[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Train ctc

laia.scripts.htr.train_ctc

Attributes

Classes

Functions

run

run(
    syms: str,
    img_dirs: List[str],
    tr_txt_table: str,
    va_txt_table: str,
    common: CommonArgs = CommonArgs(),
    train: TrainArgs = TrainArgs(),
    optimizer: OptimizerArgs = OptimizerArgs(),
    scheduler: SchedulerArgs = SchedulerArgs(),
    data: DataArgs = DataArgs(),
    trainer: TrainerArgs = TrainerArgs(),
    decode: DecodeArgs = DecodeArgs(),
)
Source code in laia/scripts/htr/train_ctc.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def run(
    syms: str,
    img_dirs: List[str],
    tr_txt_table: str,
    va_txt_table: str,
    common: CommonArgs = CommonArgs(),
    train: TrainArgs = TrainArgs(),
    optimizer: OptimizerArgs = OptimizerArgs(),
    scheduler: SchedulerArgs = SchedulerArgs(),
    data: DataArgs = DataArgs(),
    trainer: TrainerArgs = TrainerArgs(),
    decode: DecodeArgs = DecodeArgs(),
):
    pl.seed_everything(common.seed)

    loader = ModelLoader(
        common.train_path, filename=common.model_filename, device="cpu"
    )

    # prepare the symbols
    syms = SymbolsTable(syms)
    for d in train.delimiters:
        assert d in syms, f'The delimiter "{d}" is not available in the symbols file'

    # maybe load a checkpoint
    if train.pretrain:
        # Move the checkpoint in a pretrained directory to avoid it being selected by find_best
        initial_ckpt = os.path.join(common.experiment_dirpath, common.checkpoint)
        target_ckpt = os.path.join(
            common.experiment_dirpath, "pretrained", common.checkpoint
        )
        loader.move_file(source=initial_ckpt, target=target_ckpt)
        checkpoint_path = loader.prepare_checkpoint(
            common.checkpoint, os.path.dirname(target_ckpt), common.monitor
        )

    elif train.resume:
        checkpoint_path = loader.prepare_checkpoint(
            common.checkpoint, common.experiment_dirpath, common.monitor
        )
    else:
        checkpoint_path = None

    # load the non-pytorch_lightning model
    model = loader.load()
    assert (
        model is not None
    ), "Could not find the model. Have you run pylaia-htr-create-model?"

    if train.resume or train.pretrain:
        if train.pretrain:
            checkpoint_path = loader.reset_parameters(
                syms=syms,
                model=model,
                model_path=os.path.join(common.train_path, common.model_filename),
                checkpoint_path=checkpoint_path,
                early_stopping_patience=train.early_stopping_patience,
            )

        trainer.max_epochs += torch.load(checkpoint_path)["epoch"]
        log.info(
            f'Using checkpoint "{checkpoint_path}" in {"pretrain" if train.pretrain else "resume"} mode'
        )
        log.info(f"Max epochs set to {trainer.max_epochs}")

    if train.freeze_layers:
        loader.freeze_layers(model, train.freeze_layers)

    # prepare the engine
    engine_module = HTREngineModule(
        model,
        [syms[d] for d in train.delimiters],
        optimizer=optimizer,
        scheduler=scheduler,
        batch_input_fn=Compose([ItemFeeder("img"), ImageFeeder()]),
        batch_target_fn=ItemFeeder("txt"),
        batch_id_fn=ItemFeeder("id"),  # Used to print image ids on exception
    )

    # prepare the data
    dataset_stats = ImageLabelsStats(
        stage="fit",
        tables=[tr_txt_table, va_txt_table],
        img_dirs=img_dirs,
    )
    data_module = DataModule(
        syms=syms,
        img_dirs=img_dirs,
        tr_txt_table=tr_txt_table,
        va_txt_table=va_txt_table,
        batch_size=data.batch_size,
        min_valid_size=model.get_min_valid_image_size(dataset_stats.max_width)
        if dataset_stats.is_fixed_height
        else None,
        color_mode=data.color_mode,
        shuffle_tr=not bool(trainer.limit_train_batches),
        augment_tr=train.augment_training,
        stage="fit",
        num_workers=data.num_workers,
        reading_order=data.reading_order,
        space_token=decode.input_space,
        space_display=decode.output_space,
    )

    # prepare the training callbacks
    # TODO: save on lowest_va_wer and every k epochs https://github.com/PyTorchLightning/pytorch-lightning/issues/2908
    checkpoint_callback = pl.callbacks.ModelCheckpoint(
        dirpath=common.experiment_dirpath,
        filename="{epoch}-lowest_" + common.monitor,
        monitor=common.monitor,
        verbose=True,
        save_top_k=train.checkpoint_k,
        mode="min",
        save_last=True,
    )
    checkpoint_callback.CHECKPOINT_NAME_LAST = "{epoch}-last"
    early_stopping_callback = pl.callbacks.EarlyStopping(
        monitor=common.monitor,
        patience=train.early_stopping_patience,
        verbose=True,
        mode="min",
        strict=False,  # training_step may return None
    )
    callbacks = [
        ProgressBar(refresh_rate=trainer.progress_bar_refresh_rate),
        checkpoint_callback,
        early_stopping_callback,
        checkpoint_callback,
    ]
    if train.gpu_stats:
        callbacks.append(ProgressBarGPUStats())
    if scheduler.active:
        callbacks.append(LearningRate(logging_interval="epoch"))

    # prepare the logger
    loggers = [EpochCSVLogger(common.experiment_dirpath)]
    if train.log_to_wandb:
        wandb_logger = pl.loggers.WandbLogger(project="PyLaia")
        wandb_logger.watch(model)
        loggers.append(wandb_logger)

    # prepare the trainer
    trainer = pl.Trainer(
        default_root_dir=common.train_path,
        resume_from_checkpoint=checkpoint_path,
        callbacks=callbacks,
        logger=loggers,
        checkpoint_callback=True,
        **vars(trainer),
    )

    # train!
    trainer.fit(engine_module, datamodule=data_module)

    # training is over
    if early_stopping_callback.stopped_epoch:
        log.info(
            "Early stopping triggered after epoch"
            f" {early_stopping_callback.stopped_epoch + 1} (waited for"
            f" {early_stopping_callback.wait_count} epochs). The best score was"
            f" {early_stopping_callback.best_score}"
        )
    log.info(
        f"Model has been trained for {trainer.current_epoch + 1} epochs"
        f" ({trainer.global_step + 1} steps)"
    )
    log.info(
        f"Best {checkpoint_callback.monitor}={checkpoint_callback.best_model_score} "
        f"obtained with model={checkpoint_callback.best_model_path}"
    )

get_args

get_args(
    argv: Optional[List[str]] = None,
) -> Dict[str, Any]
Source code in laia/scripts/htr/train_ctc.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
def get_args(argv: Optional[List[str]] = None) -> Dict[str, Any]:
    parser = jsonargparse.ArgumentParser()
    parser.add_argument(
        "--config", action=jsonargparse.ActionConfigFile, help="Configuration file"
    )
    parser.add_argument(
        "syms",
        type=str,
        help=(
            "Mapping from strings to integers. "
            "The CTC symbol must be mapped to integer 0"
        ),
    )
    parser.add_argument(
        "img_dirs",
        type=List[str],
        default=[],
        help="Directories containing segmented line images",
    )
    parser.add_argument(
        "tr_txt_table",
        type=str,
        help="Character transcription of each training image",
    )
    parser.add_argument(
        "va_txt_table",
        type=str,
        help="Character transcription of each validation image",
    )
    parser.add_class_arguments(CommonArgs, "common")
    parser.add_class_arguments(DataArgs, "data")
    parser.add_class_arguments(TrainArgs, "train")
    parser.add_function_arguments(log.config, "logging")
    parser.add_class_arguments(OptimizerArgs, "optimizer")
    parser.add_class_arguments(SchedulerArgs, "scheduler")
    parser.add_class_arguments(TrainerArgs, "trainer")
    parser.add_class_arguments(DecodeArgs, "decode")

    args = parser.parse_args(argv, with_meta=False).as_dict()

    args["common"] = CommonArgs(**args["common"])
    args["train"] = TrainArgs(**args["train"])
    args["data"] = DataArgs(**args["data"])
    args["optimizer"] = OptimizerArgs(**args["optimizer"])
    args["scheduler"] = SchedulerArgs(**args["scheduler"])
    args["trainer"] = TrainerArgs(**args["trainer"])
    args["decode"] = DecodeArgs(**args["decode"])

    return args

main

main()
Source code in laia/scripts/htr/train_ctc.py
250
251
252
253
def main():
    args = get_args()
    args = common_main(args)
    run(**args)