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ABSTRACT
This work presents a method for classifying table tennis strokes
using spatio-temporal convolutional neural networks. The fine-
grained classification is performed on trimmed video segments
recorded at 120 fps with different players performing in natural
conditions. From those segments, the frames are extracted, their
optical flow is computed and the pose of the player is estimated.
From the optical flow amplitude, a region of interest is inferred. A
three stream spatio-temporal convolutional neural network using
combination of those modalities and 3D attention mechanisms is
presented in order to perform classification.

1 INTRODUCTION
Recognition of actions with low inter-class variability remains a
challenge [2, 8, 16, 18]. The target application of our research is
fine-grained action recognition in sports with the aim of improving
athletes performance [3, 9, 21]. The purpose is to make cameras
“smart” to analyse sport practices [1, 4, 19]. The first step here is to
classify strokes played in incoming video streams.

Based on our previous works [14], we propose a method using
RGB and optical flow data to perform classification1. Without loss of
generality, we are interested in recognition of strokes in table tennis
through the MediaEval 2020 Sport task [11], based on TTStroke-21
dataset [14]. Compared to our work at MediaEval 2019 [12] for the
same task [10], our method differs by the use of the estimated pose
and attention mechanism [15] based on [5, 20]. The difficulty of
this task is to find characteristics for each class of strokes using
a limited dataset. In this paper, we present in section 2 a three
stream network aiming at extracting features with enough inter-
class discrimination to perform classification. Section 3 presents
the results and conclusion is drawn in section 4.

2 PROPOSED APPROACH
To deal with the low inter-class variability of TTStroke-21, the
most complete information from video must be used, i.e. both ap-
pearance (RGB) and motion (Optical Flow). Spatio-temporal convo-
lutions were performed on cuboids of RGB frames and on cuboids of
Optical Flow (OF). Those two kinds of information were processed
simultaneously through a Twin architecture [15]. A third branch
1This work was supported by the New Aquitania Region through CRISP project -
ComputeR vIsion for Sport Performance and the MIRES federation.
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with temporal convolutions was added to handle the estimated
pose. The extracted frames from videos of size (1920 × 1080) were
resized to (320 × 180).

2.1 Optical Flow estimation
As presented in [13], flow estimators and its normalization can
strongly impact classification. We used Dense Inversive Search
estimator [6] because of its computational speed. Each OF frame
V = (𝑣𝑥 , 𝑣𝑦) was encoded with horizontal 𝑣𝑥 and vertical 𝑣𝑦 motion
computed from two consecutive RGB frames. The estimated OF
was smoothed with a Gaussian filter with kernel size 3 × 3 and
then multiplied by the computed foreground [22] to keep only
foreground motion.

2.2 Estimation of the Region of interest
The region of interest (ROI) center Xroi = (𝑥𝑟𝑜𝑖 , 𝑦𝑟𝑜𝑖 ) was estimated
from the maximum of the OF V norm and the center of gravity of
all pixels with non-null OF norm as follows:

Xmax = (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 ) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥,𝑦

( | |V| |1)
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with 𝛿 (X) =
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0 otherwise
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with parameter 𝛼 = 0.6, set empirically, Ω =

(𝜔𝑥 , 𝜔𝑦) = (320, 180) the size of video frames. Function
𝑓𝜔 (𝑢, 𝑆) =𝑚𝑎𝑥 (𝑚𝑖𝑛(𝑢,𝜔 − 𝑆

2 ),
𝑆
2 ) allows to have data inputted to

our network within the region of interest. To avoid jittering within
our RGB and OF cuboids, of size (𝑊 × 𝐻 ×𝑇 ) = (120 × 120 × 98),
a Gaussian filter with kernel size 𝑘𝑠𝑖𝑧𝑒 and with scale parameter
𝜎𝑏𝑙𝑢𝑟 = 0.3 ∗ ((𝑘𝑠𝑖𝑧𝑒 − 1) ∗ 0.5 − 1) + 0.8 was applied along
the temporal dimension to average the center position. In our
experiments, the optimal kernel size was found to be 1

3 second
which represents 𝑘𝑠𝑖𝑧𝑒 = 41 frames at 120 fps.

2.3 Pose estimation
The pose was computed from single RGB images using the PoseNet
model [17]. Its implementation is available online2. It supplies poses
and human joints positions and their score. We discard some human
joints that are not visible in the considered videos such as the
knees and the ankles. The 13 human joints considered are thus
2https://github.com/rwightman/posenet-python
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the nose, both eyes, ears, shoulders, elbows, wrists and hips. The
pose coordinates (mean of the joint coordinates) and its score are
also taken into account leading to a descriptor vector of length
𝑁 𝑗𝑜𝑖𝑛𝑡𝑠 = 14. Even if the faces are blurred, its joints are still well
located. Other players may appear in the scene background, which
lead to the detection of several poses in the same frame. In this
case, the closest pose, from center of the previously computed ROI,
was considered. If no pose is detected, the descriptor vector is filled
with ROI center coordinates and a score of 0.

2.4 Data normalization
The RGB data were normalized to map their value into the interval
[0, 1]. Following [13], the OF was normalized using the mean 𝜇 and
standard deviation 𝜎 of the maximum absolute values distribution
of each OF components over the whole dataset as described in
equation 2:

𝑣 ′ = 𝑣
𝜇+3×𝜎

𝑣𝑁 (𝑖, 𝑗) =
{
𝑣 ′(𝑖, 𝑗) if |𝑣 ′(𝑖, 𝑗) | < 1
𝑆𝐼𝐺𝑁 (𝑣 ′(𝑖, 𝑗)) otherwise.

(2)

with 𝑣 and 𝑣𝑁 representing respectively one component of the
OF V and its normalization. This normalization method maps the
values into interval [-1,1] and increases the magnitude of most
vectors making the OF more relevant for classification.

2.5 Model architecture
The model was similar to the Twin Spatio-Temporal Convolutional
Neural Network - TSTCNN with attention mechanisms presented
in [15]. It comprises two branches with three 3D convolutional
layers with 30, 60, 80 filters respectively, followed by a fully con-
nected layer of size 500. They take respectively cuboids of RGB
values and OF of size (𝑊 × 𝐻 ×𝑇 ). The 3D convolutional layers
use 3 × 3 × 3 space-time filters with a dense stride and padding of 1
in each direction. Their output is processed by max-pooling layers
using kernels of size 2 × 2 × 2. Each max-pooling layer feeds an
attention block. An extra branch processing the pose data of size
(𝑁 𝑗𝑜𝑖𝑛𝑡𝑠 ×𝑇 ) = (14× 98) is added. It follows the same organization
than the two other branches, but without attention mechanism
and uses 1D convolutions and max-pooling along the temporal
dimension. The three branches are fused two by two using bilinear
fully connected layers (𝑦 = 𝑥𝑇1 𝐴𝑥2 + 𝑏) of size 20, which represent
the number of classes. The three resultant outputs are summed and
processed by a Softmax function to output probabilistic scores used
for classification.

2.6 Data augmentation
Data augmentation was made online, generating different inputs
at each epoch during training phase. Each stroke sample was fed
to the model once per epoch. For temporal augmentation, 𝑇 suc-
cessive data from the RGB, OF and Pose modalities, were extracted
following a normal distribution around the center of the stroke
video segment with standard deviation of 𝜎 = Δ𝑡−𝑇

6 . Spatial aug-
mentation was performed with random rotation in the range ±10◦,
random translation in range ±0.1 in 𝑥 and 𝑦 directions, random
homothety in range 1 ± 0.1 and flip in horizontal direction with 0.5
of probability. The OF and Pose values were updated accordingly.

Transformations were applied on the region of interest avoiding
crops outside the image borders. During the test phase, no augmen-
tation was performed and the 𝑇 extracted frames were temporally
centered on the stroke segment.

2.7 Training phase
All models were trained from scratch. Due to early overfitting, only
200 epochs were used for training the models using all the training
samples. The optimizationmethodwas a stochastic gradient descent
with Nesterov momentum of 0.5, with learning rate of 0.001, weight
decay of 0.05 and a batch size of 5. The objective function was the
cross-entropy loss.

3 RESULTS
Five runs on the test set were submitted. Run 1 corresponds to the
decision from the proposed model with temporally centered fea-
tures on the stroke, so called “Coarse”. Run 2, 3 and 4 correspond to
the same model but using a temporal sliding window on the stroke
segments for decision making. The runs correspond respectively
to the “Vote” rule, “Avg” rule and “Gaussian” rule. The reader can
refer to [14] for further details. Run 5 corresponds to decision of the
RGB-branch with attention mechanism. The bilinear layer becomes
then a simple linear layer.

Table 1: Runs performances in term of accuracy (%).

Runs 1 2 3 4 5

Models Three stream STCNN RGB-STCNN

Decision Coarse Vote Avg Gaussian Coarse

Accuracy 24.3 26.6 25.4 25.4 20.3

In general, classification results are very low compared to the
ones obtained in [15]. This is due to the lower amount of videos for
this task and the different split of the dataset: for this task, strokes
for the train and test sets are extracted from different videos, which
is not the case in [15].

From Table 1, best performances are obtained using all modalities
with vote rule decision. This underlines the importance of modality
fusion within the architecture and the gain of considering the whole
stroke, and not only the 𝑇 = 98 centered frames. Moreover, by
merging stroke classes such as the drive: “Forehand”, “Backhand”;
the context: “Serve”, “Offensive”, “Defensive”; or their combination
(6 classes); run 2 obtains respectively 72.3%, 76.8% and 60.7% of
accuracy. The higher scores prove the capacity of the model to learn
the characteristics of Table Tennis games. Surprisingly, the context
is better classified than the drive.

4 CONCLUSION
Our submission is ranked 2𝑛𝑑 in the Sport Task of MediaEval
2020 [11]. The obtained results are better than last year, with a
slightly modified dataset. The use of Pose information and atten-
tion mechanism allowed such improvements. However, the global
accuracies remain low certainly because of the limited amount
of samples used for training our models. The challenging task of
fine-grained action recognition from few video samples remains
open.
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