一回でわかりやすく書くのは難しいので、簡潔データ構造 LOUDS の解説(全12回、練習問題付き)というシリーズにまとめました。 (2014/01/26) 古い内容を削除しました。
内容は線形識別モデルの学習について(Perceptron, PA, CW, AROW, NHELDとNLP2010のtutorial + 最新のアップデート. 更新式が整理されています)、オンライン凸最適化のregret解析、sublinearなSVMの学習の話です。最近公開したjubatusの中の学習アルゴリズムの解説でもあります。 コスト関数が凸である場合のOnline Gradient Descentのregret解析の証明は美しかったので、普通はこういうのはプレゼンではやらないとおもうのですが紹介しました。 Sublinearの学習の話は今後いろいろ発展しそうです。各学習例に動的に重みをつけて優先的に学習する方法は直感的にはできそうだと昔考えてたのですが、こういう形できれいに定式化できるのだと感心しました。 IBISはそこそこ参加していますが、毎年新しい分野の問題が登場してきて面白
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く