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Abstract
As time series data is collected and used in a variety of fields, the importance of preserving privacy on time series is also on the
increase. This paper is a preliminary study of the Differential Privacy (DP) algorithm specially designed to provide privacy
to time series data by integrating the time series decomposition technique. In particular, this study extends the Fourier
Perturbation Algorithm (FPA) with Seasonal and Trend decomposition using LOESS (STL). In this work, we propose STL-DP,
which first performs STL decomposition to the original data. Then we apply the FPA only to the core part of the time
series, particularly trend or seasonal components, to provide privacy. In this preliminary study, we show that our approach
consistently outperforms other baselines in terms of utility according to the experimental results. Our code is available at
https://github.com/Privacy-DASH/STL-DP.
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1. Introduction
Recently the need for providing data privacy has signifi-
cantly increased, as the quantity of data is growing at an
unprecedented speed, and a trend to make such large data
accessible to the public is also growing. To share data
and use them for multiple tasks, ensuring data privacy is
crucial. Therefore, many privacy protection techniques
have been proposed and researched, such as Differential
Privacy (DP) [1], Homomorphic Encryption [2], and
Generative Adversarial Network (GAN) [3].

However, despite the vulnerability of time series data
due to their widespread application in various fields,
privacy-preserving mechanisms on time series data have
not been extensively investigated yet [4]. In this paper,
we consider and propose a DP mechanism specially de-
signed to protect the privacy on time series data. One
of the unique characteristics of time series is that it
exhibits a strong correlation among successive values.
Accordingly, if the adversary knows the approximate
time information, information leakage can occur through
contextual understanding, as shown by other research
works [5, 6]. However, existing perturbation methods
such as Gaussian Perturbation Algorithm (GPA) [7], and
Laplace Perturbation Algorithm (LPA) [8] do not consider
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the temporal correlations across time.
In this paper, we propose a simple yet intuitive dif-

ferentially private (DP) mechanism, STL-DP, which can
effectively mitigate the aforementioned problem. We as-
sume that time series data can be decomposed into trend
and seasonal components, and such information can be
considered sensitive by the data providers because they
present the overall ups and downs and periodic patterns.
Therefore, it is of great importance to maintain such
information private throughout the entire data mining
process [5]. We explore Seasonal and Trend decomposi-
tion using LOESS (STL) [9] for decomposing time series
which leverages Local regression (LOESS) [10]. Our pro-
posed mechanism STL-DP consists of two stages that
effectively hide the trend or seasonality of the time series
data. This mechanism enables us to improve the utility
while maintaining privacy by concealing the primary
components of the time series.
The main contributions of our work are summarized

as follows:

• We propose STL-DP that considers the unique
characteristics of time series to provide the most
suitable privacy protection method for time se-
ries.

• We show that STL-DP effectively protects the
core parts of the time series data under the same
privacy budget, thereby significantly improving
utility over the existing methods.
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Figure 1: The overview of our proposed STL-DP.

2. Preliminaries

2.1. 𝜖 - Differential Privacy
Differential Privacy [1] ensures no significant change in
the query response, whether a particular individual is in
a database or not [11].

Definition. There are two databases 𝐷,𝐷
′
which sat-

isfy ||𝐷 − 𝐷
′
||1 ≤ 1. D denotes composed data of 𝑈 indi-

vidual users, i.e., 𝐷 = ∪𝑈𝑖=1𝐷𝑖, and the data of any single
user can be put as 𝐷𝑖. Let us denote 𝑀 and 𝜖 as some
randomized function and a privacy budget, respectively.
𝑀 guarantees 𝜖-privacy if and only if it satisfies the fol-
lowing Eq. (1):

𝑃[𝑀(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 × 𝑃[𝑀(𝐷
′
) ∈ 𝑆], ∀𝑆 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀) (1)

DP mechanism aims to keep the query response for
each 𝐷,𝐷

′
the same, despite having one or fewer non-

overlapping individuals. Specifically, the smaller the
𝜖 is, the higher the privacy protection of the data be-
comes [12].

2.2. DP Algorithms for Time Series
Laplace Perturbation Algorithm (LPA). LPA [8]
adds independent noise generated from the Laplace dis-
tribution [1]. LPA is renowned for its simplicity but it
is unsuitable for protecting time series because of its
independent noise injection.

Fourier Perturbation Algorithm (FPA). FPA is a
compression-based method that first applies the Dis-
crete Fourier Transform (DFT) to the true query an-
swers, then performs LPA to Fourier coefficients [8].
The perturbed coefficients undergo the inverse DFT
(IDFT) to obtain the resulting perturbed sequence. The
entire process can be expressed as perturbed f(D) =
𝐼𝐷𝐹𝑇 (𝐿𝑃𝐴(𝐷𝐹𝑇 (𝑓 (𝐷))), where 𝑓 is a function that maps

each individual 𝐷1, 𝐷2, … , 𝐷𝑈 to numbers. The DFT and
IDFT for the 𝑗 𝑡ℎ element of the series is defined as (2):

𝐷𝐹𝑇 (𝑓 (𝐷))𝑗 =
𝑛
∑
𝑖=1

𝑒
2𝜋√−1

𝑛 𝑗𝑖𝑓 (𝐷)𝑖, (2)

𝐼𝐷𝐹𝑇 (𝑓 (𝐷))𝑗 =
1
𝑛

𝑛
∑
𝑖=1

𝑒−
2𝜋√−1

𝑛 𝑗𝑖𝑓 (𝐷)𝑖

As compression methods convert the series from time
to frequency domain, noises injected in the frequency
domain are no longer independent but are correlated.
For this reason, FPA is better suited for perturbing time
series [13], and we extend the FPA-based method in our
work.

2.3. Seasonal and Trend decomposition
using LOESS (STL)

There are various time series decomposition methods
such as classical decomposition [14], X11 [15], and
STL [9]. The classical method is simple to implement
but is inapplicable since some data from both ends of the
sequence are lost. X11 successfully tackled the problem
of data loss but is still limited in use as it can only handle
monthly or quarterly data. On the other hand, STL ef-
fectively handles the problems mentioned above. STL is
a flexible and robust time series decomposition method
that leverages local regression (LOESS).

3. Our Approach
We propose STL-DP to protect core information of the
time series while improving utility within a predefined
privacy budget. Refer to Figure 1 for a glance at our
proposed STL-DP.

The main difference of STL-DP with the existing meth-
ods is the integration of STL decomposition. First, by
incorporating the decomposition phase, we can identify
the core components, such as the trend and seasonality of



Table 1
Euclidean distance between the original and the perturbed time series.

Algorithm Zone epsilon1 epsilon2 epsilon3 epsilon4

LPA Zone1 1.3418E+4 2.6102E+3 1.3052E+3 2.6694E+2
FPA 3.0351E+0 4.7537E+0 2.2658E+0 7.6124E-8
sFPA 9.6445E+0 1.2354E-7 1.4956E+0 2.3439E-8
tFPA 6.1856E-7 5.2730E-7 1.8135E+0 7.6125E-8
LPA Zone2 1.3004E+4 2.7051E+3 1.3226E+3 2.6037E+2
FPA 4.9405E+0 1.3781E+0 1.7282E+0 0.3781E+0
sFPA 1.6598E-7 1.9342E+0 6.4095E-7 4.4947E-8
tFPA 4.7581E-7 1.0069E-7 1.2109E+0 0.3782E+0
LPA Zone3 1.2928E+4 2.6534E+3 1.3374E+3 2.7253E+2
FPA 2.7932E-7 3.8466E+0 1.1964E-6 2.5183E-7
sFPA 1.3435E+1 2.4369E-7 1.6377E+0 0.2554E+0
tFPA 2.1689E+1 2.2007E+0 9.7750E-8 2.5183E-7

Table 2
Comparison of △MAPE for each mechanism; △MAPE = |MAPE (DP algorithm) - MAPE (Original Series)|

epsilon1 epsilon2 epsilon3 epsilon4 epsilon1 epsilon2 epsilon3 epsilon4

LPA Linear 0.7476 0.0081 0.0125 0.0068 SimpleDNN 2.2842 1.6252 0.5990 0.2236
FPA 0.0013 0.0002 0.0002 0.0001 1.5972 0.3159 0.7612 0.1213
tFPA 0.0017 0.0005 0.0010 0.0000 0.0602 1.0390 1.0390 0.2152
sFPA 0.0094 0.0014 0.0001 0.0000 1.5158 1.7738 0.1083 0.2468
LPA RNN 1.4877 0.0194 0.0437 0.0084 Transformer 1.1464 0.5750 0.4180 0.2477
FPA 0.0169 0.0089 0.0004 0.0094 0.0738 0.1268 0.0860 0.0941
tFPA 0.0072 0.0081 0.0042 0.0004 0.2325 0.0776 0.2083 0.0271
sFPA 0.0117 0.0070 0.0007 0.0009 0.0864 0.4175 0.1468 0.0832

time series data, which may contain critical information
and are prone to attacks. One of the STL-DP mecha-
nisms is referred to as sFPA, which is amethod that injects
noises only to the seasonal part of the decomposed series.
Similarly, the approach of performing perturbations only
on the trend is named tFPA. Lastly, the perturbed compo-
nents from the seasonal or trend parts are combined with
the rest of the unperturbed components to reconstruct
the form of the sequence.

4. Experimental Results
Methods. We demonstrate the effectiveness of the pro-
posed STL-DP by comparing the utility of our sFPA and
tFPA with two baselines, LPA and FPA. Herein, we intro-
duce two different metrics to quantify utility. The first
metric is the Euclidean distance between the original
and the perturbed series. Nextly, the original and the
perturbed data are each fed into the forecasting model to
evaluate the respective Mean Absolute Percentage Error
(MAPE), and the difference between the two MAPEs is
used as the second metric.

Dataset. We used the power consumption data from
2017-01-01 to 2017-12-31 of three zones of Tetouan city
located in northern Morocco [16]. The properties of the
dataset are summarized as follows:

• Prediction variables : Power consumption of zone
1, 2, and 3 of Tetouan city with additional infor-

mation, including temperature, humidity, wind
speed, general diffuse flows, and diffuse flows.

• Data information : Aggregated from 550,374 in-
habitants according to Morocco Census [16].

Throughout the experiment, we set the privacy budget
𝜖1 − 𝜖4 as 0.48, 2.4, 4.8, and 24, respectively, and the
sensitivity as 48, which are experimental settings taken
from Günther, et al. [17].

Euclidean distance results. The degree of closeness
between the original and the perturbed series under the
same privacy budget can be interpreted as the level of
utility. As shown in Table 1, LPA yields a greater distance
than other methods, confirming that FPA-based methods
are better than LPA. Furthermore, our tFPA and sFPA
are consistently ranked as the best algorithm in terms of
Euclidean distance. These results indicate the superiority
of STL-DP over the baselines.

Comparison on forecasting performances. Recall
that our objective is to generate noise-injected series that
minimize the performance drop of the forecasting model.
As shown in Table 2, we used four models, from a simple
feed-forward neural network to advanced models such
as LSTM and Transformer as our forecasting model. The
models were trained to predict the upcoming 20 timesteps
given the past 60 timesteps. In most cases, as 𝜖 grew, the
forecasting error difference (△MAPE) decreased. Not



surprisingly, both sFPA and tFPA outperformed other DP
mechanisms for a majority of models in terms of △MAPE.

5. Conclusion and Future Work
As preliminary research, we introduce an effective DP
mechanism, STL-DP, specially designed for generating
privacy-protected time series data. As the experiment
results suggested, the distance between the original se-
ries and the perturbed series from sFPA and tFPA was
much closer than the other baselines. Also, the difference
between the MAPE of the original and the perturbed se-
ries was significantly lower for our proposed sFPA and
tFPA than for other perturbation algorithms. Therefore,
we showed that considering the unique property of time
series data improves the utility under the same privacy
budget. For future works, we plan to extend our research
by designing a more advanced mechanism 𝐹𝑃𝐴𝑘, that
uses only the 𝑘 (<𝑛) Fourier coefficients as targets of the
perturbation.
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