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Abstract—Forecasting various phenomena can help us analyze
the behavior of certain phenomena. Special objects for this
type of activity are the weather forecast or the spread of the
disease. In the case of an epidemic, there is a risk that the
lack of the invention of a vaccine can be very problematic –
if a given bacterium or virus have a high probability of being
infected. In this paper, we focus on presenting two approaches
to the problem of modeling the outbreak epidemic – iterative
and recursive. As part of the comparison of these solutions,
appropriate simulations were performed in order to indicate the
advantages and disadvantages of these solutions. The results were
presented and discussed.

I. INTRODUCTION

Forecasting future events is based on several input data
that return the most likely changes. In fact, it is not so easy
because there may always be some unexpected element that
will change predictions. This is particularly evident in the
analysis of epidemic phenomena. By analyzing any strain, it
is hard to take into account all existing conditions that can
lead to mutations. However, simplified models allow us to
obtain numerical values over time. An example of this is the
anticipated time when a given vaccine should be ready.

Forecasting can take place using different techniques. One
of the most important branches of scientific research is ar-
tificial intelligence. The development of this technique gives
many possibilities. An example of these techniques are arti-
ficial neural networks, whose greatest drawback is very long
training time. In [1], [2], the authors presented the idea of
parallelization. Neural networks can be used not only for clas-
sification but also for predictions as shown in [3], [4], [5], [6],
[7]. Similarly in [8], where prediction techniques for dynamic
seismic slope have been described using these networks and
heuristics. An important study is also the prediction of wind
speed [9], [10] which can be useful on roads or ski jumps.
Another important area of application of different forecasting
techniques is medicine, where using selected data, possible
occurrences of diseases or their progression can be predicted
[11].

In this paper, we compare two approaches to programming
the simulation of the epidemic spreading phenomenon and
analyze their advantages and disadvantages in relation to
differences.
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II. MARKOV CHAINS

Markov chain is one of the stochastic models, which is used
to describe probability of evolution in time random process of
changing states. Every new state is dependent on events in
past. We consider a set S as a space of states, where the
number of states is finite (or at most countable) and Xn = i
means that the state i is reached at time n.

In our model we assume that S = {0, 1, 2} map each state
to the appropriate stage of the epidemic – susceptible, infected
or recovered. In order for some sequence of variables to be
called a Markov chain, the Markov property must be fulfilled.
That requires for each n ∈ {0, 1, . . . } and for every state
i0, . . . , in+1 ∈ S to be occured following equation

P{Xn+1 = in+1|Xn = in, . . . , X0 = i0}
= P{Xn+1 = in+1|Xn = in}.

(1)

In other words Markov property is related to the memoryless
property, which is characteristic for some stochastic processes.
If the process has this feature, it means that we only need to
know the current state. Knowledge of any of the states in the
past does not give the opportunity to predict states that could
appear in the future.

Definition of the Markov chain is connected with the matrix
of probabilities of transition between states and the probability
distribution vector for the variable X0. First of them, the
matrix P = (pij) is composed of probabilieties of changing
the state from i to another state j during one step – which is
always . Its dimension is equal k × k, where k is the power
of the set S. According to this, we obtain square matrix

P =


p11 p12 . . . p1k
p21 p22 . . . p2k

...
...

. . .
...

pk1 pk2 . . . pkk

 , (2)

where pij = P{Xn+1 = j|Xn = i}. It is important to remem-
ber about two essensial properties of probability – for each

i ∈ S,
|S|∑
j=1

pij = 1 and also for every i and j pij ≥ 0.

The other element is an initial vector of distribution for
variable X0. It can be defined for every i ∈ S as following

π = [p0, p1, . . . ], (3)

32



where each pi = P{X0 = i} is the probabilities, therefore,
the properties mentioned above are also fulfilled.

For probabilities, that are independent of n, we can intro-
duce each element in specified position (i, j) of matrix Pm

as

pij(m) = P (Xn+m = j|Xn = i) = P (Xm = j|X0 = i)
(4)

and that determines the probability that the Markov chain,
which state at period n is i, after m periods will reach the
state j.

III. MODEL OF INFECTION SPREAD

Let there be a phenomenon that can be divided into stages.
In each period, some changes are made and probability of
those changes can be determined. In the proposed model of
spreading infection, we assume that we have three stages. Each
of them represents the health condition of the population. We
can assign every individual to one of the following group
• susceptible sus(·),
• infected inf(·),
• recovered rec(·).
Obviously, there are many elements that affect changes

between stages in the model. To simplify it, we have made
some assumptions. In our proposition, we assume that
• we do not consider that elements such as climate, demo-

graphic changes, social status, age or sex can have any
effect on the probability in model,

• only susceptible individual may be infencted,
• leaving the infected group is possible only throughout

becoming recovered,
• individual, who is recovered, has acquired immunity.
We have considered two ideas of presenting this model - by

using recursion and with Markov chains.

A. Markov chains as a tool for prediction the evolution of
infection process

As it was said earlier, we assume that the space of states
S is composed of 3 elements. Each of states {1, 2, 3} corre-
sponds to one of groups – for example 1 is corresponding to
susceptibles.

According to those assumptions, the transition matrix,
which consists of probabilities p of every particular transitions
during one period, can be defined as psus,sus psus,inf psus,rec

pinf,sus pinf,inf pinf,rec
prec,sus prec,inf prec,rec

 (5)

It is easy to notice that the probability of changing state from
infected to susceptibles is equal to zero, because the only way
to go through infection is to become recovered. In the same
way we can see that it is impossible to became susceptibles
after being recovered. To predict how the process of spreading
the infection in a given population will take place, we need
to know the initial state of the population. To present this, we

introduce the initial vector of the population, which can be
represented as

P0 =
(
nsus ninf nrec

)
. (6)

Each n corresponds to the number of people, who were
assigned to the specific group – susceptibles, infected or
recovered.

B. Another tool for prediction the evolution of infection pro-
cess - recursion

The other idea for prediction how the infection would evolve
is recursion. We propose that the calculation of the next steps
in each stage of infection was based on the state of the
population in the previous step. This idea can be defined by
following equations

sus(t) = sus(t− 1)− pinf · inf(t− 1), (7)

inf(t) = inf(t−1)+pinf ·inf(t−1)−prec ·inf(t−1), (8)

rec(t) = rec(t− 1) + prec · inf(t− 1), (9)

where t and t− 1 are current and previous step.
In the beginning, we need to specify the number of individ-

uals belonging to each of the states. Initial conditions can be
presented as in Eq.(6), where

nsus = sus(0), (10)

ninf = inf(0), (11)

nrec = rec(0). (12)

IV. ITERATIVE AND RECURSIVE APPROACH

Data: number of healthy nsus, number of infected
ninf , number of recovered nrec, the probability
of being infected pinf and recovery prec, stop
condition

Result: The number of individuals in each group after
a certain time.

Start;
Create of a stochastic matrix in according to Eq. (5);
Create of the initial vector using Eq. (6);
Create a temporary value K and t := 0;
while stop condition is not met do

if t == 0 then
Calculate K = P0 · P;

else
K = K · P;

end
t++;

end
Return K;
Stop;

Algorithm 1: Iterative approach to modeling of the epi-
demic phenomenon.
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Data: number of healthy nsus, number of infected
ninf , number of recovered nrec, the probability
of being infected pinf and recovery prec, stop
condition

Result: The number of individuals in each group after
a certain time.

Start;
Create of the initial conditions using Eq. (10), (11) and

(12);
Create a temporary value K and t := 1;
while stop condition is not met do

Calculate number of sus according to Eq. (7);
Calculate number of inf using Eq. (8);
Calculate number of rec according to Eq. (9);
Save calculated values as vector K;
t++;

end
Return K;
Stop;

Algorithm 2: Recursive approach to modeling of the
epidemic phenomenon.

V. EXPERIMENTS

Two methods of infection spread prediction were imple-
mented and tested. Simulations were conducted to compare
both methods. In each simulation, we use the same probabilies
of becoming infected and recovered for iterative and recursive
approach. We also tested it for two populations to see how
results will differ.

We present a first initial steps of each method to show how
calculation are made. In every step we round up the values
to one, because we consider individuals. Let us assume that
the population is made up of a one hundred people, where
95 people are healthy and only 5 are infected. Hence, at the
beginning, the initial vector is

P0 =
(
95 5 0

)
. (13)

For iterative approach, we define stochastic matrix as

P =

 0.4 0.6 0
0 0.55 0.45
0 0 1

 . (14)

We do the first iteration and we obtain

P0P =
(
95 5 0

) 0.4 0.6 0
0 0.55 0.45
0 0 1

 =

=
(
38 60 2

)
.

(15)

For recursive approach, we calculate number of individuals
after first step in following way

sus(1) = 95− 0.6 · 5 = 92, (16)

inf(1) = 5 + 0.6 · 5− 0.45 · 5 = 6, (17)

rec(1) = 0 + 0.45 · 5 = 2. (18)

Statistic p-value
Anderson-darling 1.174801 0.003818
Kolmogorov-Smirnov 0.347438 0.046128
Kuiper 0.463567 0.009629
Pearson ξ2 9. 0.011109
Shapiro-Wilk 0.628608 0.000965
Watson U2 0.192294 0.002967

Table I: Statistical tests for iterative susceptible table.

Statistic p-value
Anderson-darling 0.391341 0.378907
Kolmogorov-Smirnov 0.171128 0.676132
Kuiper 0.199223 0.617289
Pearson ξ2 1.555556 0.459426
Shapiro-Wilk 0.901546 0.259454
Watson U2 0.047075 0.615696

Table II: Statistical tests for recursive susceptible table.

Statistic p-value
Anderson-darling 0.392656 0.372902
Kolmogorov-Smirnov 0.229084 0.515858
Kuiper 0.241794 0.456394
Pearson ξ2 0.666667 0.716531
Shapiro-Wilk 0.893534 0.336583
Watson U2 0.057898 0.464991

Table III: Statistical tests for iterative infected table.

Statistic p-value
Anderson-Darling 0.321762 0.546843
Kolmogorov-Smirnov 0.170226 0.684102
Kuiper 0.270848 0.732914
Pearson ξ2 1.555556 0.459426
Shapiro-Wilk 0.928101 0.463175
Watson U2 0.043625 0.684242

Table IV: Statistical tests for recursion infected table.

Statistic p-value
Anderson-darling 0.461812 0.251231
Kolmogorov-Smirnov 0.233851 0.482461
Kuiper 0.292183 0.250857
Pearson ξ2 2.333333 0.311403
Shapiro-Wilk 0.864369 0.203849
Watson U2 0.065498 0.351484

Table V: Statistical tests for iterative recovered table.

Statistic p-value
Anderson-darling 0.391341 0.378907
Kolmogorov-Smirnov 0.171128 0.676132
Kuiper 0.199223 0.617289
Pearson ξ2 1.555556 0.459426
Shapiro-Wilk 0.901546 0.259454
Watson U2 0.047075 0.615696

Table VI: Statistical tests for recursive recovered table.
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Figure 1: Measurements for the pinf = 0.8, prec = 0.55 and population {95, 5, 0}.

Figure 2: Measurements for the pinf = 0.6, prec = 0.45 and population {95, 5, 0}.

Figure 3: Measurements for the pinf = 0.8, prec = 0.55 and population {395, 5, 0}.

Figure 4: Measurements for the pinf = 0.6, prec = 0.45 and population {395, 5, 0}.

We have made statistical tests to check out whether the re-
ceived data is distributed according to the normal distribution.
For iterative table of infected and recovered individuals, we
obtained a positive result – distribution of data and the normal
distribution are compatible. Only for susceptibles, we reject
the hypothesis that the data is distributed in accordance with
normal distribution. In the case of recursive approach, the null

hypothesis is not rejected (at the 5 percent level – the same as
for the iteration version). It means that we can assume that the
data is distributed in accordance with the normal distribution.

VI. CONCLUSION

To create a model of prediction of the infection spread we
proposed two algoritms. First of them uses Markov chain and
the second one – recursion. Both are useful and each of them
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has some advantages. Iterative model is is fast and effective
even for large populations. Recursive model is more accurate
and a bit more reliable, but has one big disadvantage – has a
high computational complexity. That makes calculations last
for a very long time.

The analysis of the test results allowed us to conclude that
the use of Markov chains is better and more optimal solution
for prediction. Using this method we obtained rewarding
forecast of the spread of infection with specific probabilities
of being infected and recovered in the given population.
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