
On linear regression for fuzzy data of different quality 
 
Serhii Mashchenkoa, Oleksandr Marchenkoa  

 
a Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, City of Kyiv, 01601, Ukraine  

 
Abstract  
The present paper is devoted to the linear regression for a fuzzy set of fuzzy data samples. 
This model allows one to take into account the data of different quality. It is shown that 
regression parameters are type-2 fuzzy sets. Furthermore, the corresponding type-2 
membership functions are given. The decomposition approach is used to investigate the 
T2FSs of linear regression parameters. It is shown that each T2FS of regression parameter 
can be decomposed according to secondary membership grades into a finite collection of 
fuzzy numbers. Each of these fuzzy number is the corresponding fuzzy regression parameter 
for a set of data numbers. This set is the corresponding α-cut of the original fuzzy set of fuzzy 
data samples. The illustrative example is given.  
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1. Introduction 

The classical regression analysis is based on crisp data and a crisp relationship between the 
dependent variable and the independent variables. In practice, there are many situations in which 
observations cannot be measured as crisp quantities, because the information is often fuzzy, 
incomplete, linguistic or noisy. Fuzzy regression analysis is a non-statistical method based on a fuzzy 
set theory rather than probability theory (see [1]). In a general model of a fuzzy regression both input 
and output are fuzzy. In this regard, the fuzzy regression model contains fuzzy parameters instead of 
error terms. 

 The three main fields can be distinguished in fuzzy regression analysis. These are possibilistic 
regression analysis, fuzzy least squares methods and machine learning techniques. The probabilistic 
approach in fuzzy regression analysis was first proposed by Tanaka et al. [2]. Unlike conventional 
regression analysis, where deviations between observed and predicted values reflect a measurement 
error, deviations in fuzzy regression reflect the uncertainty of the system structure expressed by fuzzy 
parameters of the regression model. Fuzzy parameters of the model are considered to be distributions 
of possibilities and determined by solving a linear programming problem that allows one to minimize 
fuzzy deviations subject to membership degrees constraints. Since the membership functions (MFs) of 
fuzzy sets (FSs) can be viewed as probability distributions, this approach was called ‘possibilistic 
regression analysis.’ The possibilistic approach was explored and improved by many authors. 
Reviews of possibilistic regression analysis can be found in D’Urso [3].  

Fuzzy regression analysis was also considered from the viewpoint of generalizing the classical 
least squares method to the case of fuzzy data. The idea of this approach is to minimize in some sense 
the different distance measures between the predicted fuzzy values and the given fuzzy data. Fuzzy 
least squares methods were first proposed by Celmins [4]. Later, this approach was significantly 
developed by many researchers. In [1] one can find qualitative reviews on the fuzzy least squares and 
fuzzy least absolute methods.  
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Machine learning techniques made it possible to generalize fuzzy regression analysis through the 
use of genetic algorithms, neural networks, and support vector machines. Relevant references can be 
found in Chukhrova and Johannssen [1] and Hastie et al. [5].  

Often, when solving applied problems, data of different quality can be used [6]. For example, 
according to [7], wind tunnel experiments provide high simulation accuracy (a source of high-fidelity 
data). Also, experiments based on computational physical models have a higher error (source of low 
fidelity data). In some applications, a significantly more accurate regression model can be built if low-
precision data are also used. In this case, the problem arises of constructing a regression based on data 
of different quality.  

Using data of different quality with the aim of improving model accuracy is not a new concept. 
For instance, Hevesi et al. [8] predict average annual precipitation values near a potential nuclear 
waste disposal site using a set of precipitation measurements from the region along with more easily 
obtainable elevation map of the area. Kennedy and O’Hagan [9] approach the subject from the 
perspective of model construction using data resulting from computational simulations of varying 
fidelities and costs. In [7], to construct a Gaussian regression model, the problem of planning an 
experiment is solved with the choice of the ratio between the sizes of samples of low-precision and 
high-precision data. Also, to process data with a variable degree of certainty the methods of transfer 
learning [10], space mapping [11], and others [12] are used.  

Data quality (degree of usability of data) is a complex concept. It is characterized by objectivity, 
integrity, relevance, measurability, controllability, etc. In some cases, the quality of data may not be 
crisp defined [13]. According to [14], where using data without expert knowledge, the choice of a 
representative sample becomes an NP-complete problem. Therefore, samples have to be found within 
a reasonable time, and this justifies the use of fuzzy methods that formalize expert knowledge 
expressed in natural language words. For instance, in the framework of quality control fuzzy expert 
assessments are used in [15] to construct acceptance sampling plans (how many units can be selected 
from a consignment and how many defective units are allowed in this sample).  

In this article, we intend to investigate the method of constructing a fuzzy linear regression in the 
case when fuzzy data samples are of different qualities. Furthermore, the degrees of membership to a 
FS are known for these samples. This leads to a possibility that the regression takes into account 
fuzziness of the quality assessments of different samples, rather than just uncertainty of data. 
Examples of such FSs data samples could be: ‘High quality data samples’, ‘Questionable data 
samples’, ‘Actual data samples’, etc.  

The main result of the article justifies the fact that a FS of different quality samples of type-1 fuzzy 
data generates a type-2 fuzzy regression model. In this model, the regression parameters are T2FSs on 
the real line with constant secondary grades. Although, in general, a T2FS is a rather complicated 
mathematical object, T2FSs with constant secondary grades are simple enough for practical use. This 
feature allows us to decompose this set by secondary grades into a collection of corresponding fuzzy 
numbers. Each of them represents the corresponding fuzzy regression parameter for a crisp set of data 
samples. The set in the focus is the α-cut of the original fuzzy set of data samples. We note that the 
well-known type 2 fuzzy regression models use crisp collections of type 2 data sets, while the model 
proposed in the article uses a fuzzy collection of type 1 fuzzy data samples. This is a principal 
difference between them. It should also be added that this article continues the line of research in the 
field of mathematical operations with a fuzzy set of operands, first introduced in the context of 
intersections and unions of fuzzy sets [16, 17]. 

2. Materials and Methods 

In this section, we briefly review some existing theories and definitions. 

2.1. Linear  regression  analysis  for  fuzzy  input  and  output  data  using  the 
extension principle 



The article focuses on a linear regression in the case when data samples form a FS. We stress that 
one could have exploited different known methods of constructing a linear regression for fuzzy data. 
As an alternative, we intend to modify the method [18] based on the extension principle.  

Let {1,..., }K K  be the set of indices of data samples 1{ , ,..., }i i ipy x x , i K , where K  is the 

cardinality of K . A crisp statistical linear regression has the form 
( ( ))T

i i iy x K   ,  i K ,  (1) 

where for each i K , iy  is the dependent variable; 1(1, ,..., )i i ipx x x  is the vector of independent 

variables (factors, regressors) ,  1,...,ilx l p ; i  is the independent normal random variable. The 

symbol T  denotes the transpose, p  is the number of independent variables, 

0 0,...,( ) ( ( ),..., ( )) ( ( ))p l l pK K K K       is the vector of regression parameters. Let 

( ) ( )( ( )) ( )Ty K X K K K    be the matrix notation of equations (1) with , 0,...( ) { }is i K s pX K x    and 

0 1ix   for all i K , ( ) ( )T
i i Ky K y   and ( ) ( )T

i i KK   . For the convenience of presentation, the set 
K  of sample indices is indicated hereinafter as a parameter in these formulae. According to the least 
squares method, the estimate 0,...,ˆ ˆ( ) ( ( ))l l pK K    of the parameter vector 0,...,( ) ( ( ))l l pK K    has 

the form 
1ˆ( ) [ ( ) ( )] ( ) ( )T TK X K X K X K y K  .  (2) 

Assume that the data is fuzzy. To generalize formula (2) we denote by 
ˆ( ( ), ( )) ( )l lf X K y K K   (3) 

the l -th element, 0,...,l p  of the estimate ˆ( )K . We also denote by 

, 0,...( ) { }is i K s pX K x    ,  ( ) ( )T
i i Ky K y     (4) 

the matrix of independent variables and the vector of dependent variables, respectively, where for 
each i K , 0 1ix   is the crisp number which is equal to 1; isx ,  1,...,s p  and iy  are fuzzy numbers 

(FNs) with the MFs ( )
isx isx  , isx � , 1,...,s p  and ( )

iy iy  , iy � ,  i K , respectively. Here, �  

is the real line. 
Remark 1. Recall that a FN is a normal FS on �  with the upper semicontinuous and quasi-

concave MF (for example, see [19]). 
The vector 0,...,( ) ( ( ))l l pK K     of fuzzy parameters of the regression has the form 

1( ) [ ( ) ( )] ( ) ( )T TK X K X K X K y K       according to the least squares method [18]. For each 0,...,l p , 

( )( ) ( ( ), ( )) {( , ( )) : }
ll l KK f X K y K r r r   

  �  is the FN with the MF 

( )
, 0,...,( ), ( )

; 0,...,

( ) max { min { ( ), ( )}:  ( ( ), ( )),

( ) { } , ( ) { } }

l is iK x is y i li K s pX K y K

p K K
is i K s p i i K

r x y r f X K y K

X K x y K y

  
 

  

 

   

  

� �
  (5) 

by Zadeh’s extension principle [20]. Here, ( ( ), ( ))lf X K y K  is the l-th element of the vector 
1ˆ( ) [ ( ) ( )] ( ) ( )T TK X K X K X K y K   by (2) and (3). According to Remark 1, the maximum in (5) 

exists. As shown in [21], the representation of FNs by u -cuts is simpler for calculations than the 
functional approach. Therefore, for each 0,...,l p , we represent the MF of the FN ( )l K  in the 
form 

( ) [ ( )]
[0,1]

( ) max 1 ( )
l l uK K

u
r u r 


  ,  (6) 

where [ ( )]l uK  is the u -cut of the FN ( )l K . This u -cut is the set ( )[ ( )] { : ( ) }
ll u KK r r u    �  

with the MF   

[ ( )]

1, [ ( )] ;
1 ( )

0, [ ( )] ;l u

l u
K

l u

r K
r

r K





  






  (7) 

r� , [0,1]u . According to [18] and Remark 1, formula (5) implies that u -cut [ ( )]l uK  of the FN 

( )l K  has the form 



[ ( )] { ( ( ), ( )) : [ ] , 0,..., ;  [ ] ,  }l u l is is u i i uK f X K y K x x s p y y i K        ,  (8) 

where for each i K , the u -cuts of the FNs ,  0,...isx s p  and iy  are closed intervals 

 [ ] [[ ] ,[ ] ],  0,...,D H
il u is u is ux x x s p     and [ ] [[ ] ,[ ] ]D H

i u i u i uy y y   ,  (9) 

respectively, of the real line � . Since ( )l K  is a FN, then its u -cut [ ( )]l uK  is the interval 

[ ( )] [[ ( )] ,[ ( )] ]D H
l u l u l uK K K      �  too.  Equality (8) entails 

[ ( )] min{ ( ( ), ( )) :  [ ] , 0,..., ;   [ ] ,  }D
l u l is is u i i uK f X K y K x x s p y y i K        ,  (10) 

[ ( )] max{ ( ( ), ( )) :  [ ] ,  , 0,..., ;  [ ] ,  }H
l u l is is u i i uK f X K y K x x s p y y i K        .  (11) 

Thus, (6) ensures that formula (5) and the FN ( )l K  have the forms 

( ) ( ) max{ [0,1]:  [ ( )] [ ( )] }
l

D H
K l u l ur u K r K        ,  r� ,  (12) 

( ) {( , ) : [[ ( )] ,[ ( )] ], [0,1]} {([[ ( )] ,[ ( )] ], ) : [0,1]}L H L H
l l u l u l u l uK r u r K K u K K u u             , 

respectively. Problems (10) and (11) are rather complicated. In view of this, it is suggested in [18] to 
use, for 0,...,l p , the approximate value of the l -th fuzzy parameter 

( ) {([[ ( )] ,[ ( )] ], ) : [0,1]}L H
l l u l uK K K u u      ,  (13) 

with the MF   

( )
( ) max{ [0,1]:  [ ( )] [ ( )] }

l

D H
l u l uK

r u K r K     
  ,  r� ,  (14) 

where 
[ ( )] min{ ([ ( )] ,[ ( )] ), ([ ( )] ,[ ( )] ,

([ ( )] ,[ ( )] ), ([ ( )] ,[ ( )] )},

D D D D H
l u l u u l u u

H D H H
l u u l u u

K f X K y K f X K y K

f X K y K f X K y K

    

  
  (15) 

[ ( )] max{ ([ ( )] ,[ ( )] ), ([ ( )] ,[ ( )] ,

([ ( )] ,[ ( )] ), ([ ( )] ,[ ( )] )}.

H D D D H
l u l u u l u u

H D H H
l u u l u u

K f X K y K f X K y K

f X K y K f X K y K

    

  
  (16) 

Here, the matrices [ ( )] ,  [ ( )]D H
u uX K X K   and the vectors [ ( )] ,  [ ( )]D H

u uy K y K   are comprised in of the 

elements [ ] ,[ ] ,  0,..., ;  [ ] ,[ ] ,  D H D H
is u is u i u i ux x s p y y i K     , respectively (see (9)). It is clear that 

[ ( )] [ ( )]D D
l u l uK K   , [ ( )] [ ( )]H H

l u l uK K   . Therefore, the inclusion [ ( )] [ ( )]l u l uK K    is hold for 

the closed interval [ ( )] [[ ( )] ,[ ( )] ]D H
l u l u l uK K K     . This entails ( )( )

( ) ( )
ll

KK
r r    and thereupon 

the value 
( )

( )
l K

r   is a lower bound of ( ) ( )
l K r   for r� . 

2.2. Type‐2 fuzzy sets 

Zadeh [22] introduced the notion of type-2 fuzzy set (T2FS) as a generalization of type-1 fuzzy set 
(T1FS) (that is, an ordinary FS). Unlike a T1FS, the membership degree of elements in a T2FS is a FS 
on closed interval [0, 1]. Based on the ideas of Karnik and Mendel [23], Mendel and John [24] gave a 

different definition. The T2FS C  on a set X  is the collection 

{(( , ), ( , )) :  ,  [0,1]}xC
C x u x u x X u J   
 ,  (17) 

where ( , )
C

x u   is a type-2 membership function (T2MF), xJ  is the set of primary membership 

degrees u  of x X  to C . The value ( , )
C

x u   is a crisp number from the closed interval [0, 1] which 

is called the secondary grade of the pair  ( , )x u . 
Remark 2. According to the comments of Harding et al. [25] and Aisbett et al. [26], one has to 

define the T2MF ( , )
C

x u   for all x X  and [0,1]u . To this end, one should put ( , ) 0
C

x u   for all 

xu J , x X .  
Remark 3. The primary membership degree u is deemed as the degree of manifestation of some 

property (which determines the given FS) of x X . According to [27], we interpret the secondary 
grade ( , )

C
x u   as the degree of truth of the corresponding primary degree u of this property for x. 

Following [24], we define embedded T2FSs and T1FSs for a T2FS 



{(( , ), ( , )) : , [0,1]}
C

C x u x u x X u  
 . Assume that 1 ( ) [0,1]ex C

u x   is a unique primary degree of 

membership, for each x X , where 1 ( )eC
x , x X  is the MF of the T1FS 

1

1 {( , ( )) : }.e

e

C
C x x x X   This T1FS is called embedded in the T2FS C . We define the embedded 

T2FS 2eC  in C  in the form  2

2 {(( , ), ( , )) : }e

e
x xC

C x u x u x X 
  with 2 1( , )) ( , ( )))e ex CC C

x u x x     for 

all x X . 
Remark 4. According to [24], each element of the type-2 fuzzy collection 

{(( , ), ( , )) : , [0,1]}
C

C x u x u x X u  
  is interpreted as a subset. Thus, the collection is represented as 

the classical union of its elements in the sense of T1FSs. In [24], Mendel and John stated that each 
T2FS can be represented as a collection of all possible embedded T2FSs. 

2.3. Collections of T2FSs with constant secondary grades 

We shall need one special case of a T2FS to be defined according to [28, 29, 30]. Let 
{ ( , ) : ( , ) 0, , [0,1]}

C C
A x u x u x X u      be the set of all possible positive values of secondary 

grades for the T2FS {(( , ), ( , )) :  ,  [0,1]}
C

C x u x u x X u  
 . Assume that the set A is finite. 

Definition 1. We say that an embedded T2FS 2

2

( )
( ) {(( , ), ( , )) : }e

e
x xC

C x u x u x X


  
  in the T2FS 

C  has a constant secondary grade A  if, for each x X , the unique primary degree 

1 ( )
( ) [0,1]ex C

u x


   exists for which 2 ( )
( , )e xC
x u


  , i.e. 1

2

( )
( ) {(( , ( )), ) :  }e

e

C
C x x x X


    .  

Here  1 ( )
( )eC
x


 , x X  is the MF of the embedded T1FS 1

1

( )
( ) {( , ( )) : }e

e

C
C x x x X


    in the 

T2FS C . 

Remark 5. Obviously, for the T2FS C  and each A , there is the unique embedded T1FS 

1

1

( )
( ) {( , ( )) :  }e

e

C
C x x x X


    which is corresponding to the embedded T2FS 2 ( )eC   with 

constant secondary grade  . Hence, 1

2 1

( )
( ) {( ( ), )} {({( , ( )) :  }, )}e

e e

C
C C x x x X


         

1 ( )
{(( , ( )), ) :  }eC

x x x X


   . 

3. Formulation of the problem and the main idea 

Let {1,..., }N n  be the set of indices of fuzzy data samples 1{ , ,..., },  i i ipy x x i N    in the form of 

FNs with the MFs ( )
isx isx  , isx � , 1,...,s p , ( )

iy iy  , iy � , i N , respectively. The matrix 

( )X N  of independent variables and the vector ( )y N  of dependent variables are given by formula 

(4). Assume that qualities of data samples 1{ , ,..., },  i i ipy x x i N    are different. Furthermore, the 

degrees ( ),I j j N   of membership to the FS {( , ( )) : }II j j j N   of data samples indices are 
known. The following question arises: ‘what are linear regression parameters in the case when fuzzy 
data samples are involved in the calculation with the corresponding degrees ( )I j ,  j N  of 
membership?’ In other words: ‘what are the fuzzy parameters of the regression for the FS I  of the 
data samples indices? We investigate this problem for the l -th regression parameter. First, we 
generalize formula (12) for the case of an arbitrary subset K N  of sample indices and represent it 

in a convenient form for us. For each r� , we consider the mapping : 2 [0,1]r N
lU   given by 

( ) max{ [0,1]:  [ ( )] [ ( )] },  r D H
l l u l uU K u K r K K N       .  (18) 

According to (12), the mapping r
lU  associates each subset K N  of data sample indices with the 

value of the MF 
( )

( )
l K

r   of the fuzzy parameter ( )l K  (see (13)). The latter is the FN 



( )
( ) {( , ( )) : }

l
l K

K r r r  
 � ,  (19) 

with the MF 

( )
( ) ( )

l

r
lK

r U K  ,   supp( ( )) { : ( ) 0}r
l lr K r U K    � ,  (20) 

where supp( ( ))l K  is the support of the FN ( )l K . Next, we generalize formulae (19) and (20) to 

the case of the FS I  of sample indices. We denote by lB  the l -th regression parameter, and by 

( )
lB

M r , r�  its MF for the FS I  of data samples indices. In this case, the value of the MF ( )
lB

M r  

for each fixed *r r  coincides with the image * ( )r
lU I  of the FS I  under *r

lU , i.e. *( *) ( )
l

r
lB

M r U I

. According to Zadeh’s extension principle [20], the image of the FS I  under the mapping 
* : 2 [0,1]r N

lU   (see (18)) is the FS  *

*

( )
( ) {( , ( )) : [0,1]}r

l

r
l U I

U I u u u   with the MF  

*

*

( )
( ) max{ [0,1]:  ( ( ))}r

l

r
lU I

u u U I     ,  [0,1]u .  (21) 

Here, ( ) { : ( ) }II j N j      is the  -cut, [0,1]  of the FS {( , ( )) :  }II j j j N   of sample 
indices; 

*
( ( ))

( ( )) ( *)
l

r
l I

U I r    ,  (22) 

is the image of the  -cut ( )I  , [0,1]  of the FS I  of the samples indices in the mapping *r
lU  (see 

(18)). The value * ( ( ))r
lU I   is equal to the MF value 

( ( ))
( *)

l I
r    of the l -th fuzzy parameter 

( ( ))l I   for the set ( )I   of sample indices. 

Remark 6. Let { ( ) :  }IA j j N   be the set of membership degrees values of the fuzzy set 

{( , ( )) :  }II j j j N   of sample indices. Note that the cardinality of the set A is |A| ≤ n. The 

situation |A| < n may occur if the degrees of membership ( )I j  coincide for different indices  j N  

of samples. It is clear that while obtaining  -cuts ( ) { : ( ) }II j N j       of the fuzzy set I  

we can assume that A  rather than [0,1] .  

Thus, according to (20) and (21), for fixed *r r , values of ( *)
lB

M r  form the T1FS 

( *){( , ( )) : [0,1]}
Bl

M ru u u 


 on [0, 1] with the MF  *

*
( *) ( )

( ) ( ) max{ : ( ( ))}r
B ll

r
M r lU I

u u A u U I      


,  

*supp( ( *)) { [0,1]:  ( ( )),  }
l

r
lB

u M r u u U I A      . Then (22) entails 

( *) ( ( ))
( ) max{ :  ( *)},

B ll
M r I

u A u r     
    (23) 

where 
( ( ))

supp( ( *)) { [0,1]:  ( *),  }
l lB I

u M r u u r A        . Therefore, we conclude that lB  is a 

FS on �  with the MF whose values form T1FS on [0,1] . Then, according to [22], lB  is the T2FS on 

� . In the manner of vertical slices [27] the T2FS lB  on �  has the form: 

( ){( , ( )) : } {( ,{( , ( )) :  }) :  }
Bl l

l M r rB
B r M r r R r u u u J r    


 � ,  (24) 

where ( ) ( )
Bl

M r u


, [0,1]u  is the MF of the T1FS ( )( ) {{( , ( )) :  [0,1]}
Bl l

M rB
M r u u u 

  of values of 

fuzzy degree of membership of the element r�  to the T2FS lB  and supp( ( ))
l

r B
J M r   is the set of 

primary membership degrees, where supp( ( ))
lB

M r  is the support of the T1FS ( )
lB

M r  for r� . 

According to Section 2.2, we can also characterize the T2FS lB  of the l -th regression parameter by 

means of the T2MF ( )( , ) ( ),  
Bl l

M r rB
r u u u J  

  and ( , ) 0,  
l

rB
r u u J   . This conclusion allows us 

to introduce the following notion. 
Definition 2. By the regression parameter with index 0,...,l p  for the FS I  of sample indices is 

meant the T2FS  
{(( , ), ( , )) :  [0,1],  }

ll B
B r u r u u r  
 � ,  (25) 

with the T2MF 



( ( ))
max{ :  ( )},  ;

( , )
.0,

l

l

I r

B
r

A u r u J
r u

u J
  


    



   (26) 

Here, 
  

( ( ))
{ [0,1]:  ( ),  }

l
r I

J u u r A      ,  (27) 

is the set of primary membership degrees [0,1]u  with strictly positive secondary grades ( , )
lB

r u   

which coincides with the support supp( ( ))
lB

M r  (see (23)) of the T1FS ( )
lB

M r  of fuzzy membership 

degrees of the element r� ; 

( ( ))
( ) max{ [0,1]:  [ ( ( ))] [ ( ( ))] }

l

D H
l u l uI

r u I r I        
  ,  (28) 

is the MF of the l -th fuzzy parameter  

( ( ))
( ( )) {( , ( )) : }

l
l I

I r r r    
 � ,  (29) 

for the set ( )I   of sample indices (see (19)-(20) for ( )K I  ); 

[ ( ( ))] min{ ([ ( ( ))] ,[ ( ( ))] ), ([ ( ( ))] ,[ ( ( ))] ,

([ ( ( ))] ,[ ( ( ))] ), ([ ( ( ))] ,[ ( ( ))] )}

D D D D H
l u l u u l u u

H D H H
l u u l u u

I f X I y I f X I y I

f X I y I f X I y I

   

  

     

   
  (30) 

and 
[ ( ( ))] max{ ([ ( ( ))] ,[ ( ( ))] ), ([ ( ( ))] ,[ ( ( ))] ,

([ ( ( ))] ,[ ( ( ))] ), ([ ( ( ))] ,[ ( ( ))] )}

H D D D H
l u l u u l u u

H D H H
l u u l u u

I f X I y I f X I y I

f X I y I f X I y I

   

  

     

   
  (31) 

are the estimates of the lower and upper bounds (see (15)-(16) for ( )K I  ) of the u -cut 

[ ( ( ))]l uI   of the FN ( ( ))l I  ; 

( ) { : ( ) }II j N j       (32) 

is the  -cut of the FS I  of sample indices;  
A  is the set of the membership degrees values ( ),I j j N   of the FS {( , ( )) : }II j j j N   of 

sample indices (see Remark 6). According to (26), the set A  includes all possible positive values of 
secondary grades for the T2FS lB  of the l -th regression parameter. 

4. Regression for a fuzzy set of sample indices 
4.1. Decomposition of T2FSs of regression parameters 

For each l -th regression parameter, 0,...,l p , we apply a decomposition approach to represent 

the T2FS lB  in a more convenient form. Theorem 1 justifies the representation of the T2FS lB  in the 
form of a collection of the embedded T2FSs with constant secondary grades. 

Theorem 1. The T2FS lB  of the l -th regression parameter is represented in the form of the 

collection 2{ ( ( )) :  }e
l lB B I A     of embedded T2FSs 

2 ( ( )) {( ( ( )), ))}e
l lB I I     ,   (33) 

with the constant secondary grades A . For each A , the embedded T1FS 

( ( ))
( ( )) {( , ( )) : }

l
l I

I r r r    
 �  is the FN which is the l -th fuzzy parameter for the set 

( ) { : ( ) }II j N j      of sample indices, with the MF 
( ( ))

( )
l I

r    in form (28). 

Proof. According to (25), the T2FS of the regression parameter with the index 0,...,l p  has the 

form {(( , ), ( , )) :  [0,1],  }
ll B

B r u r u u r  
 � . Hence,  

( ( ))
{{(( , ),max{ :  ( )}) :  } {(( , ),0) :  }:  }

l
l r rI

B r u A u r u J r u u J r       
  � ,   (34) 

by (26). Remark 4 allows us to ignore the pairs ( , )r u  that have secondary grades equal to 0. Thus, 



( ( ))
{(( , ),max{ :  ( )}) :  ,  }

l
l xI

B r u A u r u J r      
 � ,   (35) 

and thereupon  
( ( ))

{(( , ( )) :  ) :  }
l

l I
B r r A r    
 �  by (27). Note that the collection 

( ( ))
{( ( ), ) :  }

l I
r A      is the T1FS which is formed by the unique value 

( ( ))
( )

l I
u r    of the fuzzy 

degree of membership of .r�  The different values A  may correspond to 
( ( ))

( )
l I

u r   . 

Therefore, the equality 
( ( ))

{( ( ), ) : }
l I

r A      ( ( )) 
{( ,max{ :  ( )})}

l IA
u u r 

 


   holds true. Further, 

regrouping elements yields 
 

( ( )) ( ( ))
{( ,( ( ), )) : , } {{(( , ( )), ) : }: }

l l
l I I

B r r A r r r r A              
 � � .  (36) 

Finally, by virtue of formula (29) we conclude that {( ( ( )), ) :  }l lB I A     . 
The proof of Theorem 1 is complete. 

4.2. Calculation of T2FSs of regression parameters 

First, we construct the set { ( ) : }IA j j N   of membership degrees values of the FS 

{( , ( )) :  }II j j j N   of sample indices. For each A , according to (32), we construct the  -cut 

( ) { : ( ) }II j N j      of the FS I . Further, for each 0,...,l p , we use the representation of the 

T2FS lB  in the form of a collection of embedded T2FSs with constant secondary grades (see 

Theorem 1). This leads to the following sequence of calculations for each A .  

We construct the embedded T1FS 
( ( ))

( ( )) {( , ( )) : }
l

l I
I r r r    

 � . This is the FN, which is the 

l -th fuzzy parameter of the regression for the set ( )I   of sample indices. To construct the FN 

( ( ))l I   one can use any known methods. An application of the method worked out in Section 2.1 of 

[18] yields ( ( )) {([[ ( ( ))] ,[ ( ( ))] ], ) : [0,1]}D H
l l u l uI I I u u          (see (13), (30), (31) for ( )K I  ) 

with the MF  

( ( ))
( ) max{ [0,1]:  [ ( ( ))] [ ( ( ))] }

l

D H
l l u l l uI

r u I r I        
  ,  lr � .  (37) 

Formula (37) is justified by (14) with ( )K I  . Then, the corresponding embedded T2FS with the 

constant secondary grade   has the form 2 ( ( )) {( ( ( )), ))}e
l lB I I      according to (33). 

Once all embedded T2FSs 2 ( ( ))e
lB I   with constant secondary grades A  have been obtained, 

the resulting T2FS of the l -th regression parameter has the form 
2{ ( ( )) :  } {( ( ( )), )) :  }e

l l lB B I A I A           by Theorem 1. According to Remark 3, the T2FSs 

lB  can be interpreted as follows. For fuzzy data of different quality, the l -th regression parameter lB  

is equal to the l -th  parameter ( ( ))l I   of the regression for the corresponding crisp set ( )I   of data 

samples  with the degree of truth being equal to  , A . 

5. Illustration and discussion 
5.1. Example 

This example is devised to illustrate our approach. We stress that this example does not use real 
data. All data are given to the second decimal place.  

To conduct the historical research, we need to find out the dependence of weight of a middle-aged 
person on he or her tall in the 10th century. The data borrowed from four authentic historical 
documents are located in lines 1-4 of Table 1. There is a reason to believe that the values in line 3 are 
slightly less reliable than the rest. We assume that in those days the height and the weight were 
measured with an accuracy to ±1Kg and ±5%, respectively. We denote by ( , , )L C Ua a a a  a 
‘triangular’ FN with the MF 



( ) / ( ), [ ];

( ) ( ) / ( ), [ ];

0, otherwise.

L C L L C

R R C C R
a

r a a a r a a

r a r a a r a a

    
    



   (38) 

Table 1 contains the fuzzy data in forms of the ‘triangular’ FNs 1 1 1 1( , , )L C U
i i i ix x x x  and 

1 ( , , )L C U
i i i iy y y y , {1,...,4}i . The fuzzy data 1ix  and iy  be denoted as 1 1( )C

i ix appr x  and 

( )C
i iy appr y , and can be interpreted as ‘approximately 1

C
ix  and C

iy ’, respectively. The dependence 
of the weight on the height for majority of data in rows 1-4 of Table 1 may seem strange, since weight 
gain decreases as the height increases. We assume that this can be explained by the small sample size 
and its non-representativeness. 
Table 1 
Weight depending on height 

i    Height  1ix   Weight  iy  

1    (149,150,151)  (55,1;58,60,9) 
2    (159,160,161)  (63,65;67;70,35) 
3    (169,170,171)  (63,65;67;70,35) 
4    (189,190,191)  (80,75;85;89,25) 
5    150  50 
6    160  60 
7    170  70 
8    180  80 

 
To solve this problem, we supplement the data sample. We know from the medical sources [31] that 
the Broca’s formula for determining the height and the optimal weight has the form W = H − 100, 
where H is the height in cm and W is the optimal weight in Kg. According to this formula, we 
calculate the optimal weights for four different heights and place these data in rows 5-8 of Table 1. 
Thus, we have three sources of data of different quality. The high-quality source is historical, which 
we fully trust. We evaluate the degree of reliability of data from this source. The results which are 
located in rows 1,2,4 of Table 1 have the values of the degree of reliability are equal to 1. The degree 
of less reliable data from the second source of historical data which are located in line 3 of Table 1 is 
estimated at 0,9. The third source of data is medical. It is known that modern persons are taller than 
persons living in the 10th century and having the same weight. As a consequence, the degree of 
reliability of data from a medical source is not very high (for example, we estimate it as 0,7), since 
this source only provides information on the ratio of the weight and the height for modern people. 
Thus, we construct the FS ‘Reliable data samples’ 

{(1;1),(2;1),(3;0,9),(4;1),(5;0,7),(6;0,7),(7;0,7),(8;0,7)}I   on the set {1,...,8}N   of data sample 

indexes with the MF values (1) (2) (4) 1I I I     , (3) 0,9I   и (5) ... (8) 0,7I I    .   
In view of Remark 6, the set of membership degrees values of the FS I  takes the form 
{0,7;0,9;1}.A   For 1,0  ; 0,9   and 0,7  ,  according to (32), we construct the 

corresponding α-cuts (1) {1,2,4}I  , (0,9) {1,...,4}I   and (0,7) {1,...,8}I   of the FS I  of data 
samples indices. Next, we construct FNs of parameters of linear least-squares regressions (see Section 
2.1). In Example 1, these FNs are of the ‘triangular’ type (in general case, this is not necessary). Here, 
these FNs are of the ‘triangular’ type (in general case, this is not necessary). 

For 1  , we get embedded T1FSs 0 ( (1)) ( 86,51; 82,2; 79,6) ( 82,2)I appr        and  

1( (1)) (0,88;0,91;0,94) (0,91)I appr    in the T2FSs 2
0 0( (1)) {( ( (1)),1))}eB I I   and 

2
1 1( (1)) {( ( (1)),1))}eB I I  , respectively, with the constant secondary grade (the degree of truth) being 

equal to 1. 

For 0,9  , we get embedded T1FSs   0 ( (0,9)) ( 68,47; 64,4; 60,41) ( 64,4)I appr        and  

1( (0,9)) (0,77;0,81;0,85) (0,81)I appr    in the T2FSs 2
0 0( (0,9)) {( ( (0,9));0,9))}eB I I   and 



2
1 1( (0,9)) {( ( (0,9));0,9))}eB I I  , respectively, with the degree of truth being equal to 0,9. 

For 0,7  , we get embedded T1FSs 0 ( (0,7)) ( 81,79; 77; 72,3) ( 77)I appr        and 

1( (0,7)) (0,85;0,9;0,95) (0,9)I appr    in the T2FSs 2
0 0( (0,7)) {( ( (0,7));0,7))}eB I I   and 

2
1 1( (0,7)) {( ( (0,7));0,7))}eB I I  , respectively, with the degree of truth) being equal to 0,7. 

According to Theorem 1, the resulting T2FSs of regression parameters have the forms 

0 {( ( 82,2);1), ( ( 64,4);0,9), ( ( 77);0,7)}B appr appr appr    ,  (39) 

1 {( (0,91);1), ( (0,81);0,9), ( (0,9);0,7)}B appr appr appr .  (40) 

 
 
Figure 1. The lines of the levels   0,7  ;   0,9   and  1,0   of the T2MF 
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Figure 2. The lines of the levels   0,7  ;   0,9   and  1,0   of the 
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B
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The T2MFs 
0
( , )

B
r u   and 

1
( , )

B
r u   can be calculated with the help of formulae (26) and (27). Their 

levels {0,7;0,9;1}A   are represented by solid (for 1  ), dashed (for 0,9  ) and dotted (for 

0,7  ) lines in Figure 1 for 
0
( , )

B
r u   and in Figure 2 for 

1
( , )

B
r u  . 

The obtained T2FSs can be interpreted as follows. For fuzzy data of different quality, the T2FSs 

0B  and 1B  of fuzzy regression parameters values are equal to: 

 the FNs 0 ( (0,7)) ( 77)I appr    and 1( (0,7)) (0,9)I appr  , respectively, for the crisp set 

(0,7) {1,...,8}I   of data sample indices with the degree of truth being equal to 0,7; 

 the FNs 0 ( (0,9)) ( 64,4)I appr    and 1( (0,9)) (0,81)I appr  , respectively, for the crisp set 

(0,9) {1,...,4}I   of data sample indices with the degree of truth being equal to 0,9 and 

 the FNs 0 ( (1)) ( 82,2)I appr    and 1( (1)) (0,91)I appr  , respectively, for the crisp set 

(1) {1,2,4}I   of data sample indices with the degree of truth being equal to 1. 

5.2. The discussion of the results 

Let us consider a graphical interpretation obtained regression with T2FSs parameters. On Figure 3 
thin solid lines demonstrate the graphs of the regression functions 

1 0 0 0( ( (1)) ( ( (1)) 86,51 0,88L Ly I I x x       ,  (41) 

1 0 0 0( ( (1))) ( ( (1))) 79,6 0,94H Hy I I x x         (42) 

with parameters which correspond to the lower and upper bounds of the 0-cuts 

0 0 0 0[( ( (1)) ,( ( (1)) ] [ 86,51; 79,6]L HI I       and 1 0 1 1[( ( (1)) ,( ( (1)) ] [0,88;0,94]L HI I     of the FNs 

0 ( (1)) ( 82,2)I appr    and 1( (1)) (0,91)I appr  , respectively. These FNs are corresponding  

 



 
 

Figure 3. The illustration of the regression with the parameter T2FSs 
 
parameters of the fuzzy linear regression for crisp set (1) {1,2,4}I   of data sample indices. For the 

same set of sample indices, the thick solid line shows the graph of the regression function  

1 1 0 1( ( (1)) ( ( (1)) 82,2 0,91L Ly I I x x        with parameters which correspond to the 1-cuts 

[ 82,2; 82,2]   and [0,91;0,91]  of the FNs 0 ( (1)) ( 82,2)I appr    and 1( (1)) (0,91)I appr  , 

respectively. For the crisp set (0,9) {1,...,4}I   of data sample indices, the dashed lines demonstrate the 

graphs of the regression functions 1 0 0 0( ( (0,9)) ( ( (0,9)) 68,47 0,77L Ly I I x x        and 

1 0 0 0( ( (0,9)) ( ( (0,9)) 60,4 0,85H Hy I I x x         (43) 

(thin lines), and  

1 1 0 1( ( (0,9)) ( ( (0,9)) 64,4 0,81L Ly I I x x         (44) 

(a thick line). For the crisp set (0,7) {1,...,8}I   of data sample indices, the dotted lines demonstrate the 

graphs of the regression functions 1 0 0 0( ( (0,7)) ( ( (0,7)) 81,79 0,85L Ly I I x x        and  

1 0 0 0( ( (0,7)) ( ( (0,7)) 72,3 0,95H Hy I I x x         (45) 

(thin lines), and  

1 0 0 0( ( (1))) ( ( (1))) 79,6 0,94H Hy I I x x         (46) 

(a thick line).  
Figure 3 allows us to draw the following conclusions. Regressions corresponding to data of 

different quality may differ from each other and express a different relationship between the 
independent variables and predicted output. Therefore, the resulting regression with T2FSs of 
parameters should be taken as a whole as a collection of regressions corresponding to  -cuts 

( ),  [0,1]I    of the FS I  of data sample indices. Only in this case we get an idea about 

dependence between the regression and the quality of the data used. Sometimes understanding this is 
important. 

 If we need some ‘maximizing’ regression, which has parameters values  with the primary 
membership degrees equal to 1, then it should be considered as a collection of regressions 



corresponding to  -cuts ( ),  [0,1]I    of the FS I  of data sample indices. For these regressions, 
we take the parameters values with the membership degrees equal to 1.  In Example 1, these are 
regressions with graphs depicted by thick lines in Figure 3.  

The regression for fuzzy data of different quality can be represented as a set of fuzzy regressions 
with the degree of truth A . These fuzzy regressions correspond to data samples of different 
quality with indices belonging to  -cuts ( ),  I A  of the FS I . Thus, the degree of truth of the 
regression is determined by the quality of the data for which it is constructed. The higher the quality 
of data samples, the greater the degree of membership of their indices to the FS I  and the higher the 
degree of truth of the corresponding fuzzy regression in the collection that forms the regression for 
fuzzy data of different quality. On the other hand, increasing the amount of low-quality data reduces 
the degree of truth of the corresponding fuzzy regression in the collection. 

6. Conclusion 

According to the proposed approach, the linear regression parameters for fuzzy data of different 
quality are T2FSs with constant secondary grades. Although, in general, a T2FS is a rather 
complicated mathematical object, T2FSs with constant secondary grades are simple enough for 
practical use. Therefore, to represent these sets in a form which is convenient for understanding and 
applications, we have used a decomposition method. The results obtained have allowed us to 
decompose the T2FSs of linear regression parameters according to secondary grades into finite sets of 
FNs. These are fuzzy parameters of the regressions which correspond to different  -cuts of FSs of 
data sample indices. One direction of future investigation of regressions with a fuzzy set of data 
sample indices may be related to the development of a similar approach for possibilistic regression 
analysis. 
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