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Abstract
Modern electric vehicles and portable electronic devices necessitate high-performance and reliable
battery systems. To achieve this, it is crucial to monitor the battery’s state continuously and accurately.
In response, there is ongoing development of remote monitoring and history management system for
lithium-ion batteries. Against this context, the authors are engaged in the development of a new Battery
Management System that integrates real-time battery state estimation capabilities using the Extended
Kalman Filter with functions for estimating internal parameters. This paper presents a report on the
development of an internal parameter estimation feature for battery state monitoring under various
operational conditions, utilizing the Recursive Least Squares method.
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1. Introduction

Lithium-ion battery (LIB) technology has become essential in many applications, including
electric vehicles and portable electronic devices, due to its high energy density and long lifespan.
However, LIBs carry the risk of thermal runaway and overcharging, necessitating an advanced
Battery Management System (BMS) to ensure safe and efficient use [1, 2]. Furthermore, IoT-based
BMSs are becoming increasingly important due to the need for remote monitoring capabilities.
The challenge with traditional BMS is that data collection occurs on the battery side (Edge)
and data processing occurs in a central system (Host), resulting in delays in reflecting real-time
processing results.

Modern BMSs go beyond simple voltage and current monitoring by integrating complex
functions such as cell balancing, thermal management, health diagnostics, and predictive
maintenance. These functions help to extend battery life and maximize performance. Among
these, State of Charge (SOC) estimation is the most important and fundamental technique;
SOC is a critical indicator of how much energy remains in the battery. Several SOC estimation
methods have been proposed, including the open circuit voltage (OCV) method [3], the Coulomb
counting method [4], and the impedance method [5]. However, these methods are affected by
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voltage drops due to internal resistance and polarization, making high-precision estimation a
challenge. Therefore, several new methods have been proposed to address these shortcomings,
such as the Kalman filter method [6, 7], the neural network (NN) method [8], and the sliding
mode observer [9]. Among these methods, the Kalman filter is particularly efficient and simple.
Kalman filters are suitable for operation on the edge computer side because they can cope with
large current fluctuations. Edge computer operation reduces delays in data transmission to
the central system and enables real-time battery state estimation. In particular, the Extended
Kalman Filter (EKF) provides excellent state estimation for nonlinear systems and accurately
captures the battery’s real-time behavior, offering robustness against system uncertainties and
external noise.

The authors have already incorporated an Extended Kalman Filter (EKF) into the edge
computing side for real-time state estimation of batteries. This technology enables the capture
of actual battery behavior in real-time, providing robustness against system uncertainties and
external noise. However, the accuracy of estimations under specific conditions such as battery
degradation and temperature changes may decrease. Therefore, by also integrating the Recursive
Least Squares (RLS) method [10], we have enabled real-time updates of internal parameters,
achieving high accuracy in state estimation across all operational conditions. This paper reports
on the battery remaining capacity estimation functionality that incorporates internal parameter
estimation using RLS integrated with EKF.

2. Internal estimation of lithium-ion batteries

This section describes a detailed explanation of Equivalent Circuit Models (ECM), Extended
Kalman Filters (EKF), and Recursive Least Squares (RLS). The ECM represents the electrical
behavior of batteries through a combination of simple electronic components, helping to
understand the dynamic characteristics of batteries. The EKF is used for state estimation of
nonlinear systems and accurately tracks the charge state and health of batteries. The RLS
method continuously updates the internal parameters of the battery, enabling precise modeling
according to changing conditions.

2.1. The Equivalent Circuit Models

The single-stage RC equivalent circuit model commonly used for parameter estimation in storage
batteries is shown in Figure 1 [11]. This model can be easily converted into a state-space model
and a regression model for parameter estimation. In this model, the battery’s electromotive
force is represented by a voltage source called Open Circuit Voltage (OCV). The model includes
internal resistance, which is divided into two parts: a direct current resistance 𝑅𝑎 that represents
the charge transfer resistance within the electrolyte, and a parallel circuit consisting of a resistor
𝑅𝑏 and a capacitor 𝐶𝑏 that represents the slow reaction associated with diffusion. The terminal
voltage of the battery is denoted by 𝑢𝐿, and the terminal current is denoted by 𝐼 . The current
flowing into the battery is considered positive. During discharge, 𝐼 is negative, and during
charging, 𝐼 is positive.
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Figure 1: The equivalent circuit model of the Li-ion battery

2.2. Recursive Least Square

To estimate the parameters of a battery online (during charge or discharge mode), the Recursive
Least Squares (RLS) method is a conventional identification method. Figure 2 shows the block
diagram of parameter estimation with system identification. System identification uses statistical
methods to build mathematical models of dynamic systems from measured data. Therefore, the
mathematical regression model of the battery must be built from the equivalent circuit model.
The differential equation of 𝑢𝑅𝑅𝐶 (the voltage of 𝑅𝑎 and the RC circuit 𝑅𝑏, 𝐶𝑏) is given by
equation (1).

𝑢RRC = (𝑅a +𝑅b)𝐼 +𝑅a𝑅b𝐶b
𝑑𝐼

𝑑𝑡
−𝑅b𝐶b

𝑑𝑢RRC

𝑑𝑡
(1)

By using the forward Euler method and the equation 𝑢L = 𝑢RRC + 𝑢OCV, equation (2) is
derived. 𝑇𝑠 is the sampling period.

𝑢L(𝑘) = 𝑅a𝐼(𝑘) +

(︂
𝑇s𝑅a

𝑅b𝐶b
+

𝑇s

𝐶b
−𝑅a

)︂
𝐼(𝑘 − 1) +

(︂
𝑇s

𝑅b𝐶b
− 1

)︂
𝑢OCV(𝑘)

−
(︂

𝑇s

𝑅b𝐶b
− 1

)︂
𝑢L(𝑘 − 1) + 𝑢OCV(𝑘)

(2)

Through the variable transformation shown in equation (3), the regression model of the
battery can be written as equation (4).

𝑎1 =
𝑇s

𝑅b𝐶b
, 𝑓 = (1 + 𝑎1)𝑢OCV

𝑏0 = 𝑅a, 𝑏1 =
𝑇s𝑅a

𝑅b𝐶b
+

𝑇s

𝐶b
−𝑅a

(3)
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Figure 2: Block diagram of internal parameters estimation

𝑦(𝑘) = 𝑢L(𝑘) = 𝜙T(𝑘)𝜃

𝜙(𝑘) =

⎡⎢⎢⎣
𝑖(𝑘)

𝑖(𝑘 − 1)
−𝑢𝐿(𝑘 − 1)

1

⎤⎥⎥⎦ , 𝜃 =

⎡⎢⎢⎣
𝑏0
𝑏1
𝑎1
𝑓

⎤⎥⎥⎦ (4)

In equation (4), is considered an unknown parameter to be estimated using RLS identification.
The values of 𝑅𝑎, 𝑅𝑏, 𝐶𝑏, and 𝑢𝑂𝐶𝑉 can be calculated from the parameter 𝜃 using equation (5).

𝑅𝑎 = 𝑏0, 𝑅𝑏 =
𝑏1 − 𝑎1𝑏0
1 + 𝑎1

𝐶𝑏 =
𝑇𝑠

𝑏1 − 𝑎1𝑏0
, 𝑢𝑂𝐶𝑉 =

𝑓

1 + 𝑎1

(5)

Following the RLS identification theory, the evaluation function with a forgetting factor for
the RLS is given by equation (6). 𝜆 is forgetting factor, a positive number less than 1.

𝐽(𝑘) =
𝑘∑︁

𝑖=1

𝜆𝑘−𝑖𝑒2(𝑖) (6)

The RLS algorithm to minimize the equation (6) is described as Algorithm 1. 𝜃(𝑘) is the
estimated value of the parameters at time 𝑘, 𝑃 (𝑘) is error-covariance matrix at time 𝑘, 𝐼
is identity matrix, �̂�(0) is the initial value of the parameter setting, 𝑃 (0) is the initial error-
covariance matrix setting.

2.3. Extended Kalman Filters

In recent studies, the method for estimating SOC based on the extended Kalman filtering
(EKF) technique has been proposed. The EKF is an approximately optimal state estimator for a
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Algorithm 1 RLS
Initialization Value:̂︀𝜃(0) = 𝜃0
𝑃 (0) = 𝛾𝐼 𝛾 is a positive number
0 ≪ 𝜆 < 1 Forgetting factor

Recursive Process:
𝑒(𝑘) = 𝑦(𝑘)−𝜙⊺(𝑘)̂︀𝜃(𝑘 − 1)

𝑃 (𝑘) =
1

𝜆

{︃
𝑃 (𝑘 − 1)− 𝑃 (𝑘 − 1)𝜙(𝑘)𝜙⊺(𝑘)𝑃 (𝑘 − 1)

𝜆+𝜙⊺(𝑘)𝑃 (𝑘 − 1)𝜙(𝑘)

}︃
̂︀𝜃(𝑘) = ̂︀𝜃(𝑘 − 1) +

𝑃 (𝑘 − 1)𝜙(𝑘)

𝜆+𝜙⊺(𝑘)𝑃 (𝑘 − 1)𝜙(𝑘)
𝑒(𝑘)

Table 1
The Details of State Space Model

𝐴(𝑘) =

⎡⎢⎣1 0 0

0 1− 𝑇𝑠

𝑅𝑏𝐶𝑏
0

0 0 1

⎤⎥⎦ 𝐵(𝑘) =

⎡⎢⎣
𝑇𝑠

𝐹𝐶𝐶
𝑇𝑠

𝐶𝑏

0

⎤⎥⎦
ℎ(𝑥(𝑘)) = 𝑢𝑂𝐶𝑉 + 𝑢𝑏 + 𝐼𝑅𝑎

State Vector 𝑥(𝑘) =

⎡⎢⎣𝑆𝑂𝐶(𝑘)

𝑢𝑏

𝑅𝑎

⎤⎥⎦
Control Input 𝑢(𝑘) = 𝐼(𝑘)

Observation Value 𝑦(𝑘) = 𝑢𝐿(𝑘)

nonlinear stochastic process subject to Gaussian white noises using state-space model.

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) +𝐵(𝑘)𝑢(𝑘) + 𝑤(𝑘) (7)

𝑦(𝑘) = 𝐶(𝑘)𝑥(𝑘) + 𝑣(𝑘) (8)

Where equations (7) and (8) are the state and observation equations, respectively; 𝑥(𝑘), 𝑦(𝑘)
and 𝑢(𝑘) are the state vector, observed output, and control input, respectively. The signal
𝑤(𝑘) is the process noise, and 𝑣(𝑘) is the observation noise. We assume that these noises are
zero-mean white Gaussian noise processes with covariance 𝜎2

𝑤 and 𝜎2
𝑣 respectively. For battery

equivalent circuit model, the detail of state space model is shown in Table 1.
The EKF algorithm is described as Algorithm 2. This algorithm consists of three steps:

Initialization, Prediction, and Filtering. Here, �̂�− is the one-step prediction vector, �̂� is the
filtered estimate vector, 𝑃− is the prediction error covariance matrix, and 𝑃 is the filtering
error covariance matrix. In this paper, 𝑃 is different from 𝑃 . 𝑃 is the error covariance matrix
of RLS, 𝑃 is the covariance matrix of EKF. As represented in equation (9), 𝐶(𝑘) is the Jacobian
matrix of ℎ(𝑥(𝑘)), which represents the nonlinear relationship between OCV and SOC.
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Figure 3: The block diagram of the parameter and state estimation

𝐶(𝑘) =
𝜕ℎ(𝑥(𝑘))

𝜕𝑥(𝑘)

⃒⃒⃒⃒
⃒
𝑥(𝑘)=̂︂𝑥(𝑘) =

[︃
𝑑𝑂𝐶𝑉

𝑑𝑆𝑂𝐶

⃒⃒⃒⃒
⃒
𝑆𝑂𝐶=ˆ︂𝑆𝑂𝐶

, 1, 𝐼(𝑘)

]︃
(9)

Algorithm 2 EKF
Initialization Value:̂︀𝜒−
0 , 𝑃

−
0

Filtering Step:
𝑔𝑘+1 = 𝑃−

𝑘+1𝐶
𝑇 /(𝐶𝑃−

𝑘+1𝐶
𝑇 + 𝜎2

𝑣)

�̂�𝑘+1 = �̂�−𝑘+1 + 𝑔𝑘+1(𝑦𝑘+1 − 𝑦−𝑘+1)

𝑃𝑘+1 = (1 + 𝑔𝑘+1𝐶)𝑃−
𝑘+1

Prediction Step:
�̂�−𝑘+1 = 𝐴�̂�𝑘 +𝐵𝑢𝑘

𝑃−
𝑘+1 = 𝐴𝑃𝑘𝐴

𝑇 + 𝜎2
𝑤

2.4. The parameter and state estimation

Figure 3 shows the block diagram of the series parameter and state estimation. In this block
diagram, the RLS block performs parameter estimation, and the EKF (Extended Kalman Filter)
block performs state estimation. The RLS must simultaneously estimate the OCV and the
parameters of the RC circuit (𝑅𝑎(𝑘), 𝑅𝑏(𝑘), 𝐶𝑏(𝑘)). Therefore, it is difficult to guarantee the
accuracy of the OCV and RC circuit estimations, which in turn affects the accuracy of the SOC
estimation.
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Figure 4: The BMS architecture

3. The IoT-based Battery Management System

3.1. The BMS Architecture

Figure 4 shows the BMS architecture. The BMS consists of six components: First, a battery
pack composed of four lithium-ion batteries (Batteries). Second, sensors that measure voltage,
current, and temperature from each lithium-ion battery (Sensors). Third, a temporary storage
for the data measured by the sensors (Buffer). Fourth, an Extended Kalman Filter (EKF) used
to estimate SOC (State of Charge) based on the measured data. Fifth, a Publisher that sends
voltage, current, temperature, and SOC data to AWS (Amazon Web Services). Sixth, AWS which
stores and manages all the data.

3.2. State estimation module with RLS

Figure 5 shows the State estimation module with RLS. Based on the architecture shown in
Figure 4, RLS was introduced, and a battery internal parameter estimation function was added.
The changes were made by the publisher on the edge computer side. Previously, the SOC was
estimated by fixing the battery’s internal parameters at their default values. This time, it has
been changed so that the battery’s internal parameters are estimated in real-time by RLS and
used for SOC estimation.

4. The Test Experiments and Results

In this paper, we have added a battery internal parameter estimation function using RLS to a BMS
with SOC estimation capabilities based on EKF. To verify its proper functioning, we examined
SOC estimation using EKF with and without RLS. The estimation experiments utilized discharge
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Figure 5: State estimation module with RLS

Figure 6: The SOC estimation result by EKF-RLS

waveforms of 18650-type lithium-ion batteries. Various patterns of discharge waveforms were
prepared, and the measured terminal voltage and current were input into the RLS-EKF algorithm
to simultaneously estimate circuit parameters and SOC. Figure 6 shows the terminal voltage,
terminal current, our SOC estimation results, the true SOC values, and their absolute errors.
Additionally, Figure 7 shows the estimation results of the internal parameters using RLS. Figure 8
shows the Comparison of SOC Estimation Results Using EKF with and without RLS. By adding
RLS, it is confirmed that SOC can be estimated with higher accuracy.
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Figure 7: The inner parameter estimation of Lithium-ion battery

Figure 8: The Comparison of SOC Estimation Results Using EKF with and without RLS
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5. Conclusion

In this study, a function for estimating internal parameters by RLS was added to a real-time
battery condition monitoring system. This function is expected to enable more accurate esti-
mation of the state of the battery, which depends on the state of degradation and temperature
changes. At the present stage, the functionality of the BMS has not been evaluated in a real
environment, so the accuracy of the SOC estimation and the influence of the internal parameter
estimation will be evaluated in a real environment in the future.
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