[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

タグ

chatgptと仕事に関するsippo_desのブックマーク (3)

  • 「生成AIを仕事で使い倒す人たち」に取材して回ったら「自分の10年後の失業」が見えてしまった

    ChatGPTの発表から、1年が経過しようとしています。 熱狂は徐々に醒め、現在の利用状況はLINEの調査によると、全体の5%程度。*1 その中でも、仕事で積極的に利用している人は、1%程度ではないかと推測します。 では、この1%の人たちはどのような方々で、どのように生成AI仕事で使っているのか? 9月の中旬から、10月の末にかけて、私は約40名の方に取材を行いました。 そして、私は一つの確信を得ました。 それは、「私は間違いなく10年後、失業する」です。 私は間違いなく10年後、失業する なぜなら、現場での生成AI利用は、仕事によっては 「ホワイトカラーの代替」 をかなり高いレベルでできることがわかったからです。 例えば、コンサルティング。 コンサルティングには、初期の段階で、仮説構築という仕事があります。 平たく言うと、調査・提案にあたって「課題はここにあるのではないか?」というアタ

    「生成AIを仕事で使い倒す人たち」に取材して回ったら「自分の10年後の失業」が見えてしまった
    sippo_des
    sippo_des 2023/11/06
    大変なことだ(;´Д`) 兼業農家に戻るっきゃねえ。 今からジサマに米とイモの作り方教わるしかねえだ。
  • AIはどのような仕事ができるようになったのか?ChatGPTで変わる「優秀な人材」

    この図はざっくりと3つの領域に分かれます。まず左下が従来のプログラミングの領域です。これは簡単に言うと「プログラムは間違ってはいけない定形な仕事を奪う」ということです。次にその上の士業が責任を取る領域です。これは「責任」を取る人がいないと成立しない仕事です。ミスが発生した際に罰則を与えるという形で、ミスの発生を防いでいます。最後に右側のホワイトカラーの仕事の領域です。ホワイトカラーの仕事は入出力が不定形であり、作業フローも非定型であったりします。そのため、多少のミスはあっても仕方ないという前提の上で仕事が行われています。 機械学習がビジネスに組み込まれるにつれ、ホワイトカラーの仕事領域はそれらによって少しずつ代替されつつあります。その図がこちらになります。 ホワイトカラーの担っていた領域は、表データの機械学習(重回帰や、Lasso回帰、SVM、RandomForest、LightGBMなど

    AIはどのような仕事ができるようになったのか?ChatGPTで変わる「優秀な人材」
    sippo_des
    sippo_des 2023/08/17
    字が大きくて読みやすい、、 え、吉本隆明レベルなのー。 どこかのタイミングで本気で勉強したい。仕組みというより使い方
  • さて、専門性と体系化の話をしようか | knowledge / baigie

    「専門性が高い人になりたいですか?」 そう問われたら、多くの人が「はい!」と答えるでしょう。エンジニアやデザイナーのような専門職に限らず、ビジネスパーソンの多くも、「できることなら何らかの専門性を高めたい」と思っているはずです。 しかし、そもそも「専門性が高い」とはどういう状態を指すのでしょうか。どんな人になれば「専門家」だと評価されるようになるのでしょうか。それを突き詰めて考えることが専門性を高めるヒントになると思い、少し深堀してみました。 最後には、まだ実験中ですが、ChatGPTを活用して専門性を高める方法をご紹介します。 専門性と体系化の関係 辞書サイトのWeblioを見ると、専門性とは「特定の分野のみに深く関わっているさま。高度な知識や経験を要求されることや、その度合い」と書かれています。この定義に従うと、専門性には「特定の分野の高度な知識や経験」が必要だということになります。

  • 1