Modeling Hybrid Domains Using Process Description
Language

Sandeep Chintabathina, Michael Gelfond, and Richard Watson

Texas Tech University
Department of Computer Science
Lubbock, TX, USA
chintaba,mgelfond,rwatson@cs.ttu.edu

Abstract. In previous work, action languages have predominantly been con-
cerned with domains in which values are static unless changed by an action. Real
domains, however, often contain values that are in constant change. In this pa-
per we introduce an action language for modeling such hybrid domains called
the process description languag®Ve discuss the syntax and semantics of the
language, model an example using this language, and give a provenly correct
translation into answer set programming.

1 Introduction

Designing an intelligent agent capable of reasoning, planning and acting in a changing
environment is one of the important research areas in the field of Al. Such an agent
should have knowledge about the domain in which it is intended to act and its capabili-
ties and goals.

In this paper we are interested in agents which view the world as a dynamical system
represented by a transition diagram whose nodes correspond to possible physical states
of the world and whose arcs are labeled by actions. A I{gk, a, s;) of a diagram
indicates that actiom is executable irsg and that after the execution afin sy the
system may move to state. Various approaches to representation of such diagrams [3,

6, 9] can be classified by languages used for their description. In this paper we will adopt
the approach in which the diagrams are represented by action theories - collections
of statement in so called action languages specifically designed for this purpose. This
approach allows for useful classification of dynamical systems and for the methodology
of design and implementation of deliberative agents based on answer set programming.

Most previous work deals with discrete dynamical systems. A state of such a system
consists of a set dfuents- properties of the domain whose values can only be changed
by actions. An example of a fluent would be the position of an electrical switch. The
position of the switch can be changed only when an external force causes it to change.
Once changed, it stays in that position until it is changed yet again.

In this paper we focus on the design of action languages capable of describing dy-
namical systems which allowontinuous processesproperties of an object whose
values change continuously with time. This paper is an evolution of work presented in
[18]. Major changes to the language resulted in a significantly simpler and less restric-
tive syntax and a more precise semantics based on the notion of transition diagrams

304 Sandeep Chintabathina, Michael Gelfond, and Richard Watson

(following the approach of McCain and Turner [10]). Several other formalisms exist
which also allow modeling of continuous processes [4, 15-17]. An advantage of our
approach is that, by generalizing McCain and Turner’'s semantics, it gains the associ-
ated benefits (such as the ability to easily represent state constraints). Also, in some of
the other formalisms actions have duration, This can lead to problems when such ac-
tions overlap. Our actions are instantaneous. This allows us to avoid the problems with
overlapping action. Following the approach from [13], an actidwith duration can
still be represented using instantaneous actions which det®tart and end. Due to
space considerations a more detailed discussion of the differences between approaches
will be left for a expanded version of the paper.

An example of a continuous process would be the functieight of a freely falling
object. Suppose that a ball, 50 meters above the ground is dropped. The height of the
ball at any time is determined by Newton’s laws of motion. The height varies continu-
ously with time until someone catches the ball. Suppose that the ball was caught after 2
seconds. The corresponding transition diagram is shown in Figure 1.

S0 S1 S2
holding —holding holding
height = drop height = catch height =

fo(50,7)
[0,0]

f1(50,7)
[0,2]

f0(30,7)
[0,5]

wheref, and f1 are defined as:

foY,T)=Y. fi(Y,T) =Y — 147>

Fig. 1. Transitions caused yrop andcatch

Notice that states of this diagram are represented by mapping of values to the symbols
holding and height over corresponding intervals of time. For example in state
holding is mapped to false anbeight is defined by the functiorf; (50, T) where
T ranges over the intervi, 2.

Intuitively, the time interval of a statedenotes the time lapse between occurrences
of actions. The lower bound of the interval denotes start time which is the time
at which an action initiates. The upper bound denotes the end times wfhich is the
time at which an action terminatesWe assume that actions are instantaneous that is
the actual duration is negligible with respect to the duration of the units of time in our
domain. For computability reasons, we assign local time to states, therefore, the start
time of every states is 0 and the end time of is the time elapsed since the startsof
till the occurrence of an action terminatisgFor example, in Figure 1 the actiainop
occurs immediately after the start of state The end time of, is therefore 0. The
actioncatch occurs 2 time units after the start of state Therefore the end time &f
is 2.

The states, in Figure 1 has the interval, 5] associated with it. This interval was
chosen randomly from an arbitrary collection of intervals of the fim] wheren >

Modeling Hybrid Domains Using Process Description Language 305

0. Therefore, any of the interval§, 0] or [0,1] or [0,2] and so on could have been
associated witls. In other words, performingatch leads to an infinite collection of
states which differ from each other in their durations. The common feature among all
these states is thatight is defined byf, (30, 7") andholding is true. We do not allow
the interval[0, o] for any state. We assume that every state is associated with two
symbols - 0 anénd. The constant O denotes the start time of the state and the symbol
end denotes the end time of the state. We will give a formal definitiosvafwhen we
discuss the syntax of the language.

We assume that there is a global clock which is a function that maps every local
time point into global time. Figure 2 shows this mapping. Notice that this mapping

S0 S1 52

holding —holding holding

height = height = height =
fo(50,T) f1(50,T)
[0,0] [0, 2]

Global
time
(secs)

Fig. 2. Mapping between local and global time

allows one to compute theeight of the ball at any global time, € [0, 7]. This is

not necessarily true for the value bblding. According to our mapping global time

0 corresponds to two local times: 0 in statgand O in states;. Since the values of
holding in so ands; aretrue andfalserespectively, the global value @folding at
global time0 is not uniquely defined. Similar behavior can be observed at global time
2. The phenomena is caused by the presence of instantaneous actions in the model.
It indicates tha0 and 2 are the points of transition at which the valuemafiding is
changed frontrue to falseandfalseto true respectively. Therefore, it ifalse at1 and

true during the interva[3,7]. Since the instantaneous actiah®p andcatch do not
have a direct effect oheight, its value at global timé® and?2 is preserved, thereby
resulting in unique values fdreight for everyt € [0, 7).

2 Syntax And Semantics ofH

2.1 Syntax

To define our languagé{, we first need to fix a collectiory), of time points. Ideally

A will be equal to the setkR*, of non-negative real numbers, but we can as well use
integers, rational numbers, etc. We will use the variable T for the elements dfe

will also need a collectiong, of functions defined o\, which we will use to define
continuous processes. Elementgjolill be denoted by lower case greek letterss,

etc.

306 Sandeep Chintabathina, Michael Gelfond, and Richard Watson

A process description languagé(X, G, A), will be parameterized by\, G and a
typed signatureX’. Whenever possible the parametersg, A will be omitted. We
assume that’ contains regular mathematical symbols including, +, <, <, >, #

, %, etc. In addition, it contains two special classe$,and”? = F U C of symbols
calledactionsandprocesses

Elements ofA are elementary actions. A sét;,...,a,} of elementary actions
performed simultaneously is calleccampound action. By actions we mean both ele-
mentary and compound actions. Actions will be denoted’byTwo types of actions
- agent and exogenous are allowed.agent actions are performed by an agent and
exogenous actions are performed by nature. Processes ffoare calledluentswhile
those fromC are referred to asontinuous processeklements ofP, 7 andC will be
denoted by (possibly indexed) letters, k's andc’s respectivelyF contains a special
functional fluentend that maps taA. end will be used to denote the end time of a state.
We assume that for every continuous process, C, F contains two special fluents,
¢(0) andc(end). For example, the fluentseight(0) andheight(end) corresponding to
height. Each procesg € P will be associated with a setinge(p) of objects referred
to as therange of p. E.g.range(height) = R*.

Atomsof H (X, G, A) are divided intaegular atoms c-atomsandf-atoms

— regularatoms are defined as usual from symbols belonging to neithrear P.
E.g. mother(X,Y), sqrt(X)=Y.

— c-atomsare of the forne = a whererange(c) = range(a).
E.g.height = 0, height = fo(Y,T), height = fo(50,T).
Note thata is strictly a function of time. Therefore, any variable occurring in a
c-atomother than T is grounded.
E.g. height = fo(Y,T) is a schema foheight = AT. fy(y,T) wherey is a con-
stant.height = 0 is a schema foheight = AT.0 where\T'.0 denotes the constant
function O.

— f-atomsare of the formk = y wherey € range(k). If kis boolean, i.erange(k) =
{T,L} thenk = T andk = L will be written simply ask and—k respectively.
E.g. holding, height(0)=Y, height(end)=0. Note thatight(0) = Y is a schema
for height(0) = y.

The atomp = v wherev denotes the value of processvill be used to refer to either a
c-atomor anf-atom An atomu or its negation-u are referred to akiterals. Negation
of = will be often written as#. E.g.—holding, height(0) # 20.

Definition 1. An action descriptiorof H is a collection of statements of the form:
lo if 1h,...,1,. (1)

a. causesly if Iy,...,1,. (2)

impossiblea if Iy,...,1,. 3)

wherea, anda are elementary and arbitrary actions respectively inare literals
of H(X,G, A). Thely's are called theheads of the statements (1) and (2). The set

Modeling Hybrid Domains Using Process Description Language 307

{l1,...,1,} of literals is referred to as theody of the statements (1), (2) and, (3).
Please note that literals constructed frbatomsof the formend = y will not be
allowed in the heads of statements of H.

A statement of the form (1) is calledsdate constraintlt guarantees that any state
satisfyingly, . .., 1, also satisfieg,. A dynamic causal law2) says if an actiong.,
were executed in a statg satisfying literalsly, ..., [, then any successor state
would satisfyly. An executability conditior3) states that actiom cannot be executed
in a state satisfying,, ..., l,. If n = 0 thenif is dropped from (1), (2), (3).

Example 1.Let us now construct an action descriptidiD, describing the transition
diagram from fig (1). Letj, contain functions

hY,T)=Y.

AOLT) =Y — g7,

whereY € range(height), g is acceleration due to gravity, afids a variable fotime
points.

The description is given in language H whose signafifecontains actiongdrop and
catch, a continuous procesgight, and fluentsolding, height(0) andheight(end).
holding is a boolean fluent:ange(height) is the set of non-negative real numbers.

drop causes —holding. (4)

impossible drop if —holding. (5)
impossible drop if height(end) = 0. (6)
catch causes holding. (7)

impossible catch if holding. (8)

height = fo(Y,T) if height(0) =Y, holding. 9)
height = f1(Y,T) if height(0) =Y, —holding. (10)

Itis easy to see that statements (4) and (7) are dynamic causal laws while statements (5),
(6) and (8) are executability conditions and statements (9) and (10) are state constraints.

2.2 Semantics

The semantics gbrocess description languag#, is similar to the semantics of action
language B given by McCain and Turner [10,11]. An action descriptidn of H,
describes a transition diagramD(AD), whose nodes represent possible states of the
world and whose arcs are labeled by actions. Whenever possible the parabetiir

be omitted.

308 Sandeep Chintabathina, Michael Gelfond, and Richard Watson

Definition 2. An interpretation |, of H is a mapping that assigns (properly typed)
values to the processes Hf such that for every continuous procesgs](c(end)) =
I(c)(I(end)) andI(c(0)) = I(c)(0).

A mappingl/y below is an example of an interpretation of action language of Example 1.

Io(end) =0,
Iy(holding) =T,
Iy(height(0)) = 50,
Iy(height(end)) = 50,
Iy(height) = fo(50, T)

Definition 3. An atomp = wv is true in interpretation/ (symbolicallyl = p = v) if
I(p) = v. Similarly, I = p # v if I(p) # v.

An interpretation/ is closed under the state constraintsidd if for any state constraint
(1) of AD, I =1, foreveryi, 1 < i < nthenl |= .

Definition 4. A state, s, of TD(AD) is an interpretation closed under the state con-
straints ofAD.

Itis easy to see that interpretatidncorresponds to the statgin fig (1). By definition,
the states of ' D(AD) arecomplete.

Whenever convenient, a state,will be represented by eomplete set{l : s |= I} of
literals. For example, in Figure 1, the statewill be the set

so = {end = 0, holding, height(0) = 50,
height(end) = 50, height = fo(50,T) }

Please note that only atoms are shown hey&lso contains the literalsolding # 1,
height(0) # 10, height(0) # 20 and so on.

Definition 5. Action a is executablén a statesg, if for every non-empty subsat of a,
there is no executability condition

impossiblea’ if 11,...,1,.

of AD such thats = [; for everyi, 1 <i <mn.

Leta. be an elementary action that is executable in a staf& (a.) denotes the set of
all direct effects ofu., i.e. the set of all literalg, for which there is a dynamic causal
law

ae causes lgif ly,..., 1,

in AD such thats |= I; for every i,1 < ¢ < n . If a is a compound action then
Ey(a) = Uaeea Ey(ae).

Modeling Hybrid Domains Using Process Description Language 309

A set L of literals of H is closed under a set, Z, of state constraints of AD if L includes
the head|,, of every state constraint

lo if 1. 0n

of AD such that{l;,...,l,} C L.

The setCnz(L;) of consequences df; under Z is the smallest set of literals that
containsL; and is closed under Z.

A transition diagram TD is a tup{@, ¥) where

1. & is a set of states.

2.V is a set of all triplegs, a, ") such that is executable iz ands’ is a state which
satisfies the condition

s =Cngz(Es(a) U (sns"))U{end =1t} (11)

whereZ is the set of state constraints4D andt’ is theend time of s’ thatiss’ (end) =
t'. The argument t@n in (11) is the union of the sdf; (a) of the “direct effects” ofu
with the sets N s’ of facts that are “preserved by inertia”. The applicatioCoef; adds
the “indirect effects” to this union. Sinc€ is the successor state ofwith end = t/,
the union of the set resulting after application(di, with the set{end = t'} givess’.

In the example from figure 1, the sBt, (drop) of direct effects ofirop will be defined
as
E, (drop) = {=holding}

The instantaneous actiairop occurs at global tim® and has no direct effect on the
value of height at 0. This means that the value ékight at theend of sy will be
preserved at time O of;. Therefore,

so N s1 = {height(0) = 50}
The application ofonz to E;, (drop) U (so N s1) gives the set
Q = {—holding, height(0) = 50, height = f1(50,T)}

where Z contains the state constraints (9) and (10). The set Q will not represent the state
s1 unlessend is defined. In the example; (end) = 2, therefore, we get

s1 = {end = 2, —holding, height(0) = 50,
height(end) = 30, height = f1(50,T) }

Please note that, again, only atoms are shown here.

3 Specifying history

In addition to the action description, the agent’s knowledge base may contain the do-
main’srecorded history observations made by the agent together with a record of its
own actions.

310 Sandeep Chintabathina, Michael Gelfond, and Richard Watson

The recorded history defines a collection of paths in the diagram which, from the
standpoint of the agent, can be interpreted as the system’s possible pasts. If the agent’s
knowledge is complete (e.g., it has complete information about the initial state and the
occurrences of actions, and the system'’s actions are deterministic) then there is only
one such path.

The Recorded historyl’,, of a system up to a current moments a collection of
observationsthat is statements of the form:

obs(v,p,t,1).
hpd(a,t,1).

wherei is an integer from the intervd0, n) and time pointt € A. i is an index of
the trajectory. For examplé, = 5 denotes the step 5 of the trajectory reached after
performing a sequence of 5 actions. The statemé&si, p, t, i) means that procegs
was observed to have valweat timet of stepi. Note thatp is any process other than
end. The statemenipd(a,t, i) means that action was observed to have happened at
timet of stepi. Observations of the formbs(y, p, 0,0) will define the initial values of
processes.

Definition 6. A pair (AD, I') whereAD is an action description of H and is a set of
observations, is calledémain description.

Definition 7. Given an action description AD of H that describes a transition diagram
TD(AD), and recorded history,,,, up to moment n, a path

<507a07 S1y+++,0n—1, sn>

in the TD(AD) is amodel of I, with respect to TD(AD), if for every, 0 < i < n and
te A

1. a; = {a: hpd(a,t,i) € I, };
2. if obs(v,p,t,i) € I, thenp = v € s;.

4 Translation into Logic Program

In this section we will discuss the translation of a domain description written in lan-
guage H into rules of aA-Prolog program.A-Prologis a language of logic programs
under the answer set semantics [5]. For this paper our translation will comply with the
syntax of the SMODELS [12] inference engine.

We know that the statements of H contain continuous functions. Translating these
statements into rules of A-Prolog is straight forward, however, due to issues involved
with grounding, to run the resulting program under SMODELS, the functions should
be discretized. We will now look at how to discretize these functions.

Let f : A — B be a function of H. A discretized sel;,, corresponding t is
obtained as follows. First, a uri is selected. Next4,,, is constructed by selecting all
those elements ofl that are multiples ofi;. Since, in H, the domain of each function
is time, we only consider positive multiples. Therefore,

Modeling Hybrid Domains Using Process Description Language 311

Ap, = {0, h1,2h1, 30, }

After A;, is defined, the discretized sBY; corresponding td3 is then defined as
Bq={f(z)|x € An, }.

Letg : Ay, — Bg. The functiong : A,, — By is called the discretized —
approzimation of f if Vo € A,

| f(z) —g(z) [<e
wheree > 0.

Definition 8. Given an action descriptiod D of H(X,0,G), the discretized action
descriptionAD" with respect tadD is obtained by replacing the occurrence of every
function f € G in the statements ol D by the functiong whereg is the discretized

€ — approximation of f.

From now on, we will deal with discretized action descriptions. We assume that
the agent makes observations at discrete time points and observes only the discretized
values of processes.

Definition 9. Given a domain descriptio = (AD, I,), thediscretized domain de-
scriptionD’ with respect td is the pailAD , I,) whereAD is the discretized action
description with respect td D and I, is the recorded history up to moment

Next we will show how to translate discretized domain descriptions. Note that, from
now on, when we say domain description (or action description) we refer to the dis-
cretized one. First, let us look at the general way of declaring actions and processes.

4.1 Declarations

Let us look at a general way of declaring actions and processes:

action(action_name, action_type).
process(process_name, process_type).

action.nameandaction typeare non-numeric constants denoting the name of an action
and its type respectively. Similarlprocessnameand processtype are non-numeric
constants denoting the name of a process and its type respectively. For instance in ex-
ample 1 the actions and processes are declared as follows:

action(drop, agent).
action(catch, agent).

process(height, continuous).
process(holding, fluent).

312 Sandeep Chintabathina, Michael Gelfond, and Richard Watson

Now let us see how the range of a process is declared. There are a couple of ways of
doing this. The range dfeight from Example 1 is the set of non-negative real numbers.
In logic programming this would lead to an infinite grounding. Therefore, we made a
compromise and chose integers ranging from 0 to 50.

values(0..50).
range(height,Y) : — values(Y).

holding is a boolean fluent. Therefore, we write

range(holding, true).
range(holding, false).

Suppose we have a switch that can be set in three different positions, the range of the
processwitch positionis declared as:

range(switch_position, low).
range(switch_position, medium).
range(switch_position, high).

In order to talk about the values of processes and occurrences of actions we have to
consider theime andstep parameters. Integers from some interjéal:] will be used
to denote thetep of a trajectory. I's will be used as variables faep. Every step has
a duration associated with it. Integers from some intefak| will be used to denote
the time points of everystep. In this casem will be the maximum allowed duration
for any step. T's will be used as variables foime. Therefore, we write

step(0..n).
time(0..m).

Assume that n and m are sufficiently large for our applications. Then we add the rules

#domain step(I;I1).
#Hdomain time(T;T1;T2).

for declaring the variables, 11, T, T'1 and, T2 in the language of SMODELS. The
first domain declaration asserts that the variabblasd/1 should get their domain from
the literalstep(I).

4.2 General translations

We will now discuss a general translation of statements of H into rules of A-prolag. If
is an elementary action occurring in a statement that is being translated, it is translated
as

o(a, T, I)

which is read asdction a occurs at time T of stefd If a is a compound action then
each elementary actian, € a will be translated in the same manner.

Modeling Hybrid Domains Using Process Description Language 313

If [is a literal occurring in any part of a statement, other than the head of a dynamic
causal law, then it will be written as

C%()(Z,T7 I)

whereay (1, T, I) is a function, described below, that denotes a case-specific translation
of literal [. A literal, [, occurring in the head of a dynamic causal law will be written as

Oéo(l, O,I + 1)

In this paper, due to difficulties with generalizing inertia axioms, we limit ourselves to
action descriptions of H in which the heads of dynamic causal laws are #k@msor

their negations. This can be done without loss of generality as all other dynamic causal
laws can be replaced using a dynamic causal law/state constraint pair. From now on we
will only consider such action descriptions.

Definition 10. Let AD be an action description of ht,andm be positive integers, and
XY (AD) be the signature ol D. We will usen andm as the maximum values for steps
and time points respectively. (AD) denotes the signature obtained as follows:

const(X7 (AD)) = (const(X(AD))U{0,...,n}U{0,...,m});
pred(X" (AD)) = {val, —val, o, process, action, range, step, time, values}

Let
ai (AD) = (ao(AD), X7, (AD)), (12)
where
ag(AD) = | ao(r), (13)
reAD

andag(r) is defined as follows:

- Oéo(l() if 117...,ln.) is

aog(lo, T, 1) : — ag(lh, T, 1), ..., ag(ly,T,I). (14)

— ap(a. causesly if 1y,...,1,.)Iis
ao(lo,0,14+1): —o(ae, T,I), ag(ly,T,1), ..., ao(ln,T,I). (15)

— ag(impossiblea if i4,...,1,.)is
c—o(a, T,1), ag(ls,T,1), ..., ao(ln,T,I). (16)
In statement (3), if is the non-empty compound acti¢a, . . ., a,, } theno(a, T, I) in

rule (16) will be replaced by(a,, T, 1), ..., o(am,T,I). The construction off (AD)
in equation (12) is such that the declarations from section (4.1) are addgdA®).

ao(l, T, I) will be replaced by

— val(V,¢,0,1) if [is an atom of the forna(0) = v. Itis read as V is the value of
process c at time 0 of stef |
E.g.height(0) = Y will be translated asal(Y, height, 0,).

314

Sandeep Chintabathina, Michael Gelfond, and Richard Watson

—val(V,¢,0,I) if I is of the form¢(0) # wv. It is read as V is not the value of
process c at time 0 of step |

val(V,p, T, I) if [is an atom of the formp = v other thanc(0) = v. Itis read as
“V is the value of process p at time T of stép |

E.g. height(end) = 0 will be translated asal(0, height, T, I).

—val(V,p, T, I)if L is of the formp # v other than:(0) # v. Itis read as V is not
the value of process p at time T of stép |

ao(1,0,1 + 1) will be replaced by

val(V,p,0,1 + 1) if L is of the formp = .
—val(V,p,0,1 + 1) if L is of the formp # v.

Note that when translating tHeatom end = y we will not follow the above conven-
tions. Instead we translate it asd (7', I) where T denotes thend of stepl. Before we
look at some examples we will discuss domain independent axioms.

4.3

Domain independent axioms

Domain independent axioms define properties that are common to every domain. We

will

denote such a collection of axioms ly,. Given a action descriptioAD of H, let

a™(AD) = al'(AD) U I1,. 17)

11, is the following set of rules:

1.

End of state axioms. These axioms will define ¢hé of every states. The end of
a state is the local time at which an action terminatéd/hen it comes to imple-
mentation we talk about thewd of a step instead of state. Therefore, we write

end(T,I): —o(A,T,1I). (18)

If no action occurs during atep thenend will be the maximum time point allowed
for thatstep. This is accomplished by using the choice rule

{end(m, I)}1. (19)

The consequence of the rule (19) is that the number of end(m,|) that will be true is
either O or 1. Astep cannot have more than oaed. This is expressed by (20).

:—end(T1, 1), end(T2,I), neq(T1,T2). (20)
Every step must end. Therefore, we write

ends(I) : — end(T,I). (21)
: —not ends(I). (22)

Modeling Hybrid Domains Using Process Description Language 315

Everystep, i, is associated with an intervgl, e] where 0 denotes the start time and
e denotes the end time of We will use the relatiout to define the time points,
t ¢ [0, e] andin to define the time points, € [0, e].

out(T,I): —end(T1,I), T >T1. (23)

in(T,I) : — not out(T,I). (24)

By using these relations in our rules we can avoid computing process values at time
points,t ¢ [0, e].

2. Inertia axiom. The inertia axiom states thi@ings normally stay as they arkt has
the following form:

val(Y,P,0,I +1) : —val(Y,P,T,I), end(T,I), not —val(Y,P,0,I+1).
(25)
Intuitively, rule (25) says that actions are instantaneous. In the example from fig-
ure 1, the value okeight at global time0 remains 50 when the actiefrop occurs
atO.
3. Other axioms. A fluent remains constant throughout the durationfpaThis is
expressed by the axiom (26).

val(Y, P, T,I): —val(Y,P,0,I), process(P, fluent), in(T,I). (26)
Axiom (27) says that no process can have more than one value at the same time.

—val(Y1,P,T,I) : —val(Y2,P,T,I), neq(Y1,Y2). 27)

Adding history Given an action descriptiod D of H and recorded history’, up to
momentn, we will construct a logic program that contains translations of the statements
of AD andr,.

I, contains observations of the forhs (v, p, ¢, 7) andhpd(a, t, i) which are trans-
lated as facts of A-Prolog programs. LB, (AD) denote the signature obtained as
follows:

— const(X), r(AD)) = const(X,(AD)),
— pred(X7, p(AD)) = pred(X},(AD)) U {hpd, obs}.
Let
an(AD7Fn) = <HF’E177LL,F(AD)>' (28)
where
" =a"(AD)UII U T,,. (29)
andI] is the set of rules:
1. Reality check axiom that guarantees that the agent’s predictions match with his

observations.
:—obs(Y,P,T,I), —val(Y,P,T,1I). (30)

316 Sandeep Chintabathina, Michael Gelfond, and Richard Watson

2. The following rule says that if actioA was observed to have happened at time T
of step | then it must have occurred at time T of step .

o(A,T,I): — hpd(A,T,I). (32)
3. The following rule is for defining the initial values of processes.
val(Y, P,0,0) : — obs(Y, P,0,0). (32)

Hencea™(AD, I,) is the resulting logic program containing translations for the
statements of AD and;,.

4.4 Correctness

The following definitions will be useful for describing the relationship between answer
sets ofa™(AD, I';,) and models of ,.

Definition 11. Let AD be an action description of H andl be a set of literals over
a™(AD, I,,). We say thatd defines the sequen¢ey, ag, o1, ..., an_1,0p,) If

o, ={l|ap(l,t,i) € A} U{end =1t | end(t,i) € A}
for 0 <7< n,and
a; = {a | o(a,t,i) € A}
for 0 <i<n.

Definition 12. The initial situation ofl;, is complete if and only if for any procesg
of X, I',, containsobs(v, p, 0, 0).

The following theorem establishes the relationship between the theory of actions in H
and logic programming.

Theorem 1. Given a discretized domain descriptiBh= (AD, I,); if the initial sit-
uation of I',, is complete then M is a model of,, with respect taI'D(AD) iff M is
defined by some answer set@f(AD, I,).

The proof is omitted due to space considerations.

5 Conclusions and Future Work

In this paper we presented a new type of action languagertieess description lan-
guage Our languageH, is capable of representing domains containing continuous
processes in a simple and concise manner. In sample runs, computation of small, dis-
crete domains (using the translated action description and SMODELS) is reasonable,
but, in general, efficient processing will require a non-ground solver.

The authors would like to thank ARDA, United Space Alliance, and NASA who's
grants helped fund this research.

Modeling Hybrid Domains Using Process Description Language 317

References

[EnY

10.

11.

12.

13.

14.

15.

16.

17.

18.

[BGO3] M. Balduccini and M. Gelfond. Diagnostic reasoning with A-PrologJdnrnal of
Theory and Practice of Logic Programming (TPL.BJ4-5):425-461, Jul 2003.

. [BGO03a] M. Balduccini and M. Gelfond. Logic Programs with Consistency-Restoring Rules.

In AAAI Spring 2003 Symposiy2003.

. [BGOOQ] C. Baral and M. Gelfond. Reasoning agents in dynamic domains. In Minker, J,. ed.,

Logic-Based AlKluwer Academic publishers,(2000),257-279.

. [BST02] C. Baral, T. Son and L. Tuan. A transition function based characterization of actions

with delayed and continuous effects.Pnoc. of KR'02 pages 291-302.

. [GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming, In

Logic Programming: Proc. of the Fifth International Conference and Sympqsiass, pp.
1070-1080.

. [GL98] M. Gelfond and V. Lifschitz. Action Languages. ltectronic Transactions on Arti-

ficial Intelligence 3(6),1998.

. [GW98] M. Gelfond and R. Watson. On Methodology of Representing Knowledge in Dy-

namic Domains. IrProc. of the 1998 ARO/ONR/NSF/DARPA Monterey Workshop on Engi-
neering Automation for Computer Based Systgips57-66, 1999.

. [Lif97] V. Lifschitz, Two components of an action language Annals of Mathematics and

Artificial Intelligence Vol. 21, 1997, pp. 305-320.

. [Lif99] V. Lifschitz. Action languages, Answer Sets and planningThe Logic Program-

ming Paradigm:a 25 year perspecti@67-373, Springer Verlag,1999.

[MT95] N. McCain and H. Turner. A causal theory of ramifications and qualifications. In
Proc. of IJCAI-95 pages 1978-1984, 1995.

[MT97] N. McCain and H. Turner. Causal theories of action and chanderon of AAAI-

97, pages 460-465, 1997.

[NS97] I. Niemela and P. Simons. Smodels - an implementation of the stable model and well
founded semantics for normal logic programsPhoc. of LPNMR’97 pages 420-429,1997.
[Pin94] J.A. PintoTemporal Reasoning in the Situation CalculB&D Thesis, Department

of Computer Science, University of Toronto, 1994.

[Rei96] R. Reiter. Natural actions, concurrency and continuous time in the situation calculus.
In Principles of Knowledge Representation and Reasoning: Proc. of the Fifth International
Conference (KR'96)pages 2-13, Cambridge, Massachusetts, U.S.A., November 1996.
[Rei01] R. Reiter. Time, concurrency and processeknimwledge in action: Logical Foun-
dations for specifying and implementing dynamical systgrages 149-183, ISBN 0-262-
18218-1, MIT, 2001.

[San89]E. Sandewall. Filter Preferential entailment for the logic of action in almost continu-
ous worlds. InProc. of IJCAI'89 pages 894-899, 1989.

[Sha89]M. Shanahan. Representing continuous change in the Event CalcRiue. lof the
European Conference on Atrtificial Intelligengeges 598-603, 1990.

[WCO03] R. Watson and S. Chintabathina. Modeling hybrid systems in action languages.
In Proc. of the 2nd International ASP’03 workshqgages 356-370, Messina, Sicily, Italy,
September 2003.

