	Québec,	H3C	1K3,	Canada		
2Atilim	University,	İncek,	Gölbaşı,	Ankara,	06830,	Türkiye	
3École	Centrale	d'électronique	(ECE),	Lyon,	France	
	

Abstract	
Quantum	software	sets	itself	apart	from	classical	software	owing	to	its	powerful	computational	abilities	
rooted	 in	 entanglement	 and	 superposition.	 Unlike	 classical	 software,	 quantum	 software	 diverges	
notably	 across	 various	 dimensions,	 including	 computational	 models,	 hardware	 architectures,	
algorithms,	 deployment	 platforms,	 and	 problem	 domains.	 Quantum	 software	 is	 also	 often	 not	
standalone	 and	 interacts	 heavily	 with	 classical	 software,	 stressing	 the	 importance	 of	 carefully	
considering	hybridization.	From	a	software	engineering	standpoint,	researchers	generally	agree	that	a	
different	 approach	 is	 required	 for	 quantum	 software,	 and	 they	 advocate	 a	 Quantum	 Software	
Development	 Life	 Cycle	 (SDLC).	 		This	 exploratory	 study	 briefly	 outlines	 the	 specifics	 of	 quantum	
software,	 overviews	 the	 proposed	 approaches	 regarding	 the	 software	 requirements	 of	 quantum	
software,	 and	 then	 reviews	 the	 current	 alternatives	 for	measuring	 the	 functional	 size	 of	 quantum	
software.	This	study	indicates	that	only	a	few	papers	in	the	literature	discuss	the	requirements	and	
functional	size	measurements	of	quantum	software.	Their	results	are	also	mostly	conceptual	and	have	
not	yet	been	empirically	validated.		Functional	size	measurement	using	quantum	software	remains	an	
open	area	for	further	research.	

Keywords		
Software	size	measurement,	quantum	software,	quantum	software	requirements	1	

1. Introduction

The	revolutionary	potential	of	quantum	computing	arises	from	its	unique	capabilities,	such	as	
entanglement	and	superposition,	and	its	promising	unprecedented	computational	power.	In	
this	context,	quantum	software	is	a	beacon	for	innovation.	While	classical	software	has	long	
served	as	the	cornerstone	of	digital	innovation,	quantum	software	is	emerging	as	a	distinct	
entity	 that	 offers	 a	 fundamentally	 different	 approach	 to	 computation.	 This	 distinction	
encompasses	 a	multitude	of	 facets	 ranging	 from	hardware	 architectures	 to	 the	 algorithms	
employed,	along	with	the	platforms	on	which	they	are	deployed	and	the	problem	domains	
they	address.		
This	 study	 explores	 the	 emerging	 field	 of	 quantum	 software	 from	 a	 measurement	

perspective.	First,	we	introduce	the	features	that	distinguish	quantum	software	from	classical	
software,	and	the	need	for	a	development	life	cycle	specific	to	quantum	software.	Next,	we	will	
focus	on	describing	 the	 software	 requirements	 for	quantum	software,	which	 serves	as	 the	
fundamental	measurable	input	essential	to	the	software	development	process.	By	examining	
how	software	requirements	are	addressed	in	quantum	software,	we	identify	similarities	and	
differences	with	classical	software	requirements	and	strive	to	determine	potential	elements	
of	 improvements	 and	 research	 gaps	 that	 could	 serve	 as	 sources	 of	 change	 in	 the	 field	 of	

	

IWSM-Mensura,	September	30–04,	2024,	Montréal,	Canada	
	tuna.hacaloglu@etsmtl.ca	(T.	Hacaloglu);	hsoubra@ece.fr	(H.	Soubra);	pierre.bourque	@etsmtl.ca	(P.	Bourque)	

	
©	2024	Copyright	for	this	paper	by	its	authors.		
Use	permitted	under	Creative	Commons	License	Attribution	4.0	International	(CC	BY	4.0).		
CEUR Workshop Proceedings (CEUR-WS.org)

	
	

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:manfred.jeusfeld@acm.org

software	 measurement.	 Additionally,	 we	 introduce	 the	 methods	 recommended	 in	 the	
literature	 for	 quantum	 software	 size	 measurements	 and	 provide	 a	 comparison	 of	 these	
methods.	This	exploration	will	allow	the	development	of	insights	into	the	evolving	landscape	
of	quantum	software	and	offer	guidance	for	researchers,	practitioners,	and	stakeholders	alike,	
as	they	navigate	the	complexities	of	this	new	technology	from	the	software	size	measurement	
perspective.		
The	 remainder	 of	 this	 paper	 is	 structured	 as	 follows:	 Section	 2	 presents	 a	 background	

related	 to	 quantum	 software	 development.	 Section	 3	 presents	 requirements	 engineering	
studies	 for	 quantum	 software.	 Section	 4	 presents	 studies	 on	 quantum	 software	 size	
measurements.	Section	5	presents	a	discussion,	and	Section	6	concludes	the	paper.	
	

2. Background

Quantum	computers,	which	surpass	the	capabilities	of	classical	computers,	have	the	potential	
to	provide	more	effective	and	innovative	solutions	for	the	technological	needs	of	the	future.	
Quantum	 computing	 applications	 extend	 to	 complex	 fields,	 such	 as	 drug	 discovery,	
radiotherapy	optimization,	and	cryptography,	each	presenting	multidimensional	challenges	
that	highlight	the	importance	of	Quantum	Software	Engineering	(QSE)	[1].	
Quantum	 software	 (QS)	 differs	 from	 classical	 software	 in	 several	 respects.	 First,	 their	

computation	models	diverge	from	classical	software	that	relies	on	bits,	whereas	QS	operates	
with	 more	 complex	 quantum	 bits	 (qubits).	 Second,	 their	 hardware	 architectures	 differ	
significantly;	 classical	 software	 uses	 logic	 gates,	 whereas	 QS	 utilizes	 quantum	 gates.	
Additionally,	 the	 fields	 they	 target	 differ	 significantly:	 classical	 software	 caters	 to	 a	 wide	
variety	of	applications	such	as	games,	web	applications,	and	databases,	whereas	QS	is	geared	
towards	more	 computation-intensive	applications	 such	as	optimization,	 cryptography,	 and	
simulation.	Superposition	and	entanglement	are	features	that	distinguish	quantum	computing	
from	classical	software	[1].	Owing	to	superposition,	a	quantum	program	can	exist	in	multiple	
states	simultaneously.	Because	of	entanglement,	two	entangled	qubits	or	registers	exist	in	a	
single	quantum	state;	therefore,	two	qubits	can	contain	four	values	at	once	(e.g.,	00,	01,	10,	
and	 11)	 [1].	 However,	 quantum	 noise	 and	 decoherence,	 which	 affect	 the	 precision	 and	
performance	 of	 quantum	 programs,	 are	 challenges	 that	 cannot	 be	 overlooked	 or	 easily	
addressed	by	the	upcoming	Noisy	Intermediate-Scale	Quantum	NISQ	computers	[2],	[3].	The	
authors	in	[1]	pointed	out	that	given	the	unique	properties	of	quantum	computing,	such	as	
superposition	and	entanglement,	classical	software	engineering	methods	are	inadequate	for	
creating	efficient	quantum	software	applications,	and	there	is	a	need	to	devise	new	Quantum	
Software	Engineering	(QSE)	methodologies.		
At	 this	 point,	 the	 consensus	 among	 researchers	 is	 that	 there	 is	 a	 need	 for	 a	 quantum	

Software	Development	Life	Cycle	(SDLC)	and	that	it	should	be	approached	differently	from	
classical	software	because	of	quantum-related	challenges.	Further	support	by	the	authors	in	
[1],	[4]	emphasize	the	hybrid	nature	of	quantum	applications	and	draws	attention	to	the	lack	
of	 an	 SDLC	 approach	 that	 addresses	 the	 quantum-classical	 integrated	 application	
development	 challenges.	 In	 [5]	 the	 authors	 explained	 this	 hybrid	 nature	 of	 quantum	
applications	as	a	quantum	program	that	utilizes	a	quantum	register	consisting	of	qubits	for	
executing	quantum	operations	alongside	a	classical	register	containing	classical	bits	to	store	
observations	of	qubit	states	and	conditionally	apply	quantum	operators.	Several	approaches	
to	SDLC	have	been	presented	in	the	literature	[4],	[6],	[7].	However,	an	examination	of	these	
studies	reveals	a	noticeable	scarcity	of	research	on	the	measurement	of	quantum	software	
projects.		
Software	 measurement	 plays	 an	 important	 role	 in	 moving	 forward	 efficiently	 and	

successfully	 during	 SDLC	 and	 is	 of	 great	 importance	 in	 quantum	 projects,	 just	 as	 it	 is	 in	
classical	 projects.	More	 specifically,	measurement	 contributes	 to	 the	 software	 engineering	
discipline	through	cost	estimation,	performance	assessment,	process	improvement,	decision	
making,	 and	 quality	 control.	 Software	 measurement,	 an	 important	 component	 of	 project	
management,	 must	 be	 conducted	 effectively	 to	 ensure	 proper	 management	 of	 quantum	

software	development	projects.		
From	 a	 management	 perspective,	 software	 requirements,	 which	 are	 the	 fundamental	

reason	 for	 developing	 software,	 play	 a	 crucial	 role	 from	 a	measurement	 perspective.	 It	 is	
crucial	to	define	requirements	in	the	early	phases	of	software	development	to	ensure	that	all	
stakeholder	needs	and	specifications	are	accurately	identified	and	documented	[8].	The	early	
identification	of	requirements	is	important	not	only	to	bridge	the	communication	gaps	among	
stakeholders	 but	 also	 to	 conduct	 software	 measurements	 for	 early	 estimation.	 Because	
Quantum	Software	engineering	is	still	emerging	as	a	new	field,	quantum	software	requirement	
studies	are	currently	quite	limited,	with	only	a	handful	of	studies	investigating	requirements	
in	the	quantum	software	development	domain	[6],	[9],	[10],	[11],	[12].	The	existing	literature	
offers	some	insights	into	the	specific	requirements	of	quantum	software	development.	In	[1]	
the	authors	draw	attention	to	the	challenges	that	quantum	computing	brings	and	posits	that,	
like	 classical	 software,	 quantum	 software	 engineering	 demands	 the	 creation	 of	 innovative	
techniques	for	elicitation,	specification,	modeling,	analysis,	and	verification.	The	authors	also	
emphasize	the	need	for	further	investigation	to	ascertain	whether	expanding	UML	would	be	
adequate	or	if	there	is	a	need	for	more	domain-specific	modeling	solutions.		
In	summary,	quantum	software	development	employs	a	hybrid	methodology	that	blends	

elements	from	both	quantum	and	classical	software	development	methodologies,	potentially	
influencing	the	abstraction	and	presentation	of	requirements	and	their	management.	For	this	
reason,	 classical	 requirements	 engineering	 must	 be	 revisited	 to	 comply	 with	 quantum	
software	development.	
	

3. Advancements in Requirements for Quantum Software Development

Only	 a	 handful	 of	 studies	 have	 investigated	 the	 requirements	 of	 Quantum	 Software	
Development.	 	Dey	et	al.	 [6]	suggested	dividing	quantum	requirement	specifications	 into	 two	
categories:	quantum	software	requirement	specification	and	quantum	hardware	requirement	
specification.	 According	 to	 Dey	 et	 al.	 [6],	 the	 quantum	 software	 requirements	 specification	
encompasses	 quantum	 tools,	 integrator	 plugins,	 logical	 circuit	 synthesizers	 for	 quantum	
systems,	 classical	 validators,	 and	 classical	 software	 requirements	 specification	 modules,	
whereas	quantum	hardware	requirements	specifications	include	qubit	count,	quantum	volume,	
physical	machine	description,	and	classical	hardware	processor.	Dey	et	al.	 [6]	highlighted	the	
importance	of	having	or	developing	a	clear	understanding	and	explicit	declaration	of	hardware	
requirements	before	proceeding	to	the	design	phase.	The	authors	in	[6]	also	described	quantum	
hardware	specifications	by	pointing	out	that	the	performance	of	quantum	computation	can	be	
impeded	by	various	technological	challenges	such	as	inadequate	qubit	count,	low	qubit	fidelity,	
qubit	errors,	and	shorter	coherence	intervals.	
Yue	et	al.	[9]	presented	aspects	that	distinguished	quantum	requirements	engineering	from	

classical	 software	 requirements.	 They	 analyzed	 requirements	 engineering	 based	 on	 major	
concepts	 such	as	 stakeholders,	 functional	and	non-functional	 requirements,	 and	 requirement	
specification,	and	compared	classical	requirements	with	quantum	requirements.	A	summary	of	
the	proposal	of	Yue	et	al.	[9]	is	presented	in	Table	1.		
	

Table 1: Quantum requirements engineering in [9]

Requirements
engineering related
components

 Quantum software related suggestions in the paper

Stakeholders &
System boundaries

Identifying stakeholders & system boundaries remain the same as in the
classical software context.

Requirements
Gathering

It is anticipated that established techniques like interviews and prototyping
for gathering requirements will remain largely unchanged.

Requirements
Specification

Specifications using modeling notations need to be updated for
incorporating quantum aspects. Requirements specifications for quantum
software will undergo alterations to incorporate concepts pertinent to
quantum software. The authors designed a use case diagram to cover use
cases in the classical domain, the quantum domain, and a hybrid of them.

Requirements
Categorization

The requirements should be classified into the ones for the classical parts of
the system and the other for the quantum parts of the system. Therefore,
they define these requirements as classical, quantum and hybrid
requirements.

Functional
Requirements

Identifying functional requirements for quantum software is the same as for
classical software.

Extra Functional
(Non-Functional)
Requirements

While all the non-functional requirements defined for classical software in
SWEBOK [13] will be relevant to quantum software systems too, there needs
to be additional requirements for quantum software. Non-Functional
Requirements (NFR) specific to Quantum software are given in Table 2.

	
Yue	 et	 al.	 [9]	 also	 drew	 attention	 to	 quantum-specific	 nonfunctional	 requirements.	 They	 are	
summarized	in	Table	2.	
	

Table 2: Non-Functional Requirements (NFR) specific to Quantum software in [9].

NFR Specific importance in Quantum Software

Portability Due to the potential development of quantum computers using different technologies,
portability will be critical.

Performance In terms of estimating the number of qubits and gates, performance requirements will
be relevant in determining in advance whether the available resources can meet the
anticipated performance criteria.

Reliability Defining reliability requirements become particularly important when considering how
hardware errors can affect the reliability of quantum software systems.

Scalability Considering that quantum computers are known to support a limited number of
resources (e.g., number of qubits, depth of the quantum circuit), it becomes crucial to
define scalability requirements.

Maintainability With the ongoing technological advancement of quantum hardware, it will be necessary
to update existing quantum software to accommodate hardware changes.

Reusability Quantum software, typically developed as a hybrid of classical and quantum
components, faces reduced reusability due to strong interdependence between these
components. Enhancing cohesion within the quantum component can improve its
reusability.

Yue	et	al.	[9]	also	explored	the	modeling	of	quantum	software	using	a	UML	use-case	diagram.	
They	used	a	credit	risk	analysis	example	using	a	quantum	algorithm.	In	their	use	case	diagram,	
there	are	actors	from	both	the	classical	domain	(credit	analyst)	and	quantum	domain	(quantum	
expert).	Similarly,	the	use	cases	in	the	diagram	include	classical	requirements	such	as	“determine	
the	confidence	level”,	and	hybrid	requirements	such	as	“manage	risk	in	finance	with	quantum”	
and	purely	quantum	related	such	as	“estimate	the	required	number	of	gates”	and	“estimate	the	
impact	of	hardware	noises”.		
								Saraiva	et	al.	[10]	suggested	that	non-functional	requirements	(NFR)	are	oriented	toward	
hardware-related	constraints	of	quantum	computing.	They	also	mapped	these	 to	 the	product	
quality	characteristics	of	the	ISO	25010	Quality	Model	[14]	(see	Table	3).	These	product	quality	
characteristics	are	related	to	the	performance	efficiency,	resource	utilization,	and	reliability	in	
the	ISO	25010	Quality	Model.	
	

Table 3: Non-Functional Requirements Specific to Quantum Software in Saraiva et al. (2021)

Quantum Software NFR
Equivalent product
quality
characteristic in [14]

[NFR1 - The program should use a maximum of n qubits, where n
is the number of qubits available in the target quantum device.]

Performance efficiency
Resource utilization

[NFR2 - The program should be designed considering the
maximum circuit depth so that the target device can maintain a
stable quantum state for the necessary period to execute the
algorithm.]

Reliability

[NFR3 - The program should be designed considering the number
of T gates so that it does not exceed the limit of the target device.]

Reliability

[NFR4 - The program should be implemented minimizing the
number of gates between qubits that are not physically connected
on the target device.]

Performance efficiency
Reliability

[NFR5 - The program should be implemented minimizing the use
of gates that are not available in the target quantum device.]

Performance efficiency
Reliability

	
Moreover,	the	literature	includes	some	endeavors	aimed	at	representing	quantum	software.	For	
instance:		

• Perez-Delgado	and	Perez-Gonzalez	[15]	presented	a	modeling	language	for	quantum	
software	based	on	the	Unified	Modeling	Language	(UML),	which	includes	a	concise	
set	of	extensions	to	UML	specifically	tailored	for	modeling	quantum	software	but	can	
also	be	used	separately	and	independently	of	UML.	These	extensions	included	class	
and	sequence	diagrams.	In	their	example,	they	modelled	Shor’s	algorithm	by	using	
extended	class	and	sequence	diagrams.		

• Pérez-Castillo	 et	 al.	 [16]	modeled	 a	 teleportation	 algorithm	 in	 a	 quantum	 circuit	
using	a	UML	activity	diagram	with	swim	lanes.	In	their	activity	diagram,	the	flows	
between	the	qubits,	gates,	measures,	and	registers	are	represented.	

4. Studies in Quantum Software Sizing

In	terms	of	measurements,	some	methods	have	been	proposed	in	the	literature.	Sicilia	et	al.	[17]	
suggested	 a	 preliminary	 set	 of	 research	 directions	 for	 quantum	 software	 measurement,	
acknowledging	 that	 their	 recommendations	 are	 provisional	 and	 incomplete	 owing	 to	 the	
anticipated	rapid	evolution	of	the	quantum	software	field.	
Zhao	proposed	that	the	size	of	quantum	software	can	be	measured	according	to	three	major	

aspects	and	abstraction	levels:	code,	design,	and	specification	levels.	For	each	of	these	aspects,	
the	author	suggests	extending	the	classical	measures	to	quantum	software	[18].	For	instance,	
Zhao	suggested	measuring	the	software	size	using	LOC	metrics	adapted	to	incorporate	quantum-
related	code	parts	into	the	overall	LOC.	However,	these	concepts	have	not	yet	been	empirically	
validated	or	tested	[18].	
To	the	best	of	our	knowledge	on	functional	size	measurement	(FSM)	using	Quantum	Software,	

the	literature	includes	only	three	studies	[5],	[19],	[20].	All	three	studies	were	based	on	COSMIC	
–	ISO	19761	[21],	which	is	a	functional	size	measurement	method	that	measures	the	size	of	a	
given	piece	 of	 software	 by	 counting	 the	 data	movements	within	 its	 functional	 requirements.	
These	data	movements	were	categorized	as	Entry	(E),	Exit	(X),	Read	(R),	and	Write	(W).	The	
measurement	unit	of	functional	size	was	measured	in	the	COSMIC	Function	Points	(CFP).		
In	Table	4,	we	present	a	comparison	of	these	three	approaches	in	terms	of	the	inputs	used	for	

measurement,	functional	processes,	data	movement	types,	and	their	respective	units.	However,	
the	practicality	of	 these	 studies	 in	measuring	 the	 size	of	quantum	software	has	not	yet	been	
investigated.	

Table 4: Comparison of 3 studies on FSM approaches for sizing Quantum Software

Article Measurement
Input

Functional process Data movement types Unit of
Data
movement

[5] Qiskit
software

Quantum Gate E: each QUBIT connected via a line
to a quantum gate; each gate
connected via a line to a Functional
process
X: each line to a Functional process
R: each read from a classical bit
W: each Quantum Measure
identified in this FP

CFP

[20]

Use-case
diagram with
Q-UML

Use case QE: Quantum Entry
QX: Quantum Exit
QR: Quantum Read
QW: Quantum Write

QCFP=CFP

[19] Quantum
circuits

The actions
performed on qubits-
input and operator
actions of the circuit.

E
X
R
W

CFP

	

5. Discussion

When	examining	studies	of	quantum	software	 in	 the	 literature,	 it	 is	evident	 that	quantum	
software	 possesses	 unique	 characteristics	 that	 distinguish	 it	 from	 classical	 software.	 In	 the	
context	of	quantum	software	engineering,	studies	on	requirements	engineering	and	quantum	
software	measurements	are	scarce	and	limited	to	conceptual	research.	However,	these	studies	
have	not	been	validated	or	empirically	tested,	indicating	that	this	field	is	still	being	developed.	
Another	 insight	 from	 the	 literature	 reveals	 that	 the	 definition	 of	 requirements	 scope	 lacks	
precision	in	the	context	of	quantum	software	and	hybrid	software,	with	a	parallel	issue	arising	
in	 the	 requirement	 specification.	 Researchers	 have	 outlined	 quantum-specific	 functional	
requirements	[9]	and	quantum-specific	nonfunctional	requirements	[9],	[10].	Furthermore,	Dey	
et	 al.	 [6]	 classified	 requirement	 specifications	 for	 quantum	 software	 into	 two	 distinct	 types:	
hardware	requirements	and	software	requirements	specifications.		
Two	 non-functional	 requirement	 (NFR)	 categories	 are	 commonly	 observed	 in	 studies:	

reliability	 and	 performance.	 Yue	 et	 al.	 [9]	 explored	 the	 impact	 of	 hardware	 errors	 on	 the	
reliability	 of	 quantum-software	 systems.	 A	 crucial	 aspect	 of	 the	 discourse	 on	 non-functional	
requirements	 involves	 addressing	 errors	 and	noise	 correction	 tailored	 to	 quantum	 software.	
This	prompts	an	inquiry	into	how	to	articulate	them	within	the	framework	of	NFR	and	whether	
they	might	evolve	into	functional	requirements—an	area	ripe	for	further	investigation.	
Furthermore,	the	definition	of	the	requirements	for	quantum	software	must	be	reconsidered	

because	quantum	software	possesses	 complex	 characteristics	 [1],	 [4],	 [5]	 .	Classical	 software	
systems	are	often	perceived	as	black	boxes	that	demonstrate	the	capabilities	of	the	actors	within	
the	 system,	 typically	 encompassing	 use	 cases.	 This	 reassessment	 is	 necessary	 to	 include	 the	
quantum	 software	 requirements.	 For	 instance,	 Yue	 et	 al.	 [9]	 defines	 hardware	 constraints	
specifically	tailored	for	quantum	software	as	additional	functional	requirements.		
In	addition,	quantum	computers	are	 inherently	 limited	 in	 their	capacity.	The	quantities	of	

qubits	and	gates	are	of	particular	significance	in	the	development	of	quantum	software.	Yue	et	
al.	[9]	highlighted	their	significance	within	the	domain	of	performance	requirements,	stating	that	
in	estimating	the	number	of	qubits	and	gates,	performance	requirements	become	pertinent	for	
preemptively	assessing	whether	the	available	resources	align	with	the	envisaged	performance	
[9].	Sicilia	et	al.	[17]	highlighted	the	existence	of	various	"quantum	instruction	sets"	designed	to	
translate	 algorithms	 into	 physical	 instructions.	 These	 "quantum	 instruction	 sets"	 provide	 a	
programming	experience	like	that	of	assembly	or	virtual	machine	programming,	often	tailored	
for	specific	hardware	platforms.		
Another	open	question	for	research	is	how	the	measurement	of	size	should	be	defined	for	

quantum	 software:	whether	 it	 should	 be	 defined	 functionally	 or	whether	 the	 criteria	 of	 size	
measurement	should	be	broadened	to	include	attributes	specific	to	quantum	software.		
Darwish	 and	 Soubra	 [22]	 explored	 the	 application	 of	 functional	 size	measurement	 at	 the	

hardware	 level	 and	 demonstrated	 how	 COSMIC	 Functional	 Size	Measurement	 (FSM)	 can	 be	
utilized	 to	 measure	 the	 functionality	 of	 compiled	 assembly	 programs.	 Nonetheless,	 their	
investigation	relies	on	an	illustrative	example	and	warrants	further	research	for	more	definitive	
conclusions	on	whether	the	COSMIC	FSM	is	applicable	for	low-level	implementations	of	quantum	
software	 requirements.	 To	 date,	 there	 have	 been	 three	 studies	 concerning	 functional	 size	
measurement	(FSM):	[5],	[19],	[20].	All	these	studies	utilized	the	COSMIC	FSM	methodology	to	
measure	 the	 size	 of	 quantum	 software	 at	 three	 different	 abstraction	 levels:	 subsystem	 level,	
functional	 requirements	 level,	 and	 circuit	 level.	 However,	 the	 feasibility	 of	 applying	 these	
methods	 to	 measure	 the	 size	 of	 quantum	 software	 has	 not	 yet	 been	 thoroughly	 explored.	
Therefore,	FSM	in	the	context	of	quantum	software	requirements	remains	an	ongoing	research	
area.	

6. Conclusion

In	 this	 study,	we	 aimed	 to	 shed	 light	 on	 issues	 relevant	 to	 quantum	 software	 sizing	 to	 raise	
awareness	among	researchers.	Their	motivation	was	to	open	avenues	 for	 further	exploration	
and	discussion,	 encouraging	 the	development	 of	 a	 deeper	 understanding	 of	 the	 complexities	
involved.	 In	 conclusion,	 the	exploration	of	quantum	software	 characteristics	 in	 the	 literature	
highlights	its	distinctive	nature	compared	with	classical	software.		
Quantum	 computation	 fundamentally	 diverges	 from	 classical	 approaches,	 necessitating	

specialized	 methodologies	 for	 requirement	 analysis	 and	 size	 measurement.	 Existing	 studies	
emphasize	 the	 need	 for	 tailored	 approaches	 to	 address	 quantum-specific	 functional	 and	
nonfunctional	 requirements,	 including	 considerations	 for	 error	 correction	 and	 system	
reliability.	Furthermore,	the	definition	and	specification	of	functional	requirements	for	quantum	
software	demand	reevaluation	because	of	its	lower	abstraction	level	compared	to	its	classical	
counterparts.	Questions	persist	regarding	how	to	measure	the	size	of	quantum	software:	Should	
it	be	defined	functionally,	or	should	the	measurement	criteria	be	expanded	to	encompass	specific	
quantum	software	attributes?		
Although	studies	utilizing	 the	COSMIC	FSM	methodology	offer	 insights	 into	measuring	 the	

size	 of	 quantum	 software,	 further	 research	 is	 needed	 to	 ascertain	 its	 applicability	 at	 lower	
abstraction	 levels.	 Despite	 these	 advancements,	 the	 feasibility	 of	 applying	 existing	
methodologies	 to	 measure	 the	 size	 of	 quantum	 software	 remains	 an	 ongoing	 area	 of	
investigation.	

Acknowledgements

This	work	was	supported	by	Mitacs	through	the	Mitacs	Elevate	Program	and	COSMIC	Group.	
We	would	also	like	to	thank	Prof.	Alain	Abran	for	his	valuable	contributions	in	reviewing	this	
article.		

References

[1]	 S.	 Ali,	 T.	 Yue,	 and	 R.	 Abreu,	 “When	 software	 engineering	 meets	 quantum	 computing,”	
Commun.	ACM,	vol.	65,	no.	4,	pp.	84–88,	2022.	

[2]	 J.	Preskill,	“Quantum	computing	in	the	NISQ	era	and	beyond,”	Quantum,	vol.	2,	p.	79,	2018.	
[3]	 Y.	 Zhang,	 H.	 Deng,	 Q.	 Li,	 H.	 Song,	 and	 L.	 Nie,	 “Optimizing	 quantum	 programs	 against	

decoherence:	 Delaying	 qubits	 into	 quantum	 superposition,”	 presented	 at	 the	 2019	
International	 Symposium	on	Theoretical	Aspects	of	 Software	Engineering	 (TASE),	 IEEE,	
2019,	pp.	184–191.	

[4]	 B.	Weder,	J.	Barzen,	F.	Leymann,	and	D.	Vietz,	“Quantum	software	development	lifecycle,”	
in	Quantum	Software	Engineering,	Springer,	2022,	pp.	61–83.	

[5]	 K.	 Khattab,	 H.	 Elsayed,	 and	 H.	 Soubra,	 “Functional	 Size	 Measurement	 Of	 Quantum	
Computers	Software.,”	presented	at	the	IWSM-Mensura,	2022.	

[6]	 N.	Dey,	M.	Ghosh,	and	A.	Chakrabarti,	“QDLC--The	Quantum	Development	Life	Cycle,”	ArXiv	
Prepr.	ArXiv201008053,	2020.	

[7]	 I.-D.	Gheorghe-Pop,	N.	Tcholtchev,	T.	Ritter,	and	M.	Hauswirth,	“Quantum	devops:	Towards	
reliable	and	applicable	nisq	quantum	computing,”	presented	at	the	2020	IEEE	Globecom	
Workshops	(GC	Wkshps,	IEEE,	2020,	pp.	1–6.	

[8]	 K.	Ahmad,	M.	Abdelrazek,	C.	Arora,	M.	Bano,	and	J.	Grundy,	“Requirements	engineering	for	
artificial	intelligence	systems:	A	systematic	mapping	study,”	Inf.	Softw.	Technol.,	vol.	158,	p.	
107176,	2023.	

[9]	 T.	 Yue,	 S.	 Ali,	 and	 P.	 Arcaini,	 “Towards	 Quantum	 Software	 Requirements	 Engineering,”	
presented	 at	 the	 2023	 IEEE	 International	 Conference	 on	 Quantum	 Computing	 and	
Engineering	(QCE),	IEEE,	2023,	pp.	161–164.	

[10]	 L.	Saraiva,	E.	H.	Haeusler,	V.	G.	Costa,	and	M.	Kalinowski,	“Non-Functional	Requirements	for	
Quantum	Programs.,”	presented	at	the	Q-SET@	QCE,	2021,	pp.	89–73.	

[11]	 J.	 Zhao,	 “Quantum	 software	 engineering:	 Landscapes	 and	 horizons,”	 ArXiv	 Prepr.	
ArXiv200707047,	2020.	

[12]	 P.	 E.	 Z.	 Junior	 and	 V.	 V.	 de	 Camargo,	 “A	 systematic	 mapping	 on	 quantum	 software	
development	in	the	context	of	software	engineering,”	ArXiv	Prepr.	ArXiv210600926,	2021.	

[13]	 Abran,	A.,	Moore,	J.W.,	Bourque,	P.	and	Dupuis,	R.	(eds.),	Guide	to	the	Software	Engineering	
Body	of	Knowledge.	IEEE	Computer	Society	Press,	2004.	

[14]	 ISO/IEC	(2011).	ISO/IEC	25010	–	“Systems	and	Software	Engineering	–	Systems	and	Software	
Quality	Requirements	and	Evaluation	(SQuaRE),”	2011.	

[15]	 C.	 A.	 Pérez-Delgado	 and	 H.	 G.	 Perez-Gonzalez,	 “Towards	 a	 quantum	 software	modeling	
language,”	presented	at	the	Proceedings	of	the	IEEE/ACM	42nd	International	Conference	
on	Software	Engineering	Workshops,	2020,	pp.	442–444.	

[16]	 R.	 Pérez-Castillo,	 L.	 Jiménez-Navajas,	 and	M.	 Piattini,	 “Modelling	 quantum	 circuits	 with	
UML,”	presented	at	the	2021	IEEE/ACM	2nd	International	Workshop	on	Quantum	Software	
Engineering	(Q-SE),	IEEE,	2021,	pp.	7–12.	

[17]	 M.-A.	Sicilia,	M.	Mora-Cantallops,	S.	Sánchez-Alonso,	and	E.	García-Barriocanal,	“Quantum	
Software	Measurement,”	in	Quantum	Software	Engineering,	Springer,	2022,	pp.	193–208.	

[18]	 J.	Zhao,	 “Some	size	and	structure	metrics	 for	quantum	software,”	presented	at	 the	2021	
IEEE/ACM	2nd	International	Workshop	on	Quantum	Software	Engineering	(Q-SE),	IEEE,	
2021,	pp.	22–27.	

[19]	 A.	 Lesterhuis,	 COSMIC	 Measurement	 Manual	 for	 ISO	 19761,	 Measurement	 of	 Quantum	
Software	Circuit	Strategy,	a	circuit-based	Measurement	Strategy,	2024.	

[20]	 F.	 Valdes-Souto,	 H.	 G.	 Perez-Gonzalez,	 and	 C.	 A.	 Perez-Delgado,	 “Q-COSMIC:	 Quantum	
Software	Metrics	Based	on	COSMIC	(ISO/IEC19761),”	ArXiv	Prepr.	ArXiv240208505,	2024.	

[21]	 International	Organization	for	Standardization,	ISO/IEC	19761:	2011,	Software	Engineering	
–	COSMIC:	A	functional	size	measurement	method,	Geneva.,	2011.	

[22]	 A.	 Darwish	 and	 H.	 Soubra,	 “COSMIC	 Functional	 Size	 of	 ARM	 Assembly	 Programs.,”	
presented	at	the	IWSM-Mensura,	2020.	

	

