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Abstract 

The topic of the present thesis is the development and investigation of photoconductive 

semiconductor structures for the opto-electronic generation and detection of terahertz (THz) 

radiation by the use of femtosecond fiber lasers at emission wavelengths of 1550 nm and 

1030 nm. Aside from investigating fundamental physical questions, the main motivation for 

the development of such semiconductor structures is to satisfy the rising demand for compact, 

cost-efficient and rapid THz measurement systems. The goal of this thesis is to expand the 

field of application of THz measurement beyond scientific research towards industrial process 

control by developing optimized devices and systems. 

For the fabrication of the photoconductive semiconductor structures, several approaches are 

tested. These approaches are based on either ternary indium gallium arsenide/indium 

aluminum arsenide (InGaAs/InAlAs) heterostructures or quaternary indium aluminum 

gallium arsenide (InAlGaAs) and realized via molecular beam epitaxy (MBE). The choice of 

the material system originates from the demand for efficient optical absorption at the 

aforementioned wavelengths. 

The first improvement in the performance of the photoconductive semiconductor structures 

discussed in this work is obtained by micro-structuring the THz antennas, a technique which 

was first demonstrated in this work. The micro-structuring leads to significant improvements 

in field homogeneity and electrical contact to the semiconductor. This results in an 

enhancement of the THz measurement signals by more than one order of magnitude and an 

accompanying increase of the spectral bandwidth from 2.5 THz to 4 THz. 

A core conclusion concerning the development of the semiconductors is the necessity of 

differentiation between emitter and detector structures in order to further improve the 

performance of THz measurement systems. This is for the most part due to an inherent 

antagonism between high carrier mobility and short carrier lifetimes due to defect 

incorporation. In the case of THz emitters, the performed investigations show that ultra-short 

carrier lifetimes are not mandatory and that the emphasis has to be put on high carrier 

mobility. Therefore a new approach is investigated, where regions with high defect densities 

are spatially separated from absorption regions that exhibit high carrier mobility. This can be 

achieved in InGaAs/InAlAs heterosturctures by taking advantage of a special characteristic of 

MBE growth of InAlAs at growth temperatures around 400°C. The insight obtained from 

these investigations allows for THz emitter structures with THz powers that are increased by 

two orders of magnitude as compared to un-optimized emitter structures. 
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On the other hand, the evaluation of semiconductor structures for application as THz 

detectors, leads to the finding that short carrier lifetimes and hence high defect densities are 

preferable over carrier mobility. Carrier lifetimes of a few hundred femtoseconds are realized 

by the incorporation of arsenide-related defects via non-stoichiometric low temperature 

growth of InGaAs/InAlAs heterostructures and additional beryllium doping. Furthermore, to 

describe the carrier capture and recombination processes on arsenic defects and beryllium 

acceptors, a detailed rate equation model is derived and validated by pump-power-dependent 

differential transmission measurements. The accordingly obtained detectors in combination 

with the aforementioned emitters allow for THz measurements with a spectral bandwidth of 

up to 6 THz and a dynamic range of 90 dB. 

The investigations so far are all performed for an excitation wavelength of 1550 nm. 

However, Ytterbium doped fiber lasers with a central wavelength of 1030 nm can have 

significantly higher output powers than erbium-doped fiber lasers emitting at 1550 nm. This 

plus in output power becomes interesting for certain THz system designs. Therefore two 

different approaches of semiconductor growth are tested to improve the device performance at 

this excitation wavelength. 

Concerning THz measurement systems, two new approaches are developed and tested in a 

joint effort with external partners: 

The first approach is based on high power ytterbium fiber lasers which allow for the 

simultaneous excitation of several detector channels on a line-detector with a single laser. By 

this a THz system for imaging applications with enhanced measurement speed is realized. 

The second approach is based on electronically controlled optical sampling (ECOPS). Here, 

the repetition rate of two lasers is tuned with respect to each other in a controlled manner, to 

dispose of the need for slow mechanical delay stages for scanning the THz pulse trace. With 

this system approach and the previous developments for THz emitters and detectors, it is 

possible to construct THz measurement systems with measurement speeds of up to 8 kHz. 

In conclusion, within the frame work of this thesis an improvement of the measurement 

signals of fiber coupled THz systems by up to three orders of magnitude is achieved by 

targeted semiconductor development and thorough investigation of the involved carrier 

dynamics. As a consequence thereof the detectable THz bandwidth is increased from 2.5 THz 

to 6 THz. Furthermore, it comprises the first demonstration of a multichannel imaging system 

based on Ytterbium fiber lasers as well as the first realization of an all fiber coupled THz 

measurement system with kilohertz measurement rates while maintaining sufficient THz 

bandwidth and dynamic range.   
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Zusammenfassung 

Das Thema der vorliegenden Dissertation umfasst die Herstellung und Untersuchung von 

photoleitenden Halbleiterstrukturen zur opto-elektronischen Erzeugung und Detektion von 

kohärenter Terahertz (THz) Strahlung unter Verwendung von gepulsten Femtosekunden-

Faserlasern mit Zentralwellenlängen von 1550 nm und 1030 nm. Neben der Untersuchung 

von grundlegenden physikalischen Fragestellungen ergibt sich die Motivation zur 

Entwicklung derartiger Halbleiterstrukturen aus dem steigenden Bedarf nach kompakten, 

kosteneffizienten und schnellen THz-Messsystemen. Ziel der durchgeführten Arbeit ist es, 

durch verbesserte Komponenten und Systeme eine Ausweitung des Anwendungsbereichs der 

THz-Messtechnik, über wissenschaftliche Anwendung hinaus, auf die industrielle 

Prozesskontrolle zu ermöglichen.  

Für die Herstellung der photoleitenden Halbleiterstrukturen werden mehrere Ansätze 

untersucht, welche sämtlich auf einem molekularstrahl-epitaktischen Wachstum von ternären 

Indium-Gallium-Arsenid/Indium-Aluminium-Arsenid (InGaAs/InAlAs) Heterostrukturen 

oder quaternärem Indium-Aluminium-Gallium-Arsenid (InAlGaAs) beruhen. Die Wahl des 

Materialsystems ergibt sich aus der Anforderung einer effizienten Absorption der 

obengenannten Emissionswellenlängen der Faserlaser. 

Eine erste Verbesserung in Bezug auf die Leistungscharakteristik der photoleitenden 

Halbleiterstrukturen wird durch eine Mikrostrukturierung der THz-Antennen erreicht, die im 

Rahmen dieser Arbeit erstmals umgesetzt wird. Durch erhebliche Verbesserungen bezüglich 

Feldhomogenität und Halbleiterkontaktierung kann eine Steigerung der THz-Messsignale um 

mehr als eine Größenordnung erreicht werden, sowie eine damit einhergehende Steigerung 

der spektralen Bandbreite des kohärenten Systems von anfänglich 2,5 THz auf 4 THz. 

Ein zentrales Ergebnis im Bereich der Halbleiterentwicklung ist, dass eine Differenzierung 

zwischen Emittern und Detektoren erforderlich ist, um die Leistungsfähigkeit der THz-

Messsysteme weiter zu steigern. Dies ist hauptsächlich dem inhärenten Antagonismus 

zwischen hoher Ladungsträgermobilität und kurzen Ladungsträgerlebensdauern im Halbleiter 

durch Defekteinbau geschuldet. 

Die durchgeführten Untersuchungen zeigen, dass im Falle von Halbleiterstrukturen für THz 

Emitter auf kurze Ladungsträgerlebensdauern weitestgehend verzichtet werden kann und der 

Schwerpunkt auf eine hohe Ladungsträgermobilität zu legen ist. Hierzu wird ein neuartiger 

Wachstumsansatz untersucht, bei dem defektreiche Regionen von Absorptionsregionen mit 

hoher Ladungsträgermobilität räumlich getrennt werden. Dies lässt sich durch das Wachstum 

von InGaAs/InAlAs Heterostrukturen bei Wachstumstemperaturen um 400°C erreichen, bei 
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dem eine spezielle Wachstumscharakteristik von InAlAs ausgenutzt wird. Die daraus 

gewonnen Erkenntnisse ermöglichen die Realisierung von Emitterstrukturen, welche eine 

Steigerung der abgestrahlten THz-Leitung von bis zu zwei Größenordnungen gegenüber 

nichtoptimierten Emittern aufweisen.  

Die Analyse der Halbleiterstrukturen für Detektoren ergibt hingegen, dass eine ausreichend 

hohe Defektdichte und somit eine sehr kurze Ladungsträgerlebensdauer zu bevorzugen ist. 

Extrem kurze Lebensdauern, von wenigen hundert Femtosekunden, werden hierbei durch den 

Einbau von Arsendefekten durch nicht-stöchiometrisches Tieftemperaturwachstum von 

InGaAs/InAlAs Heterostrukturen bei gleichzeitiger Berylliumdotierung realisiert. Zudem 

wird ein detailliertes Ratengleichungsmodell zu Ladungsträgereinfang und Rekombination an 

Arsendefekten sowie Beryllium Akzeptoren entwickelt und mittels leistungsabhängiger 

differentieller Transmissionsmessungen validiert. Mit Detektoren aus diesen 

Halbleiterschichten lassen sich so, in Kombination mit den zuvor entwickelten Emittern, THz-

Signale mit einer spektralen Bandbreite von bis zu 6 THz bei einem Dynamikbereich von 

90 dB erreichen.  

Die obengenannten Untersuchungen werden alle für eine Anregungswellenlänge von 1550 nm 

durchgeführt. Mit Ytterbium-Faserlasern mit einer Zentralwellenlänge von 1030 nm lassen 

sich jedoch wesentlich höhere optischen Leistungen als mit Erbium-Faserlasern bei 1550 nm 

erreichen, was für einige THz-Systemansätze interessant ist. Daher wurden zwei 

unterschiedliche Wachstumsansätze untersucht, um photoleitende Halbleiterstrukturen für 

diese Anregungswellenlängen zu optimieren. 

Bezüglich der Messsysteme wurden zwei weiterführende Ansätze von 

Zeitbereichsspektrometern mit externen Partnern entwickelt und gemeinsam untersucht:  

Der erste Ansatz beruht auf der Ausnutzung der hohen Leistungen von Ytterbium-Faserlasern, 

durch welche es möglich ist, mit einem Laser mehrere Kanäle auf einem THz-Zeilendetektor 

gleichzeitig zu betreiben. Auf diese Weise wird ein Zeitbereichsspektrometer für bildgebende 

THz-Messungen mit erhöhter Messgeschwindigkeit demonstriert. 

Der zweite untersuchte Ansatz beruht auf dem Verfahren des elektro-optisch kontrollierten 

optischen Abtastens (engl. electronically controlled optical sampling, ECOPS). Hierbei wird 

die Repetitionsrate zweier Laser kontrolliert zueinander verstimmt, um ein zeitliches 

Abrastern der THz-Pulse ohne langsame mechanische Verzögerungsstrecken zu ermöglichen. 

In Kombination mit der vorangegangenen Leitungssteigerung aus der 

Halbleiterentwicklungen wird es mit diesem Verfahren möglich, ein vollständig 

fasergekoppeltes THz-Messsystem zu konstruieren, mit welchem sich Messraten von 
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mehreren Kilohertz bei gleichzeitiger spektraler Bandbreite von 2 THz mit 50 dB 

Dynamikbereich erzielen lassen. 

Zusammenfassend wird im Rahmen der vorliegenden Arbeit durch gezielte 

Halbleiterentwicklungen und eingehende Untersuchung der Ladungsträgerdynamik eine 

Steigerung der THz-Messsignale von fasergekoppelten THz-Systemen von bis zu drei 

Größenordnungen erreicht. Damit einhergehend ergibt sich eine Steigerung der 

THz-Bandbreite von 2,5 THz auf 6 THz. Weiterführend wird erstmalig ein bildgebendes 

Mehrkanal-Messsystem auf Basis von Ytterbium Faserlasern demonstriert als auch ein 

fasergekoppeltes THz-Messsystem mit Kilohertz Messraten und gleichzeitig hinreichender 

THz Bandbreite sowie Dynamikbereich realisiert. 
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Preface 

This thesis is written in a cumulative form, hence the author’s publications in the field of 

photoconductive terahertz (THz) antennas and THz spectroscopy systems are summarized and 

combined to form a descriptive presentation on the research field in general and on the 

insights obtained by this work. Chapter 1 will therefore give a short introduction to the field 

of THz spectroscopy and its applications as well as the state of the art in device and system 

technology. In this section, the emphasis will be put on photoconductive pulsed THz 

generation and detection, which represents the main subject of this work. Additionally, some 

basic properties of semiconductor materials for photoconductive antennas (PCA) and 

non-radiative recombination processes in semiconductors will be reviewed, which are 

necessary for a profound understanding of the later discussed PCA devices. Chapter 2 will 

discuss results obtained from a micro-structuring process for the improvement of PCAs and 

which has been employed for all PCA devices investigated within this work [1]. In chapter 3, 

the growth and characterization of high mobility PCA emitters with increased optical-to-THz 

conversion efficiencies will be discussed [2]–[4]. Chapter 4 addresses the fabrication of short 

lifetime PCA detectors for high THz bandwidth and high dynamic range detection as well as 

the involved semiconductor physics [5], [6]. Furthermore, it will discuss the design of 

measurement systems with increased measurement speeds [7], [8]. Chapter 5 will present 

PCA devices and their optimization for an excitation with ytterbium-doped fiber lasers at a 

center wavelength of 1030 nm, as well as briefly review a multi-channel THz-TDS system 

based on these PCAs [9]–[11]. Finally, chapter 6 will give a conclusion and an outlook on 

possible further developments in the field.  

1. Introduction 

Historically, the field of terahertz science and technology, comprising electro-magnetic waves 

with frequencies in the range of 100 GHz to 10 THz, equal to energies of 0.4 meV to 40 meV, 

emerged shortly after the advent of the first femtosecond lasers in the 1980s as a core-

enabling element for pulsed THz generation. The reason for this late development is the 

circumstance that coherent electromagnetic waves with frequencies in the THz range are 

difficult to generate: Electronic circuits are too slow or at least inefficient for the generation of 

THz frequencies beyond 1 THz, and optical transitions for stimulated emission in 

semiconductors, e.g. inter sub-band transitions in quantum cascade lasers, cannot be used at 

room temperature due to thermal excitation [12]. Therefore, an indirect generation approach 

combining a laser and semiconductor for an optoelectronic conversion process led to the first 

successful demonstration of broadband THz generation and detection. The aforesaid 

demonstration was achieved by employing a femtosecond laser and a photoconductive 
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antenna to generate and detect pulsed THz radiation, today known as THz time-domain 

spectroscopy (THz-TDS), which was first shown by Auston et al. [13] and later repeated by 

Grischkowsky et al. [14]. The convenience of this approach is that the measurement signals 

are generated by step-by-step scanning the THz pulse in the time domain, which allows for 

direct current (DC) or very low frequency current measurements of high frequency signals. 

The first demonstration of a spectroscopic application employing the THz-TDS scheme was 

the analysis of the absorption of water vapor in the THz frequency range [15]. Since then, 

THz spectroscopy has flourished into a versatile and prosperous field thanks to the broad 

variety of physical, chemical and biological phenomena connected with this frequency/energy 

range. These interactions include the excitation of excitonic resonances [16]–[20] and inter-

subband transitions [21], [22] in semiconductors, excitations of vibrational and rotational 

modes in molecules [23]–[26] as well as interactions of bio-molecules with water [27], [28], 

just to name a few. Furthermore, applications for medical diagnostics with THz spectroscopy 

were investigated. Here, the detection of cancer cells [29], [30] or liver cells with cirrhosis 

[31] has been investigated by monitoring the cell’s water content. However, one of the most 

promising fields for widespread industrial applications (due to the high level of technical 

feasibility) is non-destructive testing of coatings, polymer products and electronic devices 

[32]–[34]. 

For the optoelectronic generation and detection of THz radiation a plurality of methods and 

materials have been investigated. The first emitters and detectors used were photoconductive 

antennas (PCAs) based on radiation-damaged silicon-on-sapphire [13], [14]. Shortly 

thereafter the first PCA [35] and THz-TDS system [36] based on low-temperature grown 

(LTG) gallium arsenide (GaAs) were demonstrated. Later on, other conversion processes were 

investigated, such as THz generation in nonlinear crystals [37]–[39] or plasmas [40], [41] as 

well as other schemes such as continuous wave (cw) THz generation in LTG-GaAs PCAs [42]  

and photodiodes [43], [44]. 

However, the combination of Titanium-Sapphire femtosecond lasers and LTG GaAs PCAs 

remained the solution of choice for THz-TDS systems with frequencies up to 10 THz. The 

main drawbacks of systems based on Titanium-Sapphire lasers are their relatively high cost, 

large size and limited stability when subjected to harsh environments. Due to these limitations 

THz-TDS has long remained a technique used only by specialized research groups, generally 

for in-the-lab applications. The invention of stable and cost efficient mode-locked fiber lasers 

based on erbium-doped fibers, emitting at a center wavelength of 1550 nm, thus raised hopes 

for smaller, more reliable and lower priced THz-TDS setups that could potentially lead to 

more widespread application. These hopes were further supported by the availability of 

affordable optical components in this wavelength range made possible by the rise of the 

optical telecommunications market. In confluence, these spurred the investigation of 
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photoconductive materials with band gap energies that are suitable for an excitation at this 

wavelength. 

The central goal of this work is the development and fabrication of photoconductive antennas 

for excitation with mode-locked femtosecond fiber lasers to enable cost-effective, high-

performance THz-TDS systems for out-of-lab applications. To achieve this goal, the potential 

and limitations of molecular beam epitaxial growth of indium gallium arsenide based 

photoconductors are investigated. Therefore, the interplay of material properties and carrier 

dynamics in view of the physics of THz emission and detection are reviewed. 

1.1 Photoconductive generation and detection of pulsed THz radiation 

This section will give a short introduction on the principles of THz-TDS and the fundamental 

physics of photoconductive generation and detection of pulsed THz radiation. 

Photoconductive THz generation is an optoelectronic conversion process of optical light into 

THz radiation. In the case of pulsed THz radiation the optical light source is a femtosecond 

pulse laser. In order to ensure sufficient light absorption, the photon energies of the laser are 

chosen to be equal to or higher than the band gap energy of the semiconductor material of the 

PCA (or vice versa). The principle of THz-TDS is shown in Fig. 1.1 a). Each laser pulse is 

split into two parts, one pulse exciting the emitter PCA and one the detector PCA. The 

detector path contains a variable optical delay, usually a motorized mechanical stage or a 

shaker with a retro reflector mirror, to delay the arrival of the optical pulse to the THz pulse 

by a time τ. The pulse at the emitter triggers the THz pulse emission at time t, whereas the 

pulse in the detector branch gates the conductivity of the detector at a time t+τ. By step-by-

step variation of the delay τ, the amplitude and phase of the electro-magnetic field of the THz 

pulse incident on the detector can be reconstructed by measuring the DC current induced in 

the detector by the incident THz field for each time step τ. The detector current signal trace as 

a function of τ then resembles the incident THz pulse and the THz spectrum can be obtained 

by a Fourier transformation of the detector current trace.  

Photoconductive THz generation process: A PCA emitter usually features two metal 

electrodes deposited on top of the semiconductor material to apply a bias voltage to the 

illuminated part of the semiconductor material [Fig. 1.1 b)]. The incident laser pulse induces a 

fast-rising carrier density in the semiconductor which is accelerated in the applied electrical 

bias field. The resulting current density can be described, to a good approximation, by a 

simple one-dimensional Drude-like model comprising several coupled rate equations as 

worked out by Jepsen et al. [45]. 
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Fig. 1.1 a) Schematic drawing of a typical THz-TDS setup with silicon lenses attached to the 

photoconductive antennas and parabolic mirrors in the THz beam path. b) Top view microscope image 

of a photoconductive antenna design with a strip-line contact metallization and a 25 µm 

photoconductive gap. 

The model will be discussed here for illustrative purposes and the limits of the model’s 

validity, aside from the general limitations of a non-quantum mechanical approach, will be 

pointed out when necessary. In this model the electron current density in the PCA is then 

given by: 

𝑗(𝑡) = −𝑒 ∙ 𝑛𝑒,𝐶𝐵(𝑡) ∙ 𝑣(𝑡), (1.1) 

where 𝑛𝑒,𝐶𝐵(𝑡) is the electron density in the conduction band (CB) of the emitter induced by 

the laser pulse, 𝑣(𝑡) is the velocity of the electron, and 𝑒 is the elementary charge. Since the 

contribution of holes in the valence band (VB) to the emitter current is much smaller, due to 

their generally higher effective mass, it can safely be omitted for simplicity [45]. The carrier 

density 𝑛𝑒,𝐶𝐵(𝑡) can be described by the rate equation: 

𝑑

𝑑𝑡
𝑛𝑒,𝐶𝐵(𝑡) = −

𝑛𝑒,𝐶𝐵(𝑡)

𝜏𝑐
+ 𝐺(𝑡). (1.2) 

Here, G(t) is the generation rate caused by the optical excitation, e.g. a Gaussian pulse, and 𝜏𝑐 

is the carrier capture time into defect states in the photoconductor.  

The carrier acceleration in this model is described by two coupled rate equations. Equation 

(1.3) describes the change of the carrier velocity 𝑣(𝑡),  i.e. the carrier acceleration in the 

electric field. Screening of the externally applied bias field 𝐸𝐵𝑖𝑎𝑠 by free carriers is taken into 

account via a screening polarization 𝑃𝑆𝑐(𝑡). The change of the screening polarization is 

described by equation (1.4), where the second term of the rhs describes the build-up of the 

polarization due to the current density in the photoconductor 𝑗(𝑡), which increases until the 

electrons are captured (trapped) by a defect state in the band gap on the time scale 𝜏𝑐. The 

first term on the rhs describes the decline of the static polarization induced by trapped 
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electrons due to recombination with holes, which is governed by the recombination time 𝜏𝑟. 

The two rate equations then read: 

𝑑

𝑑𝑡
𝑣(𝑡) = −

𝑣(𝑡)

𝜏𝑠
+

𝑒

𝑚∗
(𝐸𝐵𝑖𝑎𝑠 −

𝑃𝑆𝑐(𝑡)
𝜀𝜂⁄ ) (1.3) 

and 

𝑑

𝑑𝑡
𝑃𝑆𝑐(𝑡) = −

𝑃𝑆𝑐(𝑡)

𝜏𝑟
+ 𝑗(𝑡) = −

𝑃𝑆𝑐(𝑡)

𝜏𝑟
+ 𝑒 ∙ 𝑛𝑒,𝐶𝐵(𝑡)𝑣(𝑡). (1.4) 

Here v(t) is the electron velocity, 𝜏𝑠 is the carrier scattering time which comprises (via 

Matthiesen’s rule) all relevant scattering mechanisms such as electron-phonon scattering, 

ionized impurity scattering and electron-electron scattering. The elementary charge, electron 

effective mass, and absolute permittivity are denoted by 𝑒, 𝑚∗ and 𝜀, respectively. The factor 

𝜂 is a geometrical factor that is equal to three in case of a spherical symmetry [46]. 

The emitted THz field in the far-field approximation is then proportional to the time 

derivative of the current [13], [47]: 

𝐸𝑇𝐻𝑧(𝑡) ∝
𝑑

𝑑𝑡
𝑗(𝑡) (1.5) 

As visible from Eq. (1.2), the rise time of the carrier density is governed by the laser pulse 

width, while the decay time is governed by 𝜏𝑐. Regular pulse durations of mode-locked fiber 

laser are on the order of 100 fs while the carrier lifetimes in the fastest PCAs are on the order 

of a few hundred femtoseconds. Therefore, the amplitudes of the high frequency components 

of the emitter current are predominately defined by the laser pulse duration. The carrier 

capture time merely defines the frequency position of the maximum amplitude, as will be 

shown in chapter 3. The amplitude of the current pulse is primarily defined by the scattering 

time in the material 𝜏𝑠. Hence a long scattering time, i.e. a high carrier mobility, is important 

for emitter materials.  

Photoconductive THz detection: On the detection side in general the same set of equations 

(1.2)-(1.4) is valid, if the external bias field 𝐸𝐵𝑖𝑎𝑠 is substituted by the incident THz field 

𝐸𝑇𝐻𝑧(𝑡). For the purposes of analytical solvability and illustrative reasons, it will here be 

assumed that screening in the detector can be neglected. In other words the detector is 

assumed to exhibit a linear response on the incident THz field. The current density in the 

detector antenna can then be described in dependence of the time delay 𝜏 between incident 

THz field 𝐸𝑇𝐻𝑧(𝑡), the optical excitation, which defines the electron density in the 
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detector 𝑛𝑑,𝐶𝐵(𝑡) [equal to Eq. (1.2)], as well as the time dependent carrier mobility 𝜇(𝑡) of 

the detector by a double convolution integral: 

𝑗(𝜏) = 𝑒 ∙ 𝑛𝑑,𝐶𝐵(𝑡) ∗ 𝜇(𝑡) ∗ 𝐸𝑇𝐻𝑧(𝑡). (1.6) 

Here * denotes the convolution operation. In Fourier space Eq. (1.6) transforms to 

𝑗(𝜔) = 𝑒 ∙ 𝐸𝑇𝐻𝑧(𝜔) ∙ 𝑛𝑑,𝐶𝐵(𝜔) ∙ 𝜇(𝜔). (1.7) 

There are several limitations to this simple model of generation and detection that should be 

pointed out. Firstly, the assumption of a constant 𝜏𝑐 is only valid in the limit of low excitation 

densities in the CB were the defect density exceeds the electron density and no saturation of 

defect states occurs. Furthermore, Eq. (1.2) neglects absorption saturation due to Pauli 

blocking at high excitation densities. Both limitations will be revisited in chapter 4. 

For an understanding of the influence of the carrier capture time in the detector material on 

the frequency response of a PCA detector, it is instructive to consider two simplified limiting 

cases:  

An infinitely short carrier lifetime, i.e. a delta function like carrier density in the CB 

𝑛𝑑,𝐶𝐵(𝑡) = 𝛿(𝑡).  

And an infinitely long carrier lifetime, i.e. a theta function like carrier density in the CB 

𝑛𝑑,𝐶𝐵(𝑡) = 𝜃(𝑡). 

For the first case Eq. (1.7) yields  

 𝑗𝑑𝑒𝑙𝑡𝑎(𝜔) = 𝑒 ∙ 𝐸𝑇𝐻𝑧(𝜔) ∙
1

√2𝜋
∙ 𝜇(𝜔), (1.8) 

where for second case Eq. (1.7) yields  

 𝑗𝑡ℎ𝑒𝑡𝑎(𝜔) = 𝑒 ∙ 𝐸𝑇𝐻𝑧(𝜔) ∙ (
−𝑖

√2𝜋𝜔
+ 𝛿(𝜔)) ∙ 𝜇(𝜔). (1.9) 

From Eq. (1.8) and Eq. (1.9) it is obvious that a detector with a long carrier lifetime exhibits a 

stronger frequency roll-off towards higher frequencies (proportional to a factor of 1 𝜔⁄ ) as 

compared to a short carrier lifetime detector. Since the durations of THz pulses are in the 

range of 1-2 ps, carrier lifetimes have to be in the sub-ps range to be considered short in this 

respect. The influence of the carrier lifetime on the detected THz spectrum and other 

implications will also be reviewed in more detail in chapter 4. 
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1.2 Recombination mechanisms in semiconductors 

As illustrated in the previous section, it is beneficial for high bandwidth THz PCAs to employ 

materials that exhibit very short carrier lifetimes. This is especially important for detector 

materials because of the strong impact of the carrier lifetime on frequency roll-off. Therefore, 

this chapter will briefly review the mechanisms that determine the carrier lifetimes in 

semiconductors, i.e. the timespan between the excitation of an electron-hole pair and its 

recombination. There are three important processes that contribute to the recombination of 

electron-hole pairs in semiconductors: Direct radiative recombination, Auger recombination 

and Shockley-Read-Hall recombination. 

Direct radiative recombination is the recombination of an electron-hole pair via the emission 

of a photon. The lifetime for radiative recombination in InGaAs is typically on the order of 

1-10 ns [48] and therefore direct recombination is a negligible mechanism for materials with 

carrier lifetimes in the picosecond or sub-picosecond range.  

Auger recombination is a non-radiative process and results from the electron-electron 

interaction. The general trait of Auger processes is that one electron (hole) transfers its energy 

to another electron (hole) via scattering in order to be able to recombine with a hole 

(electron). The other scattering partner, i.e. the electron (hole), then relaxes back to the 

minimum of the CB (maximum of the VB) via phonon emission. There are several different 

types of Auger processes depending on the origin of the recombining electron and hole. The 

two most important are direct Auger processes, were two free electrons (holes) scatter, and 

trap assisted Auger processes where an trapped electron (hole), i.e. bound to a defect state 

(trap) situated within the band gap, scatters with a free electron (hole) in order to recombine 

either with a trapped hole (electron), bound to another defect state, or with a free hole 

(electron) [49]. Since all of these processes involve the interaction of three particles, the 

Auger recombination rates are all proportional to a product of three carrier densities and, for 

the processes mentioned above, read: 

 𝑅𝐴(𝑡) = 𝐵𝑛ℎ𝑛2 + 𝐵𝑝𝑛ℎ2 + 𝑇𝑛ℎ𝑛𝑛𝑇 + 𝑇𝑝ℎℎ𝑇𝑛 + 𝑇𝑝𝑛ℎ𝑇𝑛2 + 𝑇𝑛𝑝𝑛𝑇ℎ2 (1.10) 

Here n and h are the electron and hole densities in the CB and VB, respectively. The quantities 

nT and hT denote the densities of electrons and holes trapped in defect states. The Auger 

coefficients Bi and Ti comprise the quantum mechanical scattering probabilities from an 

integration over the possible initial and final states. The typical values for Bi are in the range 

of 10
-28

-10
-29

 cm
6
/s [50]. Therefore, the band-band Auger mechanism become relevant only 

for carrier densities in excess of 10
19 

cm
-3

 and hence can be neglected for the excitation levels 

investigated in this work which are on the order of 10
18

 cm
-3

. For Auger recombination with 
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traps much higher coefficients were deduced from calculations, which are on the order of 

10
-25

 cm
6
/s [51]. This results in recombination on time scales of 10 ps for carrier and trap 

densities of 10
18

 cm
-3

. However, the predicted temperature dependence of this process does 

not coincide with findings from temperature dependent measurements of carrier lifetimes into 

deep defect states in semiconductors [52] and will therefore also not be considered in this 

work. 

Shockley-Read-Hall recombination is another non-radiative process where an electron (hole) 

is captured by a defect state within the band gap while energy conservation is satisfied by the 

emission of one or multiple phonons, depending on the energetic position of the defect state 

with respect to the band. The combined capture rate can for electrons and holes can be 

phenomenologically described by [53], [54]: 

𝑅𝑆𝑅𝐻 = 𝑁𝑇,𝑒𝑣𝑡ℎ,𝑒𝜎𝑒(1 − 𝑓𝑇,𝑒)𝑛 + 𝑁𝑇,ℎ𝑣𝑡ℎ,ℎ𝜎𝑝(1 − 𝑓𝑇,ℎ)𝑝, (1.11) 

where NT,e and NT,h are the densities of electron and hole traps, fT,e and fT,h are the fraction of 

occupied traps, vth,e and vth,h is the electron and hole thermal velocity, σe and σh are their 

capture cross sections of the respective traps. For typical defect densities of 𝑁𝑇,𝑖=10
18

 cm
-3

 

and cross sections on the order of 10
-14

 cm
2
 this results in lifetimes of 1 ps and below.  

The important physics of the SRH process are contained in the capture cross sections since 

they incorporate the quantum mechanical probabilities for the phonon emission and are 

generally dependent on the energy of the carriers, the lattice temperature and the charge state 

of the trap. For their calculation two different models of phonon emission have been discussed 

quite controversially [55], [56]. The first is the so called phonon cascade process (PC) the 

second the multi phonon emission (MPE) process. The former describes the carrier energy 

relaxation in terms of a cascade of excited bound defect states, where a captured carrier emits 

a single phonon for each transition from one excited bound state to next lower excited state, 

until reaching the ground state of bound defect states. The latter describes the energy 

relaxation in term of an emission of multiple phonons, where the interaction between lattice 

and electrons is described via an optical deformation potential and calculated in terms of 

perturbation theory [56]–[59]. 

Even though calculations of capture cross sections from PC processes yield the right order of 

magnitude, it has a significant probability only at low temperatures and for shallow defect 

states [52], [55], [60]. The MPE process has been shown to correctly describe certain deep 

levels (DX levels) in GaAs and GaP deep levels and can yield high capture cross sections at 

room temperature [52], [56], [58]. The dominant mechanism of phonon emission during 
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carrier capture into deep level via SRH recombination is therefore assumed to be due to the 

MPE process. This will be discussed further in chapter 5. 

1.3 Low-temperature growth of photoconductive materials 

This subchapter provides an overview on the state-of-the-art of growth of semiconductors 

with short carrier lifetimes. After a short review on the growth of LTG-GaAs, it will lead over 

to the growth of LTG-In0.53Ga0.47As suitable for 1550 nm wavelength excitation. Furthermore, 

it will motivate the main approach followed in this work, namely InGaAs/InAlAs 

heterostructures. 

As explained in the previous chapter, short carrier lifetimes due to SRH recombination can be 

enhanced by a high density of defect states within the band gap. Alongside the need for short 

carrier lifetimes, semiconductor materials suitable for THz PCAs need a high dark resistivity, 

i.e. a low residual carrier concentration. In the case of emitters, this arises from the 

requirement to apply high bias field strength without device failure caused by high dark 

currents. In detectors, a low residual carrier concentration reduces the disturbance of the 

measured THz signal by thermal noise currents, i.e. Johnson-Nyquist noise [61], [62], and 

therefore helps to increase the dynamic range of the measurement. This fact will be discussed 

in more detail in chapter 4.  

In the case of GaAs with a band gap energy of EB=1.42 eV for excitation at an 800 nm 

wavelength, these requirements can be achieved by molecular beam epitaxy (MBE) growth at 

low substrate temperatures of around 200°C and subsequent annealing. The low substrate 

temperatures result in a non-stoichiometric growth, more precisely the incorporation of excess 

arsenic, which leads to the formation of arsenic antisite defects on gallium lattice positions 

(AsGa), also known as the EL2 defect [63], and gallium vacancies defects (VGa) [64]–[66]. 

The defect densities are strongly dependent on the growth temperature and are typically in the 

range of 5x10
18

-6x10
20

 cm
-3 

 [67]–[69]
 
and 3x10

17
-3x10

18
 cm

-3
 [70], [71] for AsGa and VGa 

respectively. The energy levels associated with these defect states in GaAs are situated within 

the band gap and dependent on their charge state, with energy levels of approx. 0.6-0.7 eV 

below the CB minimum for AsGa [72]–[74] and 0.19-0.3 eV above the VB maximum for VGa 

[64]. Since the AsGa defect is a group V element on a group III lattice position, it acts as a 

double donor. This is partially compensated by the energetically lower VGa defect. Hence, a 

part of the AsGa defects has single or double positive ionization (for simplicity both will in the 

following be referred to as AsGa
+
) while the VGa defects are negatively ionized [64], [75], [76]. 

Furthermore, due to their deep-level nature and high density, the Fermi level is pinned to a 

mid-gap position and thermal excitation from defect states into the respective bands is 
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negligible [72]. The ionized AsGa
+
 defects exhibit a larger capture cross section for electrons 

in the CB when compared to neutral AsGa (due to their positive charge), and are therefore the 

main contributor to non-radiative recombination resulting in very short carrier lifetimes in un-

annealed LTG-GaAs [76]. 

However, the high density of arsenic antisite defects enables hopping conductivity, where 

electrons tunnel between the bound defect states. This accounts for the main contribution to 

the conductivity of un-annealed LT-GaAs and leads to relatively low resistivity values in the 

kΩcm range [77]. By subsequent annealing, the excess arsenic is redistributed via diffusion, 

which is promoted by gallium vacancies, resulting in the formation of metallic As precipitates 

[78], [79]. The precipitate formation strongly increases the resistivity to several MΩcm, which 

is attributed to overlapping Schottky barriers surrounding the precipitates [78], [80]. The 

electron capture cross section of the precipitates is dependent on their size and the 

surrounding Schottky barriers. At increasing annealing temperatures the precipitate size is 

increased and their density is decreased, since the amount of excess arsenic is fixed. Hence, 

there is an optimum size for the precipitates concerning the SRH recombination rate [cf. Eq. 

(1.11)] as both capture cross section and trap density, determine the recombination rate. In 

summary, a careful adjustment of growth temperature as well as annealing temperature and 

time enables the growth of LTG-GaAs that exhibits a short carrier capture time in the sub-ps 

range combined with high resistivity [79]. 

The mechanisms described above for LTG-GaAs tempt to suggest a simple transfer of the 

methodology to low temperature MBE growth of In0.53Ga0.47As (EB=0.74 eV) to obtain 

suitable photoconductors for 1550 nm excitation. Similar to LTG-GaAs, the low temperature 

growth of In0.53Ga0.47As results in the incorporation of excess arsenic of up to 2%, although 

single crystalline growth was only attainable for an amount of excess arsenic of approx. 

0.75% [81]. The energy levels for AsGa defects in LTG-In1-xGaxAs are found to mostly 

maintain their energetic position with respect to the VB in LT-GaAs and the energy levels 

move closer to the CB with rising indium content [82], [83]. For In0.53Ga0.47 the defect energy 

levels are therefore very close to the CB with energies of approx. 91meV below the CB, 

which corresponds to an activation energy for the un-compensated semiconductor at room 

temperature of 32 meV [81], [84]. Grandidier et al. measured a band of mid-gap states at 

energies of around 150 meV below the CB edge via tunneling spectra [85]. They associated 

the measured energy levels with a combination of the two ionization states of the AsGa defect 

[86]. One at the above mentioned activation energy of 32 meV and another one at 230 meV 

below the CB. For the sake of simplicity, the following InGaAs will refer to the In0.53Ga0.47As 

composition unless otherwise stated. Due to the proximity of the AsGa related energy levels to 

the CB, LTG-InGaAs shows a high residual carrier concentration at room temperature in the 

range of 1x10
17

 - 1x10
18

 cm
-3

, dependent on the excess arsenic concentration and thus growth 
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temperature [81]. Hence, As-grown LTG-InGaAs exhibits a very low resistivity of 0.01-1 

Ωcm and is thus unsuitable as photoconductive material [87]. In contrast to LTG-GaAs, 

precipitation in LTG-InGaAs only takes place at high annealing temperatures of around 600°C 

[84], [85], [88]. Therefore, arsenic diffusion needs a higher activation energy in InGaAs than 

in GaAs which suggests a lower density of VGa defects. The assumption of a low VGa density 

would also explain the high residual carrier concentration, which should be lowered for a high 

VGa density and its accompanying compensatory behavior, as it is the case in LTG-GaAs. 

Unfortunately, annealing at temperatures around 600°C cannot be performed in-situ in an 

MBE chamber since indium and arsenic desorption from the substrate deteriorates the 

material due to the limited reachable beam-equivalent pressure. Even for ex-situ annealing 

with high gas pressures, e.g. in a metal oxide vapor phase epitaxy chamber, it is challenging to 

sustain the arsenic content and crystallinity of the InGaAs layers at such high temperature. 

Consequently, it is difficult to obtain high resistivity and short carrier lifetimes in LTG-

InGaAs in the same way as it is possible for LTG-GaAs. A possible way to increase the 

resistivity of LTG-InGaAs is p-doping with Beryllium to compensate for the nominal 

n-doping by the AsGa defects. Hereby the resistivity can be increased to several tens of Ωcm 

depending on the Be-doping concentration [89][90]. However, the resulting resistivity is still 

relatively low for application as material for THz PCAs. 

Therefore, several other approaches for fast InGaAs-based photoconductors have been tried. 

Fe-implantation [91], [92], ion irradiation [93], [94] and Fe-doping [95], [96] of InGaAs as 

well as erbium super-lattices embedded in a InGaAs matrix have been investigated [97], [98]. 

Although some of these approaches yielded respectable results, none could match the results 

obtained from LTG-GaAs exited at 800 nm excitation.  

Another possible approach is to employ InGaAs/InAlAs heterostructures. The LTG Be-doped 

versions of these InGaAs/InAlAs heterostructers have been investigated to some extent for 

application as ultrafast photo detectors and have been shown to exhibit short carrier lifetimes 

in the sub picosecond range [99]–[102]. The benefit of the LTG-InGaAs/InAlAs 

heterostuctures compared to Bulk LTG-InGaAs is the fact that the LTG-InAlAs layers also 

exhibit deep trap states that are situated energetically below the AsGa levels of the adjacent 

InGaAs layers [103]. For sufficiently thin InGaAs layers the traps in the adjacent InAlAs help 

to further reduce the residual carrier concentration. In combination with Be-doping, LTG-

InGaAs/InAlAs heterostuctures exhibit resistivity values of several hundreds of Ωcm. The 

first demonstration of THz emission and detection with LTG Be-doped InGaAs/InAlAs 

heterostuctures was shown by Sartorius et al. [89]. This forms the starting point of the present 

work with its goal to deepen the understanding of defect incorporation and the resulting 

carrier dynamics in InGaAs/InAlAs heterostructures in view of building efficient THz PCAs. 
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2. Micro structuring of photoconductive antennas: The mesa 

structure 

This chapter will discuss results on micro-structuring of photoconductive antennas based on 

LTG and Beryllium doped InGaAs/InAlAs heterostructures. This structuring technique was 

employed throughout this entire work, for both emitter and detector antennas, and is thus 

fundamental for further understanding of this work. 

The InGaAs/InAlAs heterostructures investigated in this chapter were grown at low 

temperature, with a substrate temperature of 130°C, and lattice matched on a semi-isolating 

InP:Fe substrate. The heterostuctures consisted of 100 periods of 12 nm thick InGaAs layers 

followed by 8 nm thick InAlAs layers grown on top of a 777 nm buffer layer of InAlAs. As 

pointed out in the last chapter the InAlAs layers help to reduce the residual carrier 

concentration by approx. one order of magnitude. The exact reduction is dependent on the 

InGaAs and InAlAs layer thicknesses. However, due to the quantum well nature of the 

InGaAs layers in between the high band gap InAlAs layers and the accompanying shift of the 

sub-band energies in dependence of the InGaAs layer thickness, there is a lower limit for the 

InGaAs layer thickness to ensure efficient light absorption at 1550 nm. At 12 nm InGaAs 

layer thickness there is only a minor shift of the sub band energy form to bulk InGaAs band 

gap of 0.74 eV to approx. 0.76 eV, while the residual carrier concentration can be reduces by 

approx. one order of magnitude. Therefore the InGaAs layer thickness of 12 nm presents a 

good trade-off value. To further reduce the residual carrier concentration all samples were 

doped with beryllium with a concentration of 7x10
17 

cm
-3

.  

The contact metallization of photoconductive antennas is commonly deposited in a planar 

fashion, i.e. on top of the photoconductive semiconductor material [Fig. 2.1 b)]. This, 

however, has several disadvantages, some of which are general, some of which apply 

primarily to InGaAs/InAlAs heterostructures. One general disadvantage is the inherent 

inhomogeneity of the electrical field of a planar contact as depicted in Fig. 2.1 a), which limits 

the carrier acceleration within the deeper layers of the heterostructure by the external bias 

field or the incident THz field for emitter and detector, respectively. Furthermore, there is a 

vast contribution to the dark current from the non-functional semiconductor material outside 

of the photoconductive gap region [Fig. 2.1 b)]. 

The basic principle of the mesa structuring technique is to remove most of the 

photoconductive material, e.g. the InGaAs/InAlAs layers, from the InP:Fe substrate, leaving it 

only in the actual photoconductive region that is optically excited. This can be done by dry 

etching to remove the photoconductive layers and obtain mesa-like structures as depicted 
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schematically in Fig. 2.1 c) and d) and by scanning electron microscope (SEM) images in Fig. 

2.1 e) and f). The dry etch process employed in this work was chemically assisted ion beam 

etching (CAIBE). In the CAIBE process the dry etching, via the bombardment of the sample 

with argon ions, is further assisted by highly reactive chlorine gas. The chlorine gas binds to 

the dangling bonds in the semiconductor material produced by the ion bombardment and thus 

helps to remove the reactants. By carefully adjusting the chlorine flow, it is possible to equal 

out the etch rates of the InGaAs and InAlAs layers while also increasing the overall etch rates. 

The increase of the overall etch rate allows for relatively thin photo resists which allows for 

an easier resist lift-off and thus smaller realizable structures. The equal etch rates for the two 

different materials, on the other hand, make it possible to obtain steep and smooth mesa side 

walls as can be seen in the SEM images of Fig. 2.1 e) and f). After the etch process the 

contact metallization is deposited on the mesa side walls via sputtering, also visible in Fig. 

2.1 e). The standard metallization used throughout this work was a layer metallization with 

titanium/platinum/gold. The sputtered side contacts significantly improve the homogeneity of 

the electrical fields within the photoconductive region of the antenna compared to planar-

deposited antenna structures. Additionally, since the semi-isolating InP:Fe substrate material 

has a higher resistivity than the InGaAs/InAlAs layers, it is possible to reduce the dark 

currents of the antenna by more than one order of magnitude. A more subtle, but very 

important, additional effect of side contacts, primarily for the case of InGaAs/InAlAs 

heterostructures, is that each InGaAs layer is contacted individually instead of only the top 

layer as it would be the case for planar-deposited contact metallization. Thus, the carriers do 

not need to tunnel through the high band-gap InAlAs barriers while traveling towards the 

metal contacts. This strongly facilitates current flow in the semiconductor material and thus 

improves emitter and detector performance.  

The improvement in the detectable THz signal amplitude in a TDS system employing mesa 

structured antennas as opposed to planar antennas is shown in Fig. 2.2. As the figure 

illustrates, the improvement on the emitter (Tx) side is approx. a factor of two in THz signal 

amplitude. This is primarily owed to the improvement in bias field homogeneity within the 

mesa. On the detector (Rx) side, the detected THz signal amplitudes increase by more than 

one order of magnitude. The big difference in improvement as compared to the emitter is 

understandable when one considers the relatively small electrical field at the detector induced 

by the incident THz field compared to the strong DC bias fields at the emitter. 
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Fig. 2.1 a) and c) show a side view schematic of a planar and a mesa structured InGaAs/InAlAs 

MLHS, respectively. The black arrows indicate the electrical field in between the gold contacts. b) and 

d) top view schematic of a planar and a mesa dipole antenna, respectively. e) SEM image of a mesa 

antenna cleaved across the photoconductive gap as indicated by the grey dotted line in c) and d). f) top 

view SEM picture of a dipole mesa antenna. a)-d) are adopted and modified from Ref [1]. 
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The overall increase in the detected THz pulse amplitude, when employing mesa antennas 

instead of planar antennas, was found to be a factor of approx. 27. This increase in amplitude, 

accompanied by the reduction of the dark conductivity in the detector (cf. chapter 3), yields an 

increase in the measureable THz bandwidth from 3 THz to 4 THz due to an increased 

dynamic range.  

 

Fig. 2.2 Comparison of THz-TDS pulse traces for planar emitter and detector (P-P), mesa emitter and 

planar detector (M-P), planar emitter and mesa detector (P-M) and mesa emitter and detector (M-M). 

The overall increase in pulse amplitude between (P-P) and (M-M) is a factor of 27.5. This figure is 

adapted and modified from Ref [1]. 
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3. High mobility photoconductive THz emitters 

As already indicated in section 1.1, the high frequency components of the emitted THz 

radiation are predominantly defined by the laser pulse width. Therefore, short carrier lifetimes 

in emitter PCAs are not mandatory for broadband THz emission. A limitation is only given by 

the repetition rate of the employed laser system, since the PCA must be allowed to relax back 

to its steady state before the next optical excitation by the next laser pulse. On the other hand, 

for a given optical excitation and bias field, the electric field amplitude of the emitted THz 

radiation is determined by the scattering time (cf. Eq. (1.3) and [104]). In the development of 

semiconductors for the use as emitter PCAs, the emphasis should therefore be put on high 

carrier mobility, i.e. long carrier scattering times. 

This chapter will discuss an approach for PCAs in which the photoconductive region, i.e. 

where the light absorption and carrier transport takes place, is spatially separated from a 

trapping/recombination region (SepaRec) which is transparent for 1.55 µm light and contains 

a high density of defects. In this work, the realization of such a PCA structure is also based on 

InGaAs/InAlAs heterostructures. The main difference to LTG heterostructures is the 

abandonment of AsGa incorporation via low temperature growth in the InGaAs layers. Defects 

for electron and hole capture are generated (almost) exclusively in the InAlAs layers by 

exploiting a growth characteristic of InAlAs at growth temperatures around 400°C. This 

growth characteristic arises from the interplay of surface kinetics and thermodynamics on the 

substrate surface during MBE growth [105]. At temperatures in the range of 300-500°C, this 

interplay results in an increase of alloy clustering with InAs and AlAs-like regions. The alloy 

clustering leads to clusters with sizes of up to several nanometers that result in defect states 

with energies of 0.6-0.7 eV below the CB band edge of InAlAs [105], [106]. The band-gap 

energy of InAlAs at room temperature is Eg=1.47 eV and hence the defects are situated in a 

mid-gap position which prevents thermal excitation and leads to a very high resistivity. 

Bulk InGaAs grown in the temperature range of 300-500°C exhibits moderate residual carrier 

concentrations at room temperature with values obtained from Hall measurements of Nd-Na≤ 

7x10
15

 cm
-3

 and a minimum of Nd-Na≤ 7x10
14

 cm
-3

 at Tg=480°C [81]. The defects associated 

with the residual carrier concentration are AsGa defects as in the case of low temperature 

growth, however with a much lower density. The room-temperature Hall mobility values are 

close to 10
4
 cm

2
/Vs over the complete growth temperature range of 300-500°C. This 

corresponds to a scattering time in Drude-theory of approx. 250 fs. Furthermore, the InGaAs 

layers grown in this temperature range show a much sharper absorption edge as compared to 

LTG InGaAs where the absorption edge is strongly broadened forming an Urbach tail [107]. 
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Similar finding have been made for the absorption edge of LTG GaAs, were the Urbach tail is 

assumed to be due to the increased density of defect states [108]. 

The conduction band offset between InAlAs and InGaAs is ∆Ec=0.44 eV [109], therefore the 

defect states in the InAlAs layers are still significantly below the CB band edge of adjacent 

InGaAs layers. Since the wave functions (WF) of the CB electrons in the InGaAs layers 

penetrate deep enough into the InAlAs barriers, i.e. have a sufficient overlap with the WF of 

bound defect states, the defects in the InAlAs barrier form effective electron traps. The WF 

overlap and the number of available traps can be adjusted to a certain degree by varying the 

barrier thickness. As will be shown later in this chapter, this allows for an additional degree of 

freedom for tuning the PCA. Fig. 3.1 a) shows a schematic of a heterostructure with 100 

periods and Fig. 3.1 b) the band energies and defect levels of the heterostructure. In summary, 

the approach outlined above makes it possible to grow low defect, high mobility InGaAs 

layers adjacent to high defect, semi-insulating InAlAs layers at the same growth temperature.  

 

Fig. 3.1a) Schematic drawing of a typical 100-period MLHS with separated trapping/recombination 

regions, b) band diagram of the heterostructure band energies and the deep trap state positions. This 

figure is adopted and modified from Ref. [2]. 

The first proof-of-principle demonstration of such a device was obtained in this work with a 

400°C grown, 100 period heterostructure, where each period has a layer thicknesses of 12 nm 

for InGaAs and 8 nm for InAlAs [2]. While the residual carrier concentrations for undoped 

MBE-grown InGaAs layers grown at 400°C are low compared to LT-grown undoped InGaAs 

layers, the values would still be far too high for the high bias field conditions (≈10 kV/cm) 

needed for efficient PCA THz emitters. The resulting residual carriers would lead to high dark 

currents and thus the device would break down at high bias voltages. However, the presence 

of the deep defect states in the adjacent InAlAs layers significantly reduces the residual 

carrier concentration by up to three orders of magnitude, resulting in measured carrier 

concentrations of Nd-Na≤10
12

 cm
-3

. The measured Hall mobility values for the heterostructures 
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were in the range of 1500-3000 cm
2
/Vs. The reduction of the mobility compared to bulk 

InGaAs is attributed to scattering at defect states in the InAlAs barriers and additional 

interface scattering at the layer boundaries, which should also be increased by the cluster 

defects considering their nm-scale size [110], [111]. To investigate the impact of the increased 

mobility, the sample was structured with a 25 µm strip-line mesa PCA. The PCA was then 

used as an emitter in a TDS-setup and compared to an LTG Be-doped reference emitter with 

the same antenna structure and subjected to identical bias field and optical excitation 

conditions. The measured THz pulse amplitude was higher than the pulse amplitude of the 

LTG reference by a factor of approximately 6 while having a comparable bandwidth [2]. 

To gain deeper insight into the influence of the growth temperature on the interplay of the 

InGaAs and InAlAs layers and the defect incorporation, two sample series with varying 

growth temperatures were grown. The first sample series (Tg-Series 1) consisted of six 

samples grown at substrate temperatures between 325°C and 450°C with 25°C temperature 

steps. These samples were composed of 30 periods of 12 nm thick InGaAs layers followed by 

8 nm thick InAlAs layers on top of an InAlAs buffer layer. The second sample series of four 

samples (Tg-Series 2) was composed of the same layer structure as the first series, but 

consisted of 100 periods and were grown at substrate temperatures between 350°C and 425°C, 

again in steps of 25°C. To probe the carrier relaxation process, pump-power dependent 

differential transmission (DT) measurements were performed. An example of the obtained DT 

signals for Tg-Series 2 and a LTG Be-doped reference sample are given in Fig. 3.2. The LTG 

Be-doped sample shows a very rapid and mostly mono-exponential decay due to a very high 

density of ionized AsGa
+ 

defect [cf. chapter 4].  

The DT signals of the samples of Tg-Series 2 show a bi-exponential decay, with a short initial 

decay on the order of several fs followed by a long decay on the order of several tens of 

picoseconds. The time constants (τ1), associated with the initial short decay, extracted form bi-

exponential fits to the DT signals do not correlate with the growth temperature or the THz 

performance of the PCAs made from the respective samples. This leads to the conclusion that 

this decay is not due to electron capture into defects in the InAlAs barriers. The origin of this 

short decay is assumed to be multifaceted: A small part of the signal is due to the coherent 

interaction of the pump and the probe beam, i.e. an autocorrelation signal, which could not be 

fully avoided despite the very-thoroughly crossed polarizations of the two beams [112],[113]. 

Another part of the signal is assumed to be due to thermalization of the carrier population, 

firstly via carrier-carrier scattering, and secondly with the lattice via longitudinal optical 

phonon emission and hence the associated absorption recovery in the high energy tail of the 

laser spectrum. Furthermore, at the given growth temperatures there are still some AsGa 

defects in the InGaAs layers. Since the energy level of the cluster defect states in the InAlAs 
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layers are lower than the energy level of the AsGa defects, the remaining AsGa defects should 

be ionized, resulting in fast traps that presumably also contribute to the rapid DT decay.  

 

Fig. 3.2 a) DT signals for Tg-Series 2 and a LTG Be-doped reference sample and b) a zoom of the 

initial short decay in the DT signal. The pump power for all measurements was 16 mW. This figure is 

adopted and modified from Ref. [4]. 
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In contrast to the time constants τ1, the time constants τ2 show a strong dependency on the 

growth temperature, with a minimum value for samples grown at 350°C and 375°C for 

Tg-series 1 and Tg-series 2, respectively [Fig. 3.2]. This result indicates a maximum in defect 

incorporation and/or the capture cross section at around 350-375°C. The two curves in Fig. 

3.3 are slightly shifted along the x-axis with respect to each other. This shift of the growth 

temperature presumably arises from uncertainties in the determination of the growth 

temperature, which is done by linearly extrapolating the temperature of post-growth oxide 

desorption from the InP substrate surface which takes place in the temperature range of 

Tg=500-520°C. Since the two Tg-Series were not grown in direct succession, a possible aging 

of the sample holder might explain the additional offset between the two series. The 

uncertainty of the growth temperature can be assumed to be on the order of ∆Tg=±15°C. The 

vertical shift of the two data sets is assumed to be due to the difference in the number of 

heterostructure periods, i.e. 30 and 100, and hence a difference in the total amount of 

available traps. Additional photoluminescence (PL) measurements on Tg-Series 1 further 

support the assumption of increased defect incorporation in the intermediate growth 

temperature range [3]. The PL intensities show a distinct minimum for the 375°C-grown 

sample and a generally similar behavior as for the time constant τ2 in dependence of growth 

temperature; indicating an increase of non-radiative recombination, i.e. SRH recombination, 

due to defect states in the InAlAs layers.  

 

Fig. 3.3 Decay time τ2 extracted from bi-exponential fits to the DT signals for Tg-Series 1 and Tg-

Series 2 for different pump powers. This figure is adopted and modified from Ref. [4]. 



 

 

 36 

Furthermore, the DT signals show a weak dependence on the pump power with a slight 

decrease of the decay time of the absorption at higher pump powers. This decrease is expected 

to be due to an increased phonon density generated during the thermalization of the electron 

population with the lattice. For the sake of energy conservation, the carrier capture process 

generally involves the emission of several phonons with the number of phonons depending on 

the energy difference between the bound defect state and the electron energy in the CB. In the 

theoretical description of MPE the probability for the process is increased for higher phonon 

populations [55], [56], [114]. However, a decrease in the carrier capture time at higher 

excitation densities is only possible if no trap saturation occurs. Judging from findings for the 

defect densities in InAlAs obtained via deep-level transient spectroscopy (DLTS), which are 

found to be on the order of 10
16

-10
17

 cm
-3

 [106], and the DT decay times of several tens of 

picoseconds, the defect densities in the InAlAs layers are most likely low compared to the 

excitation densities used in the DT measurements. Therefore, the absence of trap saturation 

suggests that the recombination process of electrons in defect states with holes in the VB is 

faster or at least on the same order of magnitude as the capture process of electrons in the CB 

into the defects. 

 

Fig. 3.4 Decay time τ2 from bi-exponential fits to the DT signals for 16 mW and 1 mW pump power 

together with the average penetration depth of the electron WF into the barrier depending on the 

InAlAs barrier thickness. This figure is adopted and modified from Ref [4]. 

To put the above conclusions on the capture process to a test, another growth series with 

varying InAlAs layer thicknesses was grown. The InAlAs layers had thicknesses (db) of 2 nm, 

4 nm, 8 nm and 16 nm at a fixed InGaAs-layer thickness of 12 nm (db-series). All samples 

comprised of 100 periods and were grown at a substrate temperature of 400°C. The time 
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constants τ2 obtained from bi-exponential fits to the DT data show a decrease of time 

constants for increasing layer thickness [Fig. 3.4]. This decrease is due to the increased 

amount of traps with increasing InAlAs volume relative to the fixed InGaAs volume. 

However, the decrease in decay time does not follow a 1/x behavior, as expected from SRH 

theory, but rather shows a slightly weaker decrease. This discrepancy can be understood by 

taking a closer look at the electron WF overlap with the InAlAs barrier. Two examples of 

probability densities for two electron WFs in the first subband calculated by solving 1D 

Schroedinger equations of a 30-period heterostructure with 12 nm InGaAs layers for a) 16 nm 

InAlAs barriers and b) 2 nm InAlAs barriers are shown Fig. 3.5. For the case of the thin 

barriers, the WFs overlap strongly with the barriers. For a further increase of the barrier 

thickness the electrons “see” additional trap states within the barriers which should result in 

an increased capture rate. However, above certain barrier thicknesses the overlap of the 

calculated electron WFs with the barriers does not increase any further, since the penetration 

depth is limited by the CB-offset between InAlAs and InGaAs, i.e. the barrier height. Hence, 

defect states situated deep inside the barriers are not “reachable” for the electrons in the 

InGaAs layers. This can be seen in Fig. 3.5 a), where the WF probabilities calculated for 

16 nm barriers reach a practically zero value in the middle of the barrier. 

  

Fig. 3.5 Example of two electron wave functions of the first sub-band together with CB energies 

calculated for a 30-period heterostructure with 12 nm InGaAs layers for a) 16 nm InAlAs barriers and 

b) 2 nm InAlAs barriers. 
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A simple estimate of the penetration depth, here defined as a depth with probability of 

presence significantly greater than zero (≥10
-6

), was calculated by averaging over 30 electron 

WFs from the first sub-band calculated for 30 period heterostructures with different barrier 

thicknesses and is also shown in Fig. 3.4. In case of InAlAs layer thicknesses above approx. 

7 nm, the trap states in the middle of the barrier have almost no overlap with the electrons, 

and hence should not contribute to the carrier capture process. It should be noted that for a 

precise calculation of the capture cross section, the overlap integral of the electron WFs with 

the localized defect states would have to be solved while taking into account electron-lattice 

interaction via an optical deformation potential to include multi-phonon emission, however 

this was beyond the scope of this work. 

To investigate the influence of the aforementioned material properties on their applicability as 

PCA THz emitters, the heterostructures samples of Tg-series 2 and the db-series where 

processed with mesa strip-line antennas with 100 µm photoconductive gaps. The PCA 

emitters were then tested in a THz-TDS setup, as illustrated in Fig. 1.1(a), and compared to a 

short carrier lifetime, LTG-Be-doped reference PCA. The detector employed for these 

measurements was a LTG Be-doped 10 µm gap mesa dipole PCA fabricated from the same 

sample as the reference emitter. The emitters were biased with 10 kV/cm and illuminated with 

an average optical power of 16 mW. The Fourier THz-TDS spectra obtained from four 

different samples, instructive of the general behavior of the obtained results, are given in Fig. 

3.6. The emitters of Tg-series 2 and the db-series generally show a THz emission with a central 

frequency that is slightly shifted to lower frequencies as compared to the LTG Be-doped 

reference emitter, which is due to the comparatively long capture time [104]. The frequency 

roll-off in the high frequency range of the normalized spectra is very similar to the LTG 

reference PCA, because it is governed by the laser pulse duration as predicted in chapter 1.1 

and experiments with semi-insulating GaAs conducted by Liu et al. [115]. However, the 

amplitudes of the signals significantly differ by up to a factor of ten for the sample with the 

slowest decay time, which shows the strongest THz emission in contrast to the findings of 

[115].  

To determine the emitted THz power, several PCA antennas of each sample of Tg-series 2 and 

the db-series were tested with a Golay cell power detector [116]. The applied bias field was 

again 10 kV/cm and the samples were illuminated with 16 mW of optical power. The results 

of the measurements for PCAs from samples of Tg-series 2 in dependence on the measured 

time constant τ2 are shown in Fig. 3.7 a). Again, the emitted THz radiation increases with 

increasing decay time. A similar behavior was found for antennas made from samples of the 

db-series [4]. The decay times of all samples, i.e. the time constants of the carrier capture 

process, are much longer than the time during which the THz emission takes place, which is 

on the order of 1-2 ps. Therefore, the correlation between a longer decay time and an 
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increased THz emission cannot be due to the carrier capture process itself. However, since the 

decay time can be considered to be an adequate measure of the defect density, this correlation 

is assumed to be due to impurity scattering of electrons at defects in the InAlAs layers. Since, 

unlike the capture process, impurity scattering does not require the emission of multiple 

phonons, it has a significantly higher probability. The emitted THz power of the sample with 

the highest THz emission, i.e. HHI33141, was compared to the LTG reference sample in 

dependence on the optical excitation. The results are depicted in Fig. 3.7 b). 

  

Fig. 3.6 THz-TDS pulse traces and corresponding FFT spectra for three emitters of Tg-series and db-

series as well as the LTG reference emitter with 100 µm strip-line antenna geometry. The bias field 

was 10 kV/cm and optical power was 16 mW. This figure is adopted and modified from Ref. [4]. 



 

 

 40 

As already indicated by the tenfold increase in THz field amplitude in the THz-TDS 

measurements, the sample HHI33141 shows an emitted THz power which is one hundred 

times stronger than that of the LTG reference sample. With an applied bias field of 15 kV/cm 

and 32 mW of optical power, the measured THz power was found to be approx. 64 µW, 

corresponding to an optical-to-THz conversion efficiency of 2x10
-3

. 

 

 

Fig. 3.7 a) THz power for samples of Tg-series 2 and the LTG reference plotted over the time constant 

τ2 obtained from DT measurements and b) emitted THz power in dependence of the optical excitation 

power for sample HHI33141 and the LTG reference. This figure was adopted and modified from 

Ref.  [4]. 
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4. Short carrier lifetime photoconductive THz detectors 

This chapter will discuss the optimization of LTG Be-doped InGaAs/InAlAs heterostructures 

for THz detectors with high detection bandwidth and high dynamic range. Firstly, the carrier 

relaxation is described in the form of rate equations and compared to the experimental data 

from pump power dependent optical pump-probe measurements, i.e. differential transmission 

(DT), on differently Be-doped samples in a quantitative way. Secondly, the THz detection 

performance is tested in terms of bandwidth, dynamic range and detector noise. The THz 

measurements are performed for the same optical excitation densities as in the DT 

measurements to obtain a quantitative comparison. Thereafter it is shown that, in the case of 

LTG Be-doped InGaAs/InAlAs heterostructures, the simultaneous demands of high 

bandwidth and high dynamic range are partially contradictory. However, it is shown that by 

achieving the proper balance between those two factors, an acceptable trade-off can be found. 

As shown in chapter 1.1, the carrier lifetime in the detector has a great influence on the 

frequency roll-off of the detected signal. Furthermore, the assumption of a mono-

exponentially declining carrier density as in Eq. (1.2), i.e. a constant electron capture time 𝜏𝑐, 

does not take into consideration that for higher CB excitation densities the number of 

available trap states can be insufficient leading to a saturation of trap states [cf. Eq. (1.11)]. 

Since the recombination lifetime of trapped electrons with holes can be much longer than the 

capture time, trap saturation significantly prolongs the electron lifetime in the CB. Therefore, 

a fundamental prerequisite for the optimization of THz detectors is a detailed knowledge of 

the underlying carrier relaxation processes and their influence on the THz detection 

performance. 

The central point of the investigation in this chapter is the influence of the beryllium doping 

concentration on the properties of LTG InGaAs/InAlAs heterostructures. As described in 

Chap. 1.3, the energy levels of AsGa defects are approximately 91-150 meV below the CB 

minimum, which leads to a vast amount of thermally excited electrons in the CB at room 

temperature due to thermal excitation. To lower the Fermi level, and therefore obtain a higher 

resistivity, it is mandatory to counter-dope the heterostructures with an acceptor dopant. The 

samples were therefore doped with beryllium, which is a group II element and thus acts as an 

acceptor in the III-V semiconductors. Grandidier et al. [85] found a competition between Be 

and AsGa since both are incorporated at group III lattice positions. The density of AsGa defects 

in undoped LTG-InGaAs grown at substrate temperatures of 220°C was found to be approx. 

3x10
19 

cm
-3

 [85]. In this work all LTG-InGaAs/InAlAs heterostructure samples were grown at 

a substrate temperature of 130°C, which was found to result in even higher AsGa defect 

densities. Furthermore, all samples were found to remain n-type, even for doping 
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concentrations as high as 1.2x10
19 

cm
-3

. This leads to the conclusion that Be-doping of 

LTG-InGaAs/InAlAs heterostructures results in the (partial) ionization of AsGa defects and a 

pinning of the Fermi level to a mid-gap position. More precisely, in the following it will be 

assumed that the density of Be-dopants equals the density of AsGa
+
 defects. 

Since fast electron capture in InGaAs occurs predominately into ionized AsGa
+
 defects, due to 

their larger capture cross-section as compared to neutral AsGa, the Be-doping furthermore 

results in a decrease of the carrier lifetime. To investigate the electron capture mechanisms 

into the AsGa
+ 

defects and their subsequent recombination with holes, DT measurements in 

dependence on the optical excitation power were performed. The investigated sample series 

comprised four samples with different Be-doping concentrations and hence different densities 

of fast AsGa
+
 defects. All four samples consisted of 100 periods of 12 nm InGaAs followed by 

8 nm of InAlAs on top of a 777 nm InAlAs buffer layer. The samples were all grown lattice 

matched to a semi-insulating InP:Fe substrate at a substrate temperature of 130°C in an 

elementary source MBE. The Be-doping concentrations of the four samples were chosen to be 

3x10
17

 cm
-3

, 9x10
17

 cm
-3

, 2x10
18

 cm
-3

 and 4x10
18

 cm
-3

. Furthermore, all samples were in-situ 

annealed at 500°C for 60 min. After growth, the samples were micro-structured with mesa-

type dipole antennas comprising a 10 µm by 10 µm footprint, equal to the structure depicted 

in Fig. 2.1 e), to ensure a precisely defined excitation area for DT measurements and to obtain 

performant PCAs for THz-TDS measurements. The excitation source for all DT 

measurements was an Er-doped fiber laser with a repetition rate of 100 MHz. The optical spot 

size was chosen to be 12 µm, thus fully illuminating the mesa-structures. 

To describe the measurements, with the time-dependent carrier density in the CB 𝑛(𝑡) and the 

saturation carrier density in the CB 𝑁0, the DT signal is given by: 

∆𝑇

𝑇0
=

𝑇(𝑡) − 𝑇0

𝑇0
= 𝑒𝑥𝑝 (𝛼𝐿

𝑛(𝑡)

𝑁0
) − 1 (4.1) 

Where 𝑇(𝑡) is the time-dependent transmission and 𝑇0 = exp (−𝛼𝐿) is the static linear 

transmission with absorption coefficient 𝛼 and sample thickness 𝐿. The time-dependent 

carrier density 𝑛(𝑡) is modelled by a set of four coupled-rate equations:  

dn

𝑑𝑡
= 𝐺(𝑡, 𝑛) −

𝑛

𝜏𝑒
(1 −

𝑛𝑇

𝑁𝐴𝑠
+ ) (4.2) 

dn𝑇

𝑑𝑡
=

𝑛

𝜏𝑒
(1 −

𝑛𝑇

𝑁𝐴𝑠
+ ) − 𝐵𝑅(𝑁𝐴𝑠−𝑁𝐴𝑠

+ + 𝑛𝑇)𝑛𝐵𝑒 (4.3) 

dn𝐵𝑒

𝑑𝑡
=

ℎ

𝜏ℎ
(1 −

𝑛𝐵𝑒

𝑁𝐴𝑠
+ ) − 𝐵𝑅(𝑁𝐴𝑠−𝑁𝐴𝑠

+ + 𝑛𝑇)𝑛𝐵𝑒 (4.4) 
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dh

𝑑𝑡
= 𝐺(𝑡, 𝑛) −

ℎ

𝜏𝑒
(1 −

𝑛𝐵𝑒

𝑁𝐴𝑠
+ ) (4.5) 

Here Eq. (4.2) and Eq. (4.3) describe the population of electrons in the CB and AsGa defects, 

respectively. Eq. (4.4) describes the hole population in Be acceptors and Eq. (4.5) the hole 

population in the VB. The density of AsGa
 
and AsGa

+
 defects are given by 𝑁𝐴𝑠 and 𝑁𝐴𝑠

+ , 

respectively. Since it is assumed that each Be acceptor ionizes one AsGa defect, the density of 

positively ionized Be acceptors in Eq. (4.4) and Eq. (4.5) were set equal to the density of 

AsGa
+
 defects 𝑁𝐴𝑠

+ .  

The significant finding of this model is that holes are captured by ionized Be acceptors and 

recombination occurs between localized electrons and holes in their respective trap states. The 

validity of this assumption as well as that of the whole model is elaborated in great detail in 

Ref. [5] and will here be discussed merely in a qualitative way. The recombination rate of 

electrons with holes in this model is proportional to the density of unionized AsGa 

(𝑁𝐴𝑠−𝑁𝐴𝑠
+ + 𝑛𝑇), the density of occupied (unionized) Be acceptors (𝑛𝐵𝑒 ) and a factor 

comprising the wave function (WF) overlap of the two bound trap states (𝐵𝑅). The 

recombination process thus involves two localized states and has a reduced probability as 

compared to the capture process of free electrons with a bound defect state. This is in 

accordance with the measurement results, where the recombination lifetime is found on the 

order of several tens to hundreds of picoseconds as will be shown later. 

The terms (1 − 𝑛𝑇/𝑁𝐴𝑠
+ ) and (1 − 𝑛𝐵𝑒/𝑁𝐴𝑠

+ ) describe electron trap (AsGa
+
) and hole trap (Be) 

filling, respectively. The electron capture time 𝜏𝑒 can be written according to Eq. (1.11) as: 

  𝜏𝑒 = (𝑁𝐴𝑠
+ 𝑣𝑡ℎ𝜎𝑒

𝐴𝑠+
)−1 (4.6) 

With the electron thermal velocity 𝑣𝑡ℎ (≈ 5.5×10
7
 cm/s for T=300 K) and the electron capture 

cross section for ionized AsGa
+
 defects 𝜎𝑒

𝐴𝑠+
. An equal expression can be formulated for the 

hole capture time 𝜏ℎ. 

For low pump powers of approx. 0.2 mW, corresponding to a pulse energy of 2 pJ, the excited 

carrier density in the CB (𝑛 ≤ 1017𝑐𝑚−3) is well below the amount of available AsGa
+
 defects 

at all doping levels. Hence trap saturation can be neglected, i.e. (1 − 𝑛𝑇/𝑁𝐴𝑠
+ ≈ 1), and 

Eq. (4.2) decouples from the other three equations. The solution of 𝑛(t) is then given by a 

function which is mono-exponentially decreasing with  𝜏𝑒 after the excitation. Furthermore 

Eq. (4.1) can be expanded for small exponents since 𝑛(𝑡) ≪ 𝑁0, which yields: 
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∆𝑇 ≅ 𝛼𝐿
𝑛(𝑡)

𝑁0
∝ 𝑒𝑥𝑝(−𝑡/ 𝜏𝑒) (4.7) 

This relation can be seen clearly in the DT signal and the respective decay times extracted 

from mono-exponential fits in Fig. 4.1 a) and its inset. The capture cross-section of AsGa
+ 

can 

then be calculated from the decay times at different Be-doping concentrations according to 

Eq. (4.6) which gives a value of σe
As+ 

≈ 2×10
-14

 cm
2
. This is comparable to the values obtained 

for AsGa
+
 defects in GaAs [76] and is reasonable within the theory of MPE processes of 

electron capture on charged defects. 

At increased pump powers, the samples with lower Be-doping concentrations are successively 

driven into CB electron density regimes, where trap filling in the relaxation process is no 

longer negligible. These regimes are especially interesting since the excitation densities are on 

the same order of magnitude as the usual excitation levels used for PCAs in THz-TDS 

systems. There are two distinct types of trap filling: 

The first type is partial trap filling, meaning that a significant number of traps are 

filled  during the decay, but the initial CB density does not exceed the number of available 

traps, i.e. 0 < 𝑛𝑇/𝑁𝐴𝑠
+ < 1. In this case the decay time is prolonged by a factor of 

(1 -nT(t)/NAs
+ ). Since time constants for electron-hole recombination are on the order of 

several tens of picoseconds even for high doping concentrations, the second term in Eq. (4.3) 

can be ignored and Eq. (4.3) decouples from Eq. (4.4). The relaxation of the electron density 

in the CB can then be solved analytically, which yields: 

𝑛(𝑡) ≈ 𝑛𝑒𝑥𝑒𝑥𝑝 (− (
𝑛𝑒𝑥

𝑁𝐴𝑠
+ )

𝑡

𝜏𝑒
). (4.8) 

The second type of trap filling is the regime of complete trap saturation which occurs when 

the initial electron density in the CB exceeds the AsGa
+
 density. In this case the trap states are 

rapidly filled and the decay of the CB density is governed by the electron-hole recombination 

time. As shown in Ref. [5] the time dependence of the electron density in the CB is the given 

by: 

 𝑛𝑠𝑎𝑡(𝑡) = 𝑛0
𝑠𝑎𝑡 − 𝐵𝑅𝑁𝐴𝑠

+ 𝑁𝐴𝑠𝑡, 4.9 

where 𝑛0
𝑠𝑎𝑡  denotes the remaining electron density in the CB when complete trap saturation 

occurs. 

Both trap filling regimes can nicely be observed in the logarithmic plots of DT signals in Fig. 

4.1(b) for 2 mW (≡20 pJ) and in Fig. 4.1(c) for 16 mW (≡160 pJ) excitation. In Fig. 4.1(b) the 

sample with 3x10
17

 cm
-3

 Be-doping shows complete trap saturation after an initial short 
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decay, whereas the sample with 9x10
17

 cm
-3

 doping only shows partial trap filling and hence a 

slightly prolonged decay time. For 16 mW this sample is also driven into saturation and the 

onset of partial trap filling is visible for the 2x10
18

 cm
-3

 doped sample.  

 

Fig. 4.1 a) DT signal at 0.2 mW pump power for different Be-doping levels and the time constants 

extracted from mono-exponential fits (inset). Logarithmic plots of the DT signal for different Be-

doping levels at b) 2 mW pump power and c) 16 mW pump power. 
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The interesting question, in view of the applicability of these heterostuctures as THz PCA 

detectors, is how the carrier lifetime and the saturation behavior influences their THz 

performance as THz detectors. Aside from validating the model predictions of chapter 1.1, 

concerning the detector bandwidth and signal amplitudes, another performance-determining 

factor which has to be reviewed is the noise current in the detector. Noise potentially limits 

the detectable bandwidth and dynamic range of the detector assuming the emitter noise is not 

dominating. 

Therefore, all mesa dipole PCAs were tested as THz detectors under the exact same optical 

excitation conditions as in the DT measurements to obtain the highest possible comparability. 

The emitter for the experiments was a 25 µm strip-line mesa antenna made from the 

4x10
18

 cm
-3

 doped heterostructure operated with a 50 V bias and 25mW of optical excitation 

power. The measurements were performed with a high speed THz-TDS system with a 

mechanical shaker to introduce the time delay between the optical pulse at the emitter and the 

detector. The position of mechanical delay is detected with a precision of 1.3 fs by an optical 

sensor. The delay position signal is recorded together with the detector signal by a 50 kS/s 

field-programmable gate array (FPGA) with a 24 bit analog/digital converter. Additionally, 

the system features measurement rates of up to 25 pulse traces per second. The high 

measurement rate significantly reduces time position errors arising from expansion and 

contraction of the optical elements in the setup due to thermal fluctuations over the course of 

one single trace measurement. All-together, this allows to minimize errors in the amplitude 

measurement due to an error of the corresponding time position [7]. To achieve a higher 

dynamic range the average of several single traces is taken. This is in contrast to the lock-in 

detection scheme, usually used in THz-TDS, where the signal at each time-step is recorded 

with several tens or hundreds of milliseconds integration time and where thermal drift can 

cause strong fluctuations over the course of the measurement. Of course, in order to use this 

fast measurement scheme the THz signals are required to be high enough to render lock-in 

detection expendable. However, if this requirement is fulfilled the measurement scheme 

allows for measurements where the dynamic range is not limited by measurement errors of 

the system but the THz PCAs themselves [7]. 

As illustrated before, the Be-doping concentration strongly influences the carrier capture and 

recombination processes in the heterostructures. Unfortunately, an increased Be-doping 

concentration also decreases carrier mobility. As can be seen in Fig. 4.2, the measured Hall 

mobility is decreased in dependence of Be-doping concentration. This decrease qualitatively 

follows the decrease of the unsaturated decay time and hence the density of ionized defects 

[cf. inset in Fig. 4.1(a)]. The reduction in mobility is thus attributed to an increase of 

scattering on ionized AsGa defects and ionized Be-dopants. The THz amplitudes detected for 

an excitation power of 0.25 mW at the detector, i.e. without trap saturation, are also shown in 

Fig. 4.2. The detector signal amplitude is decreased proportionally to the decrease in mobility 
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in accordance with the considerations of chapter 1.1. This behavior is generally followed by 

all samples at higher excitation powers except for the 0.3x10
18

 cm
-3

 doped detector, which 

first shows an onset of saturation at 4 mW and then a decrease of the signal amplitude at 

optical powers in excess of 8 mW [6]. This saturation behavior is assumed to be due to the 

influence of the free carrier screening polarization. 

 

Fig. 4.2 Measured hall mobility and THz-TDS detector current at an optical excitation of 0.25 mW in 

dependence on the Be-doping concentration for all four samples. This figure was adopted and 

modified from Ref. [6]. 

This can also be seen in the Fourier spectra obtained from the THz-TDS measurements. The 

spectra for 0.25 mW, 2 mW and 16 mW excitation power of all detector samples are shown in 

Fig. 4.3. The spectra are obtained from the Fourier transformation of an average over 1000 

pulse traces each with a measurement time of 60 ms, i.e. a total measurement time of 60 s. 

The frequency roll-off of the spectra obtained at a 0.25 mW excitation generally shows a 

steeper frequency roll-off for samples with a longer unsaturated carrier life time, i.e. lower 

Be-doping concentration, which is in accordance with the considerations concerning detector 

lifetime of chapter 1.1. At higher excitation powers, the increased roll-off becomes more 

prominent for the two samples with low doping concentrations as they are driven into the 

regime of trap saturation and thus exhibit a drastically increased electron lifetime. The 

aforementioned saturation of the signal amplitude in the time domain for higher optical 

excitation of the 0.3x10
18

 cm
-3

 doped sample, transfers in the frequency domain to saturation 

of the spectral amplitudes above 1 THz. The highly doped samples, on the other hand, do not 

show a change in frequency roll-off behavior, in accordance with their constantly short carrier 

lifetime for all excitation powers obtained from the DT measurements. 
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Fig. 4.3 Fourier spectra obtained from THz-TDS measurements at excitation powers at the detector 

PCAs of 0.25 mW, 2 mW and 16 mW for the four different doping concentrations. The system noise 

measured with an open detection circuit is shown as a dashed line. This figure is adopted and modified 

from Ref. [6]. 

Another important feature, which is visible in the case of the two samples with lower Be-

doping, is the increased noise floor for higher excitation powers, i.e. the signals for 

frequencies above 6.5 THz. The noise floors of the highly doped samples, on the other hand, 

remain constant at increased excitation powers, appearing to be dominated by other noise 

contributions. Therefore the noise of the detection electronics was measured with an open 

circuit, i.e. without a connected detector, and is shown as a dashed line in Fig. 4.3. As can be 

seen Fig. 4.3, the noise level of the detection system has the same magnitude as the noise 
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floor of the two highly doped samples. Hence, in for these two samples the determination of 

their noise floor is not possible. 

For low emitter noise, which is the case for all emitters investigated in this work, the detector 

noise determines the dynamic range and thus also the detectable bandwidth. Furthermore, the 

information that can be extracted from spectroscopic data has been shown to be mainly 

limited by the noise of the measurement [117], [118]. It is therefore important to investigate 

potential noise contributions and their effect on the operation conditions of PCA detectors. 

There are three types of noise that can have a potential contribution: thermal Nyquist noise, 

shot noise (SH) and generation-recombination (GR) noise. In previous investigations Nyquist 

noise was found to give the dominant contribution to the detector noise current [119], [120]. 

GR and SH noise on the other hand were found to be negligible because both noise 

contributions scale with the square root of the detector current that is induced by the THz 

field. Since detector currents are usually in the lower nA range, the noise GR and SH noise 

contributions are small. The Nyquist noise however is only dependent on the resistivity of the 

material and its temperature. The Nyquist noise current is given by: 

 𝐼𝑁𝑦 = √4 ∙ 𝐾𝐵 ∙ 𝑇 ∙ ∆𝑓 ∙ 𝑅−1, (4.10) 

where Kb, T and ∆f are the Boltzmann factor, temperature and the measurement bandwidth, 

respectively. R denotes the detector resistance. Generally the resistance has to be taken as a 

function of the frequency and has to be integrated over the measurement bandwidth frequency 

range to determine the noise current value. However, since the measurement bandwidth for 

the above measurements is approx. 16 Hz, the resistance can be safely approximated by its 

DC value.  

To further determine the Nyquist noise of the detector, the root mean square (rms) noise 

current in the detector was measured for different optical excitation powers without an 

incident THz field. Furthermore, the noise currents where calculated according to Eq. (4.10) 

from the average, i.e. time integrated, detector resistance. The detector resistance was 

therefore calculated by solving the rate equation model (4.2)-(4.5). The results are both 

illustrated in Fig. 4.4. There is a good qualitative agreement of the simulated noise currents 

with the measured noise current in the case of the two samples with low doping. However, the 

absolute noise current values differ by a factor of approx. 2. This difference is assumed to be 

due to the fact that the rate equation model does not include thermal re-excitation of carriers 

from trap states which can have a significant contribution during the relaxation process. The 

general behavior of the calculation and the measurement indicates that the origin of the noise 

current is indeed Nyquist noise. Even though there seems to be a minor increase of the 
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measured noise current in the two samples with higher doping, the measured values are again 

on the level of the system noise and the results are hence inconclusive. The predictions from 

the calculation indicate that, at least for the 4x10
18

 cm
-3

 doped sample, the noise level should 

be defined by the system noise and not the PCA itself. Therefore, detection electronics with 

lower noise figures could potentially further increase the dynamic range in case of this 

detector PCA. To see how the interplay of signal amplitude, frequency roll-off and noise in 

dependence of Be-doping concentration and excitation power influences the dynamic range 

and detectable bandwidth of the detector signals, these two quanta were extracted from the 

detected THz spectra.  

 

Fig. 4.4 Measured (full symbols) and calculated (half symbols) rms noise currents in the detector. The 

rms noise current of the detection system measured without a connected detector is shown as a dashed 

line. This figure was adopted and modified from Ref. [6]. 

The noise floor was therefore defined as the average spectral amplitude in the frequency range 

between 6.5 THz and 10 THz, where it is safe to assume that no THz signal is present. The 

detectable bandwidth was defined to be the highest frequency with an amplitude 6 dB above 

the noise floor. The accordingly obtained values are given in Fig. 4.5 a) and b). The two low 

doping detectors exhibit a saturation behavior and then a decrease in dynamic range as the 

optical excitation was increased [Fig. 4.5 a)]. The reason for this is that the Nyquist noise 

current increases stronger at higher optical excitation than the detector signal does. The strong 

increase of the Nyquist noise current is due to the long carrier lifetimes of those PCAs at high 

excitation powers which results in a low average resistance. In combination with the increased 
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roll-off behavior, also due to the prolonged carrier lifetime, the detectable bandwidth 

decreases for high excitation powers. Interestingly, the 2.0x10
18

 cm
-3

 doped detector exhibits a 

higher dynamic range and bandwidth than the 4.0x10
18

 cm
-3

 doped detector. This indicates a 

trade-off between short carrier lifetime and long carrier scattering time, i.e. signal amplitudes, 

which are both strongly influenced by the Be-doping concentration, as elaborated before. This 

insight provides the means for precisely targeted doping levels of the detector materials.  

 

Fig. 4.5 a) Dynamic range and b) detectable bandwidth extracted from THz spectra for different 

excitation powers at the detector and for four different Be-doping concentrations. This figure was 

adopted and modified from Ref. [6]. 

In a further experiment, a high mobility emitter as described in chapter 3 was used in order to 

overcome the system noise limitation. The emitter was a 100µm strip-line antenna excited 

with 25 mW of optical power and with an applied bias of 120 V. For this configuration 

another noise contribution appeared to be dominant over the Nyquist noise. The noise current 

increased proportional to the square root of detector current induced by the THz field, and 

hence SH and GR noise are possible candidates for this noise current. However since GR 

noise is very low in short lifetime materials (due to the very low photoconductive gain), the 

noise current is attributed to shot noise. Even though the noise current is increased by the shot 

noise contribution, the dynamic range is still increased because shot noise scales only with the 

square root of the detector current. Therefore, with the combination of the short carrier 

lifetime detectors and the high mobility emitters of chapter 3, it is possible to obtain THz 

spectra with a detectable bandwidth of 6 THz and 90 dB dynamic range for a measurement 

time of 10 min. For a single trace measurement, i.e. 60 ms measurement time, the dynamic 

range is still 60 dB and the detectable bandwidth is in excess of 4 THz. Both measurements 

are illustrated in Fig. 4.6. This is a huge improvement compared to the un-optimized planar-

planar detectors in chapter 2, where only 2.5 THz bandwidth was obtainable and only by the 

use of lock-in detection and a measurement time in excess of 30 min.  
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Fig. 4.6 THz spectra for two different measurement durations obtained from a 4.0x10
18

 cm
-3 

Be-doped 

detector with 16 mW optical excitation and a high mobility emitter excited at 25 mW and with 

12 kV/cm of applied bias field. This figure is adopted and modified from Ref. [6]. 

4.1 All-fiber electronically controlled optical sampling THz-TDS system 

With these strongly improved THz emitters and detectors, it is possible to obtain THz signals 

with high bandwidth and high dynamic range for significantly reduced measurement times. To 

further reduce the measurement time, a system approach was investigated where the time 

delay between the emitter and detector pulses is achieved by a fast electro-optical modulation 

technique instead of a slow mechanical delay stage [cf. Fig. 1.1]. The time delay between the 

optical excitation pulses of the emitter and detector is here achieved by the use of two lasers, 

one of which can be tuned in its repetition rate with a piezo crystal in the laser cavity. First, 

the repetition rate of the laser containing the piezo is locked to the repetition rate f of the other 

laser by the use of a proportional-integral-derivative controller. Then, the repetition rate of the 

first laser is slightly changed with a periodical modulation. This leads to a time dependent 

phase difference ∆Φ(t) between the pulse trains of the two lasers and which is equivalent to a 

time delay that is given by τ(t)=∆Φ(t)/2πf [121], [122]. This principle is known as 

electronically controlled optical sampling (ECOPS) and has been previously demonstrated for 

titanium-sapphire based free-space THz-TDS system operating at 800 nm wavelength with 

LTG-GaAs detectors and emitters [122]. In the present work, the first demonstration of a 

completely fiber-coupled ECOPS system operating at 1560 nm with measurement rates of up 

to 8 kHz, i.e. 8000 pulse traces per second, was performed [8]. 
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Fig. 4.7 a) shows two examples of single THz pulse traces obtained at measurement rates of 

2 kHz and 8 kHz (inset). For 2 kHz measurement rate the complete scan range of the time 

delay is 180 ps, while for the 8 kHz measurement rate the scan range is reduced to 20 ps due 

to mechanical limitation of the piezo crystal. The spectrum in Fig. 4.7 b) is a Fourier 

transformation of a pulse trace obtained from averaging over 1000 single pulse traces 

measured at 2 kHz. In this case, the spectral bandwidth of the system reaches values of up to 

2 THz with a dynamic range of 76 dB. The inset of Fig. 4.7 b) shows the dependence of the 

dynamic range on the number of averages which follows a typical logarithmic behavior, as 

indicated by the linear fit curve in the logarithmic plot. For a single measurement at 2 kHz 

measurement rate, i.e. 500 µs measurement time, the system still reaches 47 dB dynamic 

range.  

The increased roll-off and lower dynamic range of the THz spectrum in Fig. 4.7 b), as 

compared to the spectrum in Fig. 4.6, measured with only 60 ms measurement time has 

several potential influences: One influence is the difference in the measurement windows, 

which are 180 ps and 67 ps for Fig. 4.7 b) and Fig. 4.6, respectively. This gives a 

measurement time per ps of delay of 2.77 ms and 0.9 ms for Fig. 4.7 b) and Fig. 4.6, 

respectively. Thus, the measurement times per point of the traces of both spectra are almost 

comparable and can not explain the difference. The second influence is that the laser pulse 

widths of the two ECOPS lasers were approx. 140 fs. This is due to fact that the pre-

compensation of the fiber dispersion, which was done with a dispersion compensating fiber, 

was not fully optimized to match the length of the fiber delivery. This could explain the 

increased roll-off behavior obtained in the ECOPS system. The last influence is the timing 

jitter between the two ECOPS lasers, which is on the order of 50 fs. This time position error 

broadens the THz pulse width of an averaged trace, which also transfers in the Fourier domain 

to increased roll-off and hence reduced bandwidth. 

While the fiber length adjustment can easily be done more precisely in future systems to 

obtain shorter laser pulses, the improvement of the timing jitter is a slightly more difficult 

task, involving a more stable design of the piezo holder to minimize eigen-oscillations as well 

as a more sophisticated control algorithm, e.g. a frequency lock to higher harmonics of the 

piezo oscillation.  

Nevertheless, the results shown in Fig. 4.7 represent the fastest fiber-coupled THz 

measurement system demonstrated so far and open up a plurality of new possible applications 

for THz spectroscopy, where high measurement speeds with simultaneous low system costs 

are the defining factors for the applicability of THz-TDS systems. 
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Fig. 4.7 a) Single pulse traces obtained from ECOPS measurement rates of 2 kHz and 8 kHz (inset). b) 

Fourier spectrum obtained from averaging over pulse 1000 traces measured at 2 kHz. The dependence 

of the dynamic range on the number of averages at 2 kHz is shown in the inset. This figure was 

adopted and modified from Ref. [8]. 

 

  



 

 

 55 

5. Photoconductors for 1030 nm pulsed laser excitation 

In this chapter the results on the investigation and optimization of photoconductive 

semiconductor structures for excitation with ytterbium-doped femtosecond fiber lasers, with a 

center wavelength of 1030 nm, will be reviewed. From an application point of view, the 

change of the center wavelength from 1550 nm to 1030 nm has the disadvantage that cost 

efficient off-the-shelf optical components from telecom applications are not available at a 

wavelength of 1030 nm. However, the big advantage of femtosecond ytterbium fiber lasers, 

over their erbium-fiber counterparts, is the higher achievable average output power. While 

erbium fiber usually have output powers in the range of a few hundred mW, ytterbium 

femtosecond lasers offer up to 4.5 W average power with pulse durations below 100 fs [11]. 

The high output powers open up the possibility of efficiently exciting emitter structures which 

feature large photoconductive areas, e.g. with gap sizes of several hundred micrometers, as 

well as multi-channel detectors, where several detector antennas are excited simultaneously, 

all pumped with a single laser source. This offers the opportunity for building THz imaging 

and tomography systems with improved measurement speeds, as will be shown later in this 

chapter. 

The band gap energies of the previously discussed InGaAs/InAlAs PCAs where designed to 

offer sufficient light absorption at 1550 nm, with band gap energies of approx. 0.76 eV in case 

of the usual 12 nm of InGaAs layer thickness used in this work. Therefore, the PCAs can also 

be excited at a center wavelength of 1030 m, i.e. photon energies around 1.2 eV. Considering 

that the joint density of states (JDOS), i.e. the number of available states for an optical 

transition in dependence of the photon energy, is higher for higher photon energies, the 

absorption of 1030 nm light is increased as compared to 1550 nm. On the other hand, the 

carriers are excited into band states up high in the CB with excess energies of approx. 

440 meV. 

To investigate how the dynamics of the hot carriers change the THz generation and detection 

characteristics an emitter and a detector, both manufactured from a LTG Be-doped 

InGaAs/InAlAs sample with 100 periods of 12 nm InGaAs and 8 nm InAlAs, were excited at 

1030 nm wavelength and tested in a DT setup and a THz-TDS setup. The results were then 

compared to results obtained for 1550 nm excitation. To obtain comparable excitation 

conditions the incident photon density was kept equal for both wavelength with a value of 

1.65x10
14 

cm
-2

, i.e. 5 mW at 1550 nm and 3.32 mW at 1030 nm for a spot size of 10 µm at 

100 MHz laser repetition rate [9]. The signal amplitudes obtained from TDS measurements at 

1030 nm are significantly increased by more than one order of magnitude as compared to the 

1550 nm excitation. This can be mostly attributed to the increased absorption for 1030 nm 
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wavelength. The spectra however show a strongly increased frequency roll-off behavior 

indicating a prolonged carrier lifetime for hot electrons. This was further confirmed by DT 

measurements at 1030 nm pump and 1030 nm probe where the carrier lifetime was extended 

at low excitation from 230 fs to 2.7 ps [9]. 

To further investigate the influence of the carrier excess energy on the carrier lifetime and 

capture process, another set of four samples was grown. The first sample in the series was a 

standard heterostructure sample which served as a reference and consisted of 100 periods of 

12 nm InGaAs and 8 nm InAlAs and with a Be-doping concentration of 4x10
18

 cm
-3

. To 

examine the assumption, that the excess energy reduces carrier capture probability, the three 

other samples had intentionally shifted band gap energies and hence a lower amount of carrier 

excess energy at an excitation wavelength of 1060 nm.  

There are two possible ways to obtain samples with higher band gap energies while 

maintaining the lattice match to the InP substrate. The first one is to reduce the InGaAs layer 

thicknesses in the LTG heterostructures in order to shift the sub-band energies in the InGaAs 

layers towards higher energies. The other one is to employ a quaternary composition with 

additional aluminum content, i.e. LTG InAlGaAs, which also shifts the band gap towards 

higher energies in dependence of the aluminum content. An overview of the growth parameter 

and the measured Hall data of all four samples are given in Table 1. 

The first approach was achieved with a LTG Be-doped heterostructure sample with InGaAs 

and InAlAs layer thicknesses of 3 nm and 4 nm, respectively, and with 400 periods to keep 

the total InGaAs thickness equal to the reference sample, i.e. 1.2 µm. The 3 nm layer 

thickness results in a calculated shift of the first sub-band absorption to approx. 0.94 eV, i.e. 

1300 nm wavelength. The choice of the InGaAs layer thickness is a trade-off between a 

sufficient shift of the band gap energy and the maintenance of an acceptable carrier mobility, 

which is strongly decreased for thinner layers because of the increasing contribution from 

surface roughness scattering at the layer boundaries [cf. Table 1]. The sample was additionally 

Be-doped, for the reasons explained in the previous chapter, with a concentration of 

4x10
18

 cm
-3

. 

For band gap shifted PCAs based on a quaternary composition, two different samples were 

grown both comprising a 1.2 µm bulk layer of In0.52Al0.28Ga0.20As. One of the samples was 

un-doped and the other was doped with 4x10
18

 cm
-3

 of Beryllium to further increase the 

amount of ionized AsGa defects. The chosen composition of In0.52Al0.28Ga0.20As results in a 

calculated band gap energy of 1.1 eV, i.e. approx.1120 nm wavelength. As elaborated in 

chapter 1.3, the energy levels of the AsGa defects in InxGa1-xAs maintain their energetic 

position, to a good approximation, with respect to the VB. If this behavior is assumed to be 



 

 

 57 

maintained in case of a quaternary alloy, the energy levels of the AsGa defects in 

In0.52Al0.28Ga0.20As should be situated at approx. 0.5 eV below the CB edge. The low amount 

of thermally excited carriers at room temperature as determined by Hall measurements for 

both quaternary samples supports this assumption [cf. Table 1]. 

Sample Structure Periods 

Growth 

Temperature 

[°C] 

Be-Doping 

[cm
-3

] 

Resistivity 

[Ωcm] 

Mobility 

[cm
2
/Vs] 

Residual 

Carrier conc. 

[cm
-3

] 

1 
12 nm InGaAs/   

8 nm InAlAs 
100 130 4x1018 850 308 2.39x10

13
 

2 
3 nm InGaAs/ 

4 nm InAlAs 
400 130 4x10

18
 7285 127 6.72x10

12
 

3 
1.2 µm 

In0.52Al0.28Ga0.20As 
bulk 130 - 8238 1130 6.7x10

11
 

4 
1.2 µm 

In0.52Al0.28Ga0.20As 
bulk 130 4x10

18
 29050 331 6.5x10

11
 

Table 1 Growth parameters and Hall data of the growth series. This table was adopted and modified 

from Ref. [10]. 

To investigate the ultra-fast carrier relaxation process, all samples were measured with 

transient white-light pump-probe (TWPP) spectroscopy. In case of TWPP spectroscopy the 

probe is a white-light super-continuum generated by the self-phase modulation of a 

femtosecond pulse in a sapphire crystal. The pump is generated by a tunable optical 

parametric amplifier (OPA), which enables to tune the pump wavelength over a wide range. 

Both, the sapphire crystal and the OPA were driven by a Ti:Sapphire laser with a 1 kHz 

regenerative amplifier. The transmitted white-light probe was recorded in a grating 

spectrometer to resolve the transmission spectrally. Thus, the experiment measures the 

differential transmission in dependence of energy and time. Hence, it is possible to obtain a 

detailed picture of the relaxation process of the (hot) carriers. Additionally, linear absorption 

spectra were recorded to determine the band gap energies and compare them to the calculated 

values. 

The linear absorption spectra are shown in Fig. 5.1 a)-Fig. 5.4 a) for samples 1 to 4, 

respectively. The linear absorption spectra all show typical features of an LTG semiconductor 

with strongly broadened Urbach-like absorption edges due to disorder [107] and thus only 

faintly visible sub-bands features in case of the two heterostructures, i.e. samples 1 and 2. All 

measured band edge energies agree well with the previously calculated values. As pointed out 

before, the absorption in the short wavelength range around 1060 nm for sample 1 is 

increased due to the higher JDOS as compared to the near band edge absorption around 
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1550 nm, i.e. approx. by a factor 5. Sample 2 also shows a very high absorption in at 1060 nm 

which is again due to the increased JDOS for elevated energies. The Be-doped quaternary 

sample, i.e. sample 4, shows additional broadening in the band tail as compared to the 

un-doped quaternary sample 3, which can be attributed to additional tail states induced by the 

Be-doping. 

The normalized TWPP spectra of the four samples are shown in Fig. 5.1 b) and c), Fig. 5.2 b) 

and c), Fig. 5.3 b) and Fig. 5.4 b). Both heterostructure samples where excited at two different 

pump wavelengths of 1250 nm and 1060 nm. The quaternary samples where excited only at 

1060 nm due to their higher band gap. The pump power for all measurements was 15 µW 

with a spot size of 260 µm, which results in photon densities of 1.5x10
14

 cm
-2

 and 

1.77x10
14

 cm
-2 

for 1060 nm and 1250 nm wavelength, respectively. This corresponds to 

induced carrier densities in the range of ne ≥ 1x10
18

 cm
-3

 for the 1060 nm excitation of 

samples 3 and 4 as well as the 1250 nm excitation of samples 1 and 2. Though, due to the 

elevated absorption in the cases of the 1060 nm excitation of samples 1 and 2, the carrier 

densities here reach values of up to ne ≥ 4x10
18

 cm
-3

 for the upper layers of the heterostructure 

samples. Since the densities of ionized AsGa defects can be assumed to be on the same order 

of magnitude, partial trap filling cannot be completely ruled out. However, it can be assumed 

that no strong trap saturation occurs [cf. chapter 4]. The vertical axes in the TWPP spectra 

indicate the time delay between pump and probe pulses, while the horizontal axes show the 

spectral components of the white light probe pulse. The color map values indicate the 

normalized differential transmission signal. Here, a positive color map value corresponds to 

increased transmission induced by the pump and a negative color map value corresponds to 

pump induced absorption. Since the DOS for the electrons in the CB is smaller than the DOS 

of the holes in the VB, the TWPP signals are dominated by the electron population. Therefore, 

the discussion can be mostly limited to the dynamics of the electron population in the CB. 

After the excitation by the pump pulse the TWPP signals of all samples show an initial fast 

thermalization of the electrons with each other via electron- electron (e-e) scattering on a time 

scale of 50-100 fs, as it can be expected for the high electron densities of ne ≥ 10
18

 cm
-3

 

present in these measurements. The subsequent energy relaxation of the electron population 

after this initial e-e thermalization strongly depends on the sample and the excitation 

wavelength and will in the following be discussed for each sample individually. 

The TWPP spectrum for the 1060 nm excitation of sample 1 is shown in Fig. 5.1 b). After the 

initial e-e scattering the majority of the electron population relaxes down to the band edge via 

longitudinal-optical (LO) phonon emission on a time scale of approx. 1.6 ps. The relaxed 

electron population in the vicinity of the band edge results in a strong increase of the TWPP 

signal, due to the lower DOS in this energy range and the resultant Pauli blocking. The near 

band edge population subsequently decays on a time scale of 1.8-2 ps due to non-radiative 
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captured into defect states. To further investigate the impact of the electron excess energy on 

the electron lifetime, sample 1 was excited at a longer pump wavelength of 1250 nm, i.e. 

photon energies of around 0.97 eV. The obtained TWPP spectrum is shown in Fig. 5.1 c). The 

overall TWPP signal is weaker than for the 1060 nm excitation, which is due to the lower 

absorption of the pump wavelength and hence lower induced carrier density. As in the case of 

the 1060 nm excitation, at least a part of the electron population relaxes towards the band 

edge before being captured by defect states. However, a part of the electrons appear to be 

captured before reaching the band edge. 

 

Fig. 5.1 a) Linear absorption spectrum of a sample 1 and TWPP spectra for a pump wavelength of b) 

1060 nm and c) 1250 nm. The pump power for the TWPP measurement was 15 µW for both 

wavelengths. This figure was adopted and modified from Ref. [10]. 

In case of sample 2 excited at a pump wavelength of 1060 nm [Fig. 5.2 b)], i.e. a significant 

amount of excess energy, a similar behavior is observed. The electron population is relaxed 

towards the band edge via LO-phonon emission on a time scale of approx. 300 fs and is 

subsequently captured into defect sates. At 1250 nm excitation [Fig. 5.2 c)], i.e. at the band 

edge, the initial electron population forms a cold Fermi distribution due to the lack of excess 

energy, which is subsequently broadened due to the redistribution of electrons via e-e 

scattering and also electron-phonon (e-ph) scattering on a time scale of 300 fs. This 

redistribution of the electrons into other CB states results in a reduction of the Pauli blocking 

and hence in a partial decay of the transmission signal. This decay is superimposed by the 
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decay component caused by the non-radiative capture process into defect states, which takes 

place on a time scale of approx. 1.3 ps. 

 

Fig. 5.2 a) Linear absorption spectrum of a sample 2 and TWPP spectra for a pump wavelength of b) 

1060 nm and c) 1250 nm. The pump power for the TWPP measurements was 15 µW for both 

wavelengths. This figure was adopted and modified from Ref. [10]. 

For sample 3 [Fig. 5.3 b)], there is an initial short decay of the signal on a time scale of 300 fs, 

followed by a longer decay component on a time scale of 3 ps. The initial short signal decay 

can again be attributed to a redistribution of the electrons via e-e and e-ph scattering. The 

second decay component of the TWPP signal is due to electron capture into AsGa defects. The 

rather long decay time of 3 ps in this sample can be explained by the fact that the AsGa defects 

are mostly neutral due to the lack of Be-doping [cf. chapter 4]. However, the decay time is 

still much shorter than the one observed for un-doped or moderately doped InGaAs/InAlAs 

heterostructures [5]. 

In the case of sample 4 excited at 1060 nm [Fig. 5.4 b)] the electron population is again 

redistributed via e-e and e-ph scattering on a time scale of approx. 300 fs. However, the 

TWPP signal of this sample is much broader as compared to sample 3. This can be attributed 

to the increased amount of band tail states caused by the additional Be-doping. The 

subsequent decay due to non-radiative carrier capture into defect states in this sample is found 

to have a time constant of approx. 1.3 ps. 
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Fig. 5.3 a) Linear absorption spectrum of sample 3 and b) TWPP spectra for a pump wavelength of 

1060 nm at a pump power of 15 µW. This figure was adopted and modified from Ref. [10]. 

 

 

Fig. 5.4 a) Linear absorption spectrum of sample 4 and b) TWPP spectra for a pump wavelength of 

1060 nm at a pump power of 15 µW. This figure was adopted and modified from Ref. [10]. 

A general trait of all measurements in which the photon energy is significantly above the band 

gap energy of the samples, is that the energy relaxation of the electrons is dominated by 

LO-phonon emission rather than by non-radiative capture into defect states via multi phonon 

emission. The highly Be-doped samples of chapter 4 excited at 1550 nm wavelength exhibited 

electron capture times of <200 fs. The initial LO-phonon emission time, i.e. for small phonon 

occupation numbers NPh≪1, is on the order of 300 fs. Hence for a near band gap excitation 

the electron capture probability is of the same magnitude as the LO-phonon emission 

probability. For higher photon energies and hence electron excess energies both processes 

become much more difficult and will therefore be discussed merely qualitatively. 
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At high excess energies each electron hole-pair produces a number
,LO ,/ph c ph LOn E E  of LO-

phonons, with Ec being the excess carrier energy and Eph,LO the LO-phonon energy. The 

lifetime of LO-phonons at room temperature in GaAs has been found to be approx. 4 ps [123]. 

Assuming a similar lifetime for the present samples, the energy relaxation of the hot electron 

population via-LO-phonon emission produces a non-thermal phonon distribution with a large 

phonon occupation number NPh≫1 for small k-vector LO-phonons [124]. This increased 

phonon occupation number in turn increases the probability of phonon absorption by 

electrons. This effect should lead to an inhibition of the electron energy relaxation via 

LO-phonon emission, i.e. the formation of a phonon bottleneck. However, such a behavior is 

not visible in the TWPP measurements. A possible explanation can be offered by k-vector and 

energy conservation constrains combined with the non-thermal characteristics of the phonon 

distribution. The quadratic energy dispersion relation for the CB electrons forbids electrons 

which have already relaxed to states lower in the CB from re-absorbing a previously emitted 

phonon with a smaller k-vector [125].  

The energy dependence of the capture cross section can be described within the framework of 

of non-radiative multi phonon emission (MPE) [126]. The dependence of the electron capture 

cross section on the electron energy E is then dependent on the depth ED>0 and the charge 

state of the defect. Furthermore, it is dependent on the lattice relaxation energy A, which 

describes the energy difference between the initial and final state of the lattice in the MPE 

process [126]. The qualitative energy dependence of the capture process can then be 

categorized in terms of the electron-lattice coupling strength Ce-l=A/(E+ED). For weak 

ln(Ce-l)<0 or intermediate ln(Ce-l)=0 electron-lattice coupling and the case of an attractive 

defect potentials, as it is the case for positively ionized AsGa defects, the electron capture cross 

section is a monotonically declining function of the electron energy E. However, in the case 

of a strong electron-lattice coupling ln(Ce-l)>0 there is a distinct maximum of the capture 

cross section for a given electron energy E>0 dependent on Ce-l. Since in all measurements 

the electrons appear to relax to the band edge before being captured, it can be assumed that 

the electron lattice coupling Ce-l of AsGa defects in InGaAs or InAlGaAs is in the weak or 

intermediate regime.  

To examine how the electron relaxation deduced from the TWPP measurements, influences 

the characteristics of THz PCA detectors, all samples were processed with dipole mesa-

antennas with a 10 µm photoconductive gap and evaluated in a THz TDS system excited by a 

pulsed ytterbium doped fiber laser at 1060 nm wavelength and a repetition rate of 20 MHz. 

The THz emitter used for these measurements was a large area emitter with a 400 µm strip-

line antenna manufactured from sample 2 which was biased at 200 V. The pulse traces and 

spectra obtained from the measurements are shown in Fig. 5.5. As expected from the 
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discussion in chapters 1 and 4, the prolonged photoconductivity of the sample 1 under 

1060 nm excitation results in a stronger frequency roll-off behavior with a maximum 

detectable bandwidth of only 3 THz. The THz-signals of the three band-gap shifted samples 

show an improved frequency roll-off behavior due to the shorter electron lifetime. However, 

the PCA detectors made from the two quaternary samples exhibit a stronger frequency roll-off 

and noise level as compared to sample 2. This could be indicative of a prolonged 

photoconductivity due to long-lived carriers which are not visible in the TWPP measurements. 

This matter could be resolved in future optical-pump THz-Probe measurements.  

 

Fig. 5.5 THz-TDS sepctra and their corresponding pulse traces (insets) of all four samples excited at 

1060 nm. The lock-in integration time was chosen to be 300 ms per measurement point. This figure 

was adopted and modified from Ref. [10]. 
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In summary, the insights obtained from the measurements discussed in this chapter 

concerning carrier hot carrier relaxation and its impact on PCA behavior, form a fundamental 

basis for further investigations and development of photoconductive materials based on 

InGaAs/InP for 1060 nm excitation. 

5.1 Ytterbium fiber-laser based multichannel THz-TDS system 

This subchapter will briefly discuss the results of the development of a THz-TDS tomography 

system based on a large area emitter and a multi-channel detector array, both driven by a 

pulsed high power ytterbium-doped fiber laser source. The laser source consisted of a 

commercial fiber oscillator with an average output power of 100 mW and an Yb-doped 

rod-type fiber amplifier with a length of 80 cm and a mode field diameter of 50 μm pumped at 

976 nm. The resulting average output power was 4.5 W at a repetition rate of 20 MHz. The 

photoconductor material for the emitter was a high mobility InGaAs/InAlAs heterostructure 

sample as described in chapter 3 and featured a 400 μm gap strip-line antenna geometry 

biased with 125 V. The detector array was manufactured from a LTG Be-doped 

InGaAs/InAlAs heterostructure, similar to sample 1 of this chapter, and consisted of a line-

array of 15 discrete 7.5 μm dipole detector antennas with a spacing of 1 mm in between the 

channels. The detector array was optically excited with a line focus while the THz signal was 

focused onto the photoconductive gap by a cylindrical silicon lens. The exact THz-TDS setup 

geometry and the THz optics used are described in Ref. [11]. The detector signals were then 

recorded by a mutli-channel lock-in amplifier. An example of a sample and a THz image of 

that sample measured with this system are shown in Fig. 5.6. As can be seen, the optically 

hidden parts in the outer ring of the structure are clearly visible in the THz image. The lateral 

resolution of the system is approx. 1 mm in each direction, which is on the order of the 

wavelength (in air) of the maximal frequency component of the THz spectrum of around 300 

GHz. Considering that the cylindrical lens in the THz path only focuses the THz beam in in 

one spatial direction and hence limits the overall signal strength at the detector as compared to 

a hyper-hemispherical silicon lens, this result is already quite remarkable for a proof-of-

principle demonstration. By using a multi-channel array the measurement time can be reduced 

approx. by a factor equal to the number of channels as compared to a single pixel 

measurement, i.e. by a factor of 15 in this system.  

In future systems, arrays with 64 or 128 channels are feasible. In combination with fast time 

delays, e.g. electro-optically controlled sampling [cf. chapter 4.1], this principle can yield 

very fast THz imaging or tomography systems with measurement times of seconds rather than 

minutes. 
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a)      b) 

Fig. 5.6 a) Plastic pump wheel sample b) THz image of the sample in a) constructed from the 

maximum of the transmitted THz amplitudes. This figure was adopted and modified from Ref. [11]. 
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6. Conclusion and Outlook 

The present work investigated the physics of terahertz (THz) generation and detection in 

photoconductive antennas (PCA) based on the InGaAs/InP material system, aimed for an 

excitation with erbium-doped or ytterbium-doped pulsed fiber laser sources. Over the course 

of this work the potential of micro-structuring as well as several semiconductor growth 

approaches and optimization strategies were discussed, always in close review of the 

underlying ultra-fast carrier dynamics in the semiconductor material. Furthermore, different 

approaches for fast and efficient THz time domain spectroscopy (THz-TDS) systems were 

investigated. This final chapter will give a brief summary and conclusion as well as an 

outlook on possible future research in the field. 

In chapter 2 a micro-structuring approach for PCAs was investigated on the basis of low 

temperature grown (LTG) InGaAs/InAlAs heterostructures. It was shown that mesa-shaped 

photoconductive regions, with the contact metallization sputtered to the mesa side walls, yield 

an increase of the emitted THz pulse amplitudes by a factor of 2.5 when compared to PCA 

emitters featuring a simple planar contact metallization. This was attributed to the improved 

homogeneity of the electrical fields within the photoconductive region and in-plane field 

vectors with respect to the InGaAs layers. For similarly structured PCA detectors, these two 

effects were found to have an even greater impact with a sensitivity increase of more than one 

order of magnitude was achievable as compared to a planar metallization. 

Chapter 3 discussed the growth of high mobility PCAs based on an approach featuring 

spatially separated trapping and photoconductive regions. This approach was realized via 

MBE growth of InGaAs/InAlAs heterostructures at intermediate growth temperatures of 

around 400°C, where defects are introduces merely in the InAlAs barriers in the form of deep 

alloy clustering defects. The InGaAs layers were found to grow mostly defect free in this 

temperature range, which resulted in high carrier mobility and a reduced residual carrier 

concentration. The ultra-fast carrier dynamics in these structures were determined by optical 

pump-probe measurements, which revealed that the carrier lifetimes can be efficiently tuned 

via the growth temperature as well as the InAlAs barrier thicknesses. The THz-TDS 

measurements of PCAs emitters manufactured from these samples indicated that a strong 

carrier lifetime reduction, i.e. high defect density, is not favorable for high THz emission 

powers. This result was attributed to electron scattering at defect sites which prevents efficient 

THz generation. However, a certain defect density in the InAlAs barriers and barrier 

thicknesses were found to be mandatory for a sufficiently high reduction of the residual 

carrier in the InGaAs layers and hence high dark resistivity of the PCAs. For optimal growth 

conditions, the resulting photoconductor characteristics lead to an enhancement by two orders 
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of magnitude of the emitted THz power as compared to LTG Be-doped InGaAs/InAlAs 

heterostructres. 

In chapter 4 the ultra-fast carrier dynamics in beryllium doped LTG InGaAs/InAlAs 

heterostuctures were investigated by means of optical pump-probe and THz-TDS 

measurements in dependence of the Be-doping concentration. The carrier capture and 

recombination dynamics were therefore described by a set of coupled rate equations for the 

carrier densities in conduction and valence band, as well as the involved defect states and then 

compared to experimental results. A central finding of the pump-probe measurements is, that 

electrons are predominately captured by ionized arsenic antisite (AsGa) defects while Be-

dopants are responsible for hole capturing. The subsequent recombination of electrons with 

holes is found to take place between localized states at AsGa and Be-dopant sites, respectively. 

The amount of ionized AsGa defects is strongly dependent on the Be-doping concentration. As 

a consequence, the carrier capture and recombination time can be greatly influenced, and thus 

adjusted, via Be-doping. For doping concentrations of 4x10
18

 cm
-3

 an ultra-fast electron 

capture time of below 200 fs was achieved. Furthermore, chapter 4 reviewed the influence of 

the carrier capture time, possible defect state saturation at higher optical excitation densities 

and carrier-impurity scattering on the THz detection characteristics of THz PCAs detectors 

manufactured from the samples. The frequency characteristics of the detected THz signals 

were found to be strongly influenced by the carrier capture time in accordance with the 

theoretical predictions elaborated in the introductory part of this work in chapter 1. 

Furthermore, it was shown that the carrier capture time strongly influences the Nyquist noise 

currents of the PCAs detectors, due to the changes of the average conductivity. Nyquist noise 

was found to have a major contribution to the detector noise currents. Additionally, detector 

shot noise was found to become a relevant noise source at high incident THz field strengths. 

Via the combination of the results and developments of chapters 2-4, namely 

mesa-structuring, ultra-fast Be-doped PCA detectors and high mobility PCA emitters, it was 

possible to obtain THz-TDS signals with detector amplitudes that were increased by a factor 

of 1000 as compared to the state of the art, featuring a spectral bandwidth in excess of 6 THz 

with 90 dB dynamic range. This improvement allowed for TDS measurements that originally 

demanded a measurement time of several tens of minutes to be performed within 60 ms. The 

last part of chapter 4 reviewed the research on THz-TDS measurement systems based on the 

principle of electronically controlled optical sampling. By employing this technique it was 

possible to demonstrate a fast all-fiber coupled THz-TDS system with measurement rates of 

up to 8 kHz. 

In chapter 5, photoconductive materials and PCAs for an excitation with ytterbium doped 

fiber pulse lasers with a central wavelength of 1060 nm were discussed. Therefore, Be-doped 

LTG InGaAs/InAlAs heterostructures with different InGaAs layer thicknesses, and hence sub-
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band energies, as well as bulk LTG InAlGaAs samples with band gap energies of approx. 

1.1 eV were investigated. Transient white light pump-probe measurements were performed to 

investigate the carrier energy relaxation and capture processes in dependence of the excitation 

wavelength and hence the excess energy of the carriers. As a general result, the energy 

relaxation of hot electrons in LTG InGaAs/InAlAs and LTG InAlGaAs is dominated by 

longitudinal optical phonon emission and not electron capture into AsGa defects via non-

radiative multi-phonon emission. Consequently, the transient photoconductivity of these 

samples is prolonged for photon energies significantly above the band gap. This finding was 

further verified by the frequency characteristics of PCAs detectors in THz-TDS measurements 

at an excitation wavelength of 1060 nm. The last part of chapter 5, briefly discussed the 

development of a multi-channel THz-TDS system for the purpose of THz tomography based 

on a high power ytterbium fiber laser and a 15-channel PCA detector array. 

In summary, the investigations performed in this work concerning the growth of 

photoconductive materials and pump-probe measurements performed on these materials 

granted further insight into possible methods of controlled defect incorporation and the basic 

physical processes of non-radiative carrier capture and recombination in defect states. 

Furthermore, in connection with THz-TDS measurements the influence of the defect related 

ultra-fast carrier dynamics on the physics of photoconductive THz generation and detection in 

these materials was investigated. Based on the improved PCAs, it demonstrated methods to 

build cost-efficient, compact and fast fiber laser based THz-TDS systems. These 

developments now enable for a much more widespread application of THz-TDS systems, not 

just in laboratories but also for industrial applications.  

Concerning the perspective on future work in the field of PCA development there are several 

options for further research. These include the investigation of defect incorporation in InGaAs 

by means of doping with transition metals, e.g. Rhodium or Ruthenium, which are known to 

introduce defect states in a mid-gap position [127]. Additionally, the approach of separated 

capture/recombination and photoconductive regions can potentially be extended from a 

merely spatial separation to a quantum mechanical separation by using different probabilities 

of presence of electrons in different sub-bands. For future THz-TDS systems further research 

and development of systems with electronically controlled time delay, such as the one 

presented in chapter 4, seems to be the most promising route to take. 
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7. Publications 

Since the present thesis is written in a cumulative way, the authors publications discussed in 

this work are summarized in this chapter. Therefore the publications are order according to the 

chapters they were discussed in, together with a statement of the individual contributions of 

the author to the respective publications.  

Micro structuring of photoconductive antennas: The mesa structure 

[1] H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, 

and B. Sartorius, “Next generation 1.5 micrometer terahertz antennas: mesa-

structuring of InGaAs/InAlAs photoconductive layers.,” Opt. Express, vol. 18, no. 3, 

pp. 2296–301, Feb. 2010. 

o Most of the experimental work and data evaluation 

o Most of the writing of the publication 

 

High mobility photoconductive THz emitters 

 [2] R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz 

generation at 1.55 µm excitation : six-fold increase in THz conversion efficiency by 

separated photoconductive and trapping regions,” Opt. Express, vol. 19, no. 27, 

pp. 122–126, 2011. 

o Most of the experimental work and data evaluation 

o Most of the writing of the publication 

[3] T. Jung, R. Dietz, A. Chernikov, F. Kuik, B. Sartorius, M. Schell, M. Koch, and S. 

Chatterjee, “Photoluminescence study of (GaIn)As/(AlIn)As-based THz antenna 

materials for 1.55 µm excitation,” J. Lumin., vol. 138, pp. 179–181, Jun. 2013. 

o Sample design and preparation 

o Part of the measurements together with T. Jung 

o Discussion and evaluation of the data together with T. Jung and 

S. Chatterjee 

 

[4] R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. 

Koch, T. Göbel, and M. Schell, “64 μW pulsed terahertz emission from growth 

optimized InGaAs/InAlAs heterostructures with separated photoconductive and 

trapping regions,” Appl. Phys. Lett., vol. 103, no. 6, p. 061103, 2013. 



 

 

 70 

o Design of the sample series, design of the lithography masks 

o Construction of the differential transmission setup 

o Most of the measurements together with B. Globisch 

o Most of the data evaluation, simulation and writing of the publication 

 

Short carrier lifetime detectors based on LT-grown Beryllium doped InGaAs/InAlAs 

heterostructures 

[5] B. Globisch*, R. J. B. Dietz*, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in 

Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett., vol. 104, 

no. 17, p. 172103, 2014. 

o Design of the sample series 

o Construction of the differential transmission setup 

o Discussion of the data and derivation of the rate equation model together 

with B. Globisch 

o Part of the writing of the publication 

*Both authors contributed equally 

[6] R. J. B. Dietz*, B. Globisch*, H. Roehle, D. Stanze, T. Göbel, and M. Schell, 

“Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive 

pulsed terahertz detectors : 6 THz bandwidth and 90dB dynamic range,” Opt. Express, 

vol. 22, no. 16, pp. 615–623, 2014. 

o Design of the sample series and the lithography masks 

o Most of the measurements 

o Discussion and data evaluation together with B. Globisch 

o Most of the writing of the publication 

*Both authors contributed equally 

 

[7] N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, 

“Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, 

Millimeter, Terahertz Waves, vol. 35, no. 10, pp. 823-832, 2014. 

o Preparation of the emitter and detector modules 

o Part of the writing of the publication 
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[8] R. J. B. Dietz*, N. Vieweg*, T. Puppe*, A. Zach, B. Globisch, T. Göbel, P. Leisching, 

and M. Schell, “All fiber coupled THz-TDS system with kHz measurement rate based 

on electronically controlled optical sampling,” Opt. Lett., vol. 39, no. 22, pp. 6482–6485, 

2014. 

o Design of the THz PCAs, lithography mask design and construction of the 

PCA modules 

o Most of the measurements together with N. Vieweg and T. Puppe 

o Most of the writing of the publication 

*Authors contributed equally 

Photoconductors for 1030 nm pulsed laser excitation 

[9] R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. 

Born, M. Koch, B. Sartorius, and M. Schell, “Low Temperature Grown Be-doped 

InGaAs/InAlAs Photoconductive Antennas Excited at 1030 nm,” J. Infrared, 

Millimeter, Terahertz Waves, vol. 34, no. 3–4, pp. 231–237, 2013. 

o Design of the sample series and the lithography masks 

o Construction of the differential transmission setup 

o All of the measurements together with R. Wilk, S. Schumann and N. Born 

o All of the writing of the publication 

[10] R. J. B. Dietz, A. Brahm, A. Wilms, A. Vellauthapillai, C. Lammers, B. Globisch, M. 

Koch, G. Notni, A. Tünnermann, T. Göbel and M. Schell, “Low temperature grown 

photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on 

the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves, vol. 36, no. 1, 

pp. 60-71, 2015. 

o Design of the sample series and the lithography masks 

o Preparation of the samples 

o Part of the measurements 

o All of the data evaluation and writing of the publication 

[11] A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. 

Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm 

excitation wavelength,” Opt. Express, vol. 22, no. 11, p. 12982, May 2014. 

o Design of the wafer and the lithography masks 

o Part of the writing of the publication 
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Abstract:  Mesa-structuring of InGaAs/InAlAs photoconductive layers is 
performed employing a chemical assisted ion beam etching (CAIBE) 
process. Terahertz photoconductive antennas for 1.5 µm operation are 
fabricated and evaluated in a time domain spectrometer. Order-of-
magnitude improvements versus planar antennas are demonstrated in terms 
of emitter power, dark current and receiver sensitivity. 
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1. Introduction  

Terahertz systems operated at 1.5 µm wavelength can benefit from the large variety of lasers 
and fiber components developed and matured originally for telecom applications. Thus 
compact, flexible and cost effective THz sensor systems can be assembled. For a long time, 
the photoconductive antennas (PCAs) for 1.5 µm had been the bottleneck. Low temperature 
(LT) growth of InGaAs on InP using molecular beam epitaxy (MBE) then gave the needed 
ultrafast response - similar to the case of LT GaAs. Unfortunately, in contrast to LT GaAs, LT 
InGaAs exhibits a high dark conductivity, so far preventing its use for PCAs. Hence 
alternative techniques like Fe-implantation [1] or ion-irradiation [2] of InGaAs have been 
tried - with limited success up to now. Recently a structure has been developed where thin 
(12 nm) InGaAs photoconductive layers are embedded between InAlAs trapping layers [3]. In 
this approach, the resistivity had been increased by several orders of magnitude. One hundred 
periods of LT InGaAs/InAlAs were grown in order to also achieve sufficient photo efficiency. 
THz antennas for 1.5 µm were fabricated, and good performance of a fiber coupled 1.5 µm 
time domain (TD) system was demonstrated [3]. In this paper we present developments on the 
next generation of 1.5 µm PCAs, especially by applying a kind of mesa-structuring of the 



photoconductive layers. The concept and its technological realization are described in parts 2 
and 3. Electrical characteristics and THz output powers are subject of parts 4 and 5, 
respectively. Finally, in part 6 the improvements achieved in TD systems are evaluated. 

2. Concept for improved PCA’s by mesa structuring 

A general disadvantage of photoconductive antennas with on-top metal contacts results from 
the decreasing in-plane electrical field component (Fig. 1) in the depth of the photoconductor 
[4]. In our multi-layer structure (100 periods InGaAs/InAlAs), unfortunately, this problem is 
enhanced due to the many interfaces at the intermediate InAlAs layers with higher bandgap. 
The interaction of photocarriers with the electric field is reduced, and in the receiver the 
carrier flow is hindered by the multi-layer design.  

One possibility to solve this problem is to apply mesa-type structures with electrical side 
contacts (Fig. 1c). Here, the electrical field is directly applied even to deeper layers, and the 
current in the receiver does not need to traverse heterostructure barriers. The mesa structuring 
offers a second advantage: The photoconductive material can be removed, wherever it 
contributes to the dark current but not to the photo current (Fig. 1b). This because the photo-
excited spot and thus the width of the photo-current region are in the 10 µm range. The dark 
current, however, flows between the full length (3 mm) of the antenna strip lines. Therefore, 
the area outside the optical excitation spot contributes about 300 times more to the dark 
current than the optically excited area itself. Since the semi-insulating (s.i.) InP substrate has a 
much higher resistivity than the photoconductive layers, the overall dark current can be 
significantly reduced by removing photoconductive material outside of the optically excited 
area or by structuring an isolating trench between electric contacts and those parts of the layer 
that do not contribute to photo-conductivity, as indicated in figure 1d and as visible in the 
SEM picture in figure 2b. 
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Fig. 1. Planar (a, b) versus mesa (c, d) structured antennas. Side view (a, c) and top view (b, d)  



3. Mesa etching technique 

The challenge in the mesa etching process is caused by the different materials in the multi-
layer structure, the overall thickness, and the need for flat vertical walls for good electrical 
contact features. Key challenge is the extremely low etching rate of InAlAs. Wet chemical 
etching leads to strong undercuts of the InGaAs and thus has to be excluded. Even in an ion 
beam etching (IBE) process, the InAlAs withstands the Ar

+
 beam better than the photo mask, 

which consequently is removed before the process is ended. In addition, the etched flanks are 
rough and surface degradations come up during processing. So we employed a chemically 
assisted (Cl2) ion beam etching process (CAIBE). The material is exposed to the Ar

+
 beam 

and additionally to a stream of highly reactive Cl2 gas. The etching of InAlAs is significantly 
accelerated, and by properly adjusting substrate temperature, the Ar

+
 beam energy and 

intensity, and the flow rate of the Cl2 gas stream, the etch rates for InGaAs and InAlAs can be 
balanced. After optimization, steep flanks with good surface quality have been achieved 
applying this process.  
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Fig. 2. (a) Scheme of the CAIBE Process, (b) SEM picture of a mesa-structured stripline 
antenna 

The last step concerns the integration of the THz antennas with electric side contacts to the 
mesa structured photoconductor. Au is sputter-deposited and structured as shown in the SEM 
picture (Fig. 2b) for a strip line antenna. The metal side contact at the area of illumination can 
clearly be seen. In all other regions, isolating trenches separate metal and photoconductor, 
which go down to the s.i. InP substrate, and thus serve to minimize the dark current. 

4. Electrical characteristics: mesa versus planar structures 

First, the improvements of the photoconductive characteristics under CW illumination at 
1.5 µm are investigated using dipole antennas with 10 µm gap and 25 µm strip line distance. 
For the previous planar structure (Fig. 3a) the photo current is only slightly increased relative 
to the (high) dark current. In figure 3b the improvements due to the mesa structure become 
clearly visible. The photo current at 10 mW optical power is now by a 5 times higher than the 
(low) dark current. The dark current is successfully reduced by removing the parasitic 
contributions from outside the excited photoconductive gap. This effect is studied in more 
detail in figure 3c comparing dark currents in planar and mesa structures. We measure a 
reduction of the dark current by a factor of 23. Although this is a notable reduction, just from 
geometry we would expect a significantly higher factor: The width ratio of exited spot to 
antenna strip lines is 10/3000, resulting in a factor 300. The width of the dipole gap is 10 µm 
while there are 25 µm between the antenna striplines, reducing the calculated geometrical 
improvement factor to 120. The measured improvement factor, however, is only 23. The 
origin of this discrepancy can be understood by looking at the photo currents as follows: 

The effective photo currents - the differences between current with and without illumination - 
are depicted in figure 3d for planar and mesa structures. One can notice an increase of the 
photo current by a factor 5 for the mesa structured device. Excitation power and externally 
applied voltage are the same in both cases. Thus we attribute the improvement to the side 
contacts. The in-depth electrical field is higher for the mesa structures, and currents from the 



deeper layers go directly to the contacts, without crossing intermediate barriers of the 
heterostructure. This, however, also holds for the dark current through the mesa structure. 
Thus one can expect an increase similar to that for the photo current by a factor of 5. This 
explains the discrepancy observed for the dark current reduction discussed above. 
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Fig. 3. Comparison of planar versus mesa antennas (dipole 25/10 µm): 
dark and photo current: (a) planar antenna (b) mesa antenna  
planar and mesa structure: (c) dark current (d) photo current at 10 mW minus dark current 

In summary: Photo current, as well as dark current, in the photoconductive gap is increased by 
a factor 5 thanks to the side contacts of the mesa. Parasitic dark currents outside the gap are 
reduced by a factor 120 (dipole 25/10 µm, antenna length 3000 µm) thanks to removing the 
material contributing only to dark currents. The measured overall dark current is reduced by a 
factor 23 due to the coexistence of both effects. 

5. Improving the THz output power 

Next the improvement in THz output power with the mesa structure is studied. A factory 
calibrated Golay cell allows for absolute measurements of the averaged output power. The 
emitters are strip line antennas with a gap of 25 µm. The antennas are excited by 100 fs pulses 
at a center wavelength of 1.55 µm from a fiber ring laser (Menlo Systems) with a repetition 
rate of 100 MHz. The antennas of planar and mesa type are packaged into fiber coupled 
housings developed at HHI. An N2 purged THz path with 2 inch parabolic mirrors focuses the 
emission onto the Golay cell. Optical excitation power and emitter bias voltage are varied 
within the measurements. Our results are summarized in figure 4. The THz output power at 
40 mW mean optical excitation shows a quadratic behavior with increasing bias voltage, as 
expected within the scope of basic models [5]. The averaged THz power at 14 V and 40 mW 
is 0.33 µW, corresponding to a THz peak power of about 4.7 mW if a THz pulse width of 
0.7 ps is assumed. With a bias of 25 V and 16 mW optical excitation power we measured an 
average THz output of 1.24 µW (17.7 mW peak) from the mesa antenna. In general, the 
increase in THz output power due to the mesa structuring is about a factor of 5 to 6.5, 
depending slightly on the optical excitation power and bias voltage.  

The impact of the optical excitation power on THz emission (at 14 V bias voltage) is shown in 
figure 4b. Here the expected super-linear characteristics appear only at low excitation powers. 
A linear range follows, and for the mesa antenna even a sub-linear increase can be observed 



above 20 mW. We attribute this to saturation and/or screening effects, but further 
investigations are necessary to understand and to avoid these limitations. For the present 
devices an excitation power of 20 mW appears reasonable. In conclusion, mesa compared to 
planar antennas deliver five times higher THz output power at similar operating parameters. 
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Fig. 4. THz output power measured with a Golay cell in dependence 
(a) on bias voltage, at 40 mW optical power, and (b) on optical power, at 14 V bias voltage 

6. Performance of mesa antennas in a time domain system 

The evaluation of the novel mesa-type PCAs is concluded by measurements in the time 
domain system shown in figure 5. Strip line (25 µm) emitters and dipole (10 µm) receivers are 
packaged into fiber coupled modules. The average excitation power is 20 mW for emitter and 
receiver respectively. The emitter bias voltage is 10 V, modulated at 5 kHz. The THz 
emission is focused by off-axis parabolic mirrors onto the detector, and the THz path is 
purged with dry nitrogen to avoid water vapor absorption (Fig. 5). The planar antennas are 
step by step replaced by the new mesa devices, first only on the emitter site, then only on the 
receiver site, and in the end at both sites. The difference between the minimum and the 
maximum values within one pulse of the received signal is taken as a measure for the 
performance of the respective configuration. The value obtained in the system with 
conventional planar antennas serves as a reference. 

First, the emitter is changed from planar type to mesa type. The amplitude is increased by a 
factor 2.5 (Fig. 6). In order to compare this with the Golay cell results, where the THz power 
is measured, the pulse trace current values are squared and integrated. The improvement 
found here for the mesa in this example is a factor of 5.8 in power, which is in good 
agreement with the factor of 6.4 measured using the Golay cell for the underlying parameter 
values of 10 V and 20 mW. Next, we investigate planar emitters and mesa receivers (Fig. 6b). 
The amplitude is increased by a factor 11 - 12 compared to planar receivers. The mesa side 
contacts allow for an increased coupling of the THz field and a significantly improved charge 
transfer in the depth of the photoconductive layers since they allow current flow without 
traversing barriers and borders. As result, the improvements of mesa structures on the receiver 
are higher than on the emitter side. 

Finally, we use mesa structures both for the emitter and the receiver. The measured 
improvement in amplitude is a factor of 27.5, corresponding to the product of the values for 
only emitter (x 2.5) or only receiver (x 11). The significant higher received signal allows the 
use of electronic preamplifiers with lower gain and thus higher bandwidth. So improved 
signal/noise ratio, higher speed of measurements and investigation of weaker signals are made 
possible by the novel antennas. In addition to the higher amplitude, we also observe that the 
THz pulse width is reduced by about 100 fs compared to the planar structure. Consequently, 
the Fourier spectrum (Fig. 6d) now extends beyond 4 THz, compared to 3 THz for the non-
mesa antennas (not shown). Unfortunately, the relative noise floor of the FFT spectrum does 
not decrease proportionally with the increasing signal strength due to limitations in the 
absolute precision of the delay timebase. 
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Fig. 5. Scheme of the THz Time Domain System 
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Fig. 6. Detected TD signal traces applying mesa antennas versus planar antennas: 
(a) mesa emitter, (b) mesa receiver, (c) mesa system, (d) FFT spectrum of mesa system 

Summary and outlook  

InGaAs/InAlAs photoconductive antennas for 1.5 µm operation have been improved by mesa-
etching of the conductive layers. Electrical side contacts to the multi-layer structure are 
applied, and layers are removed in regions contributing only to parasitic dark currents. 

Consequently, photo currents are increased by a factor 5 and parasitic dark currents are 
suppressed. The emitted THz power is increased by more then a factor 5 compared to 
conventional planar antennas, the receiver sensitivity is improved by a factor of 11. All in all, 
the complete mesa systems outperform the previous planar systems by a factor 27.5 in 
detected amplitude. The noise limit of the Fourier spectrum has been extended beyond 4 THz. 
Summarized, the new generation of THz antennas with mesa-structured photoconductive 
layers represents a considerable advancement for 1.5 µm THz TD systems. 
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1. Introduction  

Terahertz time domain spectroscopy (TDS) is by far the method of most importance within 
the rapidly developing and prosperous field of terahertz technology [1]. This method is based 
on the optical or optoelectronical generation and detection of short THz pulses by non-linear 
crystals or semiconductor based photoconductive antennas (PCA). In the latter case it is 
crucial to employ a material that exhibits very short carrier lifetimes in order to obtain 
broadband THz spectra.  
The first generation of THz radiation from PCAs was achieved with radiation damaged 
silicon-on-sapphire [2,3]. Later experiments employed low temperature (LT) molecular beam 
epitaxy (MBE) grown GaAs, which rapidly became the state of the art material [4-6]. For all 
material systems the THz pulses were excited by titanium sapphire femtosecond lasers at 
wavelengths around 800 nm. 
In the last 20 years there have been numerous approaches to increase the performance of 
photoconductive antennas, e.g. investigating antenna structure [7,8], metallization [9] and 
carrier lifetime [10] or by utilizing new material systems, such as GaAs:ErAs [11,12], LT 
GaAsSb [13] and GaAsBi [14]. The first attempt of PCAs based on InGaAs, for excitation 

http://link.aip.org/link/doi/10.1063/1.2149977
http://link.aip.org/link/doi/10.1063/1.2205180
http://link.aip.org/link/doi/10.1063/1.1861495
http://link.aip.org/link/doi/10.1063/1.1901817
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4452856&isnumber=4452320
http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-13-9565
http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-13-9565
http://link.aip.org/link/doi/10.1063/1.3374401
http://link.aip.org/link/doi/10.1063/1.3427191
http://link.aip.org/link/doi/10.1063/1.3571289
http://www.springerlink.com/content/010544084t85h872/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00235658
http://link.aip.org/link/doi/10.1063/1.95504
http://link.aip.org/link/doi/10.1063/1.107587
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2296
http://www.opticsinfobase.org/abstract.cfm?URI=josab-13-11-2424


with cost-effective fibre lasers at wavelengths around 1.55 µm, was made by Suzuki and 
Tonouchi [15,16]. Recently, it was shown that LT MBE grown Beryllium doped 
InGaAs/InAlAs heterostructures are suitable for broadband THz emitters and detectors [17]. 
Subsequently, a completely fibre coupled THz TDS system based on these antennas was 
introduced [18]. Since then other groups also demonstrated THz emission and detection in 
InGaAs based materials [19-21].  
Despite these great efforts there is still vast potential for improvement of InGaAs based PCAs.  
As mentioned above, short carrier lifetimes are a key feature for broadband THz PCAs. These 
short carrier lifetimes are generally realized by inducing defect states into the respective 
semiconductor material. These defect states can be realized by strong doping [20,21], ion 
implantation [15,16], growth conditions, e.g. LT growth [17], or the growth of special 
recombination centers [19]. Additional important characteristics for efficient THz emitters are 
efficient absorption, a sufficiently high carrier mobility and high dark resistivity, i.e. low 
residual carrier concentrations. 
However, it is difficult to fulfill all of the above requirements, since high defect material 
typically shows a strongly reduced carrier mobility due to elastic and inelastic (i.e. trapping) 
scattering of carriers at defect sites. Furthermore, in case of InGaAs the defects states are 
energetically situated relatively close to the conduction band. This shifts the Fermi level 
closer to the conduction band edge which results in low dark resistivity at room temperature. 
The Fermi level can be lowered by counter doping with an acceptor-type dopant. However, 
counter doping further reduces carrier mobility. In addition, light absorption is also reduced in 
high defect materials. 
In this work we present a new approach to circumvent some of these obstacles. The basic idea 
is to spatially separate the photoconductive region, i.e. where light absorption and carrier 
transport take place, from regions that exhibit high defect densities and that are transparent for 
1.55 µm excitation, thus solely acting as trapping and recombination regions. 
 

2.Principle and Growth 
 
A device meeting the above mentioned requirements can be realized by MBE growth of 
InGaAs/InAlAs multi-layer heterostructures (MLHS) (as depicted in Fig 1a) when utilizing a 
special characteristic of MBE growth of InAlAs. Within a substrate temperature range 
between TS = 300 - 500 °C the growth of InAlAs shows strong alloy clustering effects with 
InAs-like and AlAs-like regions featuring clusters sizes of several nanometers, with a 
maximum cluster density for Ts ≈ 400 °C[22]. The activation energies of these cluster defects 
have been measured to be in the region of EA = 0.6-0.7 eV [22,23] which results in the InAlAs 
to be semi-isolating. 
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Fig 1. a) Schematic of InGaAs/InAlAs heterostructure, with 100 periods of a 12 nm InGaAs layer followed by a 8 nm 
InAlAs layer with cluster-induced defects acting as electron traps. b) Schematic of the respective band-diagram in 

real space with deep cluster-induced defect states. 
 



For the growth of a MLHS at this temperature and considering the conduction band offset 
between InAlAs (Eg=1.47 eV at 300 K) and InGaAs (Eg=0.74 eV at 300 K) of approximately 
ΔEc = 0.44 eV [24], this results in defect states within the InAlAs layers that are energetically 
situated significantly below the conduction band of adjacent InGaAs layers, as depicted 
schematically in Fig 1. b).  
If the InAlAs layers are sufficiently thin, i.e. the the electron wave function of an optically 
excited electron in the conduction band of an InGaAs layer has a sufficiently large overlap 
with the cluster defect states in the adjacent InAlAs layer, these defects can act as effective 
traps for those electrons. 
In addition, the MBE growth of InGaAs at substrate temperatures around 400 - 500 °C shows 
a minimum for the residual carrier concentration, with NA-ND < 3∙10

-15
 cm

-3
 and Hall mobility 

values for bulk material of μH,InGaAs = 10000 cm
2
/Vs [25]. Hence, the growth of a 

InGaAs/InAlAs MLHS should lead to short carrier lifetimes while maintaining effective 
absorption, high dark resistivity and high carrier mobility in the photoconductive layer. 
The InGaAs/InAlAs MLHS investigated in this work were grown by elemental source 
molecular beam epitaxy on semi insulating InP:Fe substrates at an approximate substrate 
temperature of 400 °C. First a 777 nm InAlAs buffer layer was grown followed by 100 
periods of 12 nm InGaAs layers and 8 nm InAlAs layers.  
We measured Hall mobility values for the MLHS grown at TS = 400 °C of μH,400-MLHS = 1500-
3000 cm

2
/Vs. The decrease in Hall mobility compared to the bulk InGaAs value is due to the 

fact that trapping of carriers into defect states in the InAlAs layers also contributes to the 
scattering time which is probed by hall mobility measurements. Nevertheless the mobility of 
the MLHS grown at 400°C is still almost one magnitude higher than that of LT-grown 
(TS=130°C) Be-doped MLHS with Hall mobility values of μH,LT-MLHS < 500 cm

2
/Vs. 

 

3. THz TDS Measurements 

In order to evaluate the 400 °C grown material as a THz emitter, the samples were processed 
as mesa-type antennas as described in [26] with a stripline type antenna geometry and a strip-
line separation of 25 µm. A similarly structured conventional LT grown Be-doped 
InGaAs/InAlAs MLHS served as a reference emitter in all measurements. 
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Fig 2. THz pulse trace and corresponding FFT spectrum for a conventional LT-grown Be-doped MLHS THz emitter 

grown at Ts =130 °C (this is serves as a reference). 



For detection we used a photoconductive receiver also based on LT-grown Be-doped 
InGaAs/InAlAs MLHS processed with a 10 µm gap dipole mesa-type antenna. The THz TDS 
setup consisted of a pre-compensated pulsed Er-doped fibre laser with a repetition rate of 
100 MHz and pulses with approximately 80 fs FWHM pulse width. A mechanical delay stage 
was used to introduce a delay between pump and probe pulse. The laser was focused onto the 
emitter and detector with a spot size of approximately 10 µm. The THz beam path consisted 
of hyper-hemispherical silicon lenses attached to the backside of each antenna and two off-
axis parabolic mirrors in between to focus the THz emission onto the detector.Figure 2 shows 
Fourier spectrum of the signal from the LT-reference antenna with the corresponding THz 
pulse trace in the inset. Figure 3 shows the FFT spectrum and THz pulse obtained from the 
new emitter material. In both cases a bias field of 2 kV/cm and an optical excitation of 10 mW 
at emitter and 20 mW at the detector were applied. As can be seen the spectral bandwidth of 
the new design is comparable to the one obtained with the LT grown reference, both 
extending well beyond 3 THz. The high bandwidth obtained with the new device suggests that 
the device exhibits relatively fast carrier trapping times, thus supporting the assumption of an 
effective trapping mechanism within the device. 
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Fig 3. THz pulse trace and corresponding FFT Spectrum for a MLHS grown at Ts =400°C, with separated trapping 

and photoconductive regions 

 

4. Dependence on bias field and optical-to-THz conversion efficiency 

To further evaluate the new material, we measured the peak-to-peak amplitude of the THz 
pulse obtained by TDS measurements in dependence of the applied bias field as well as in 
dependence on the optical power incident on the emitter antenna. Again an LT grown Be-
doped MLHS antenna served as a reference.  

The THz amplitude over applied bias field is shown in Fig.4. As can be seen the new MLHS 
grown at 400°C shows a much stronger THz emission than the LT reference. We attribute this 
to the improved carrier mobility in the new material. This can be understood within the 
framework of the classical Maxwell and Drude-model [27], where the emitted THz field is 
directly proportional to the derivative of the time-varying photocurrent which in turn is 
proportional to the mobility. In Figure 5 the THz amplitude is shown in dependence of the 
optical excitation power at the emitter for a constant bias field of 2 kV/cm. The new material 
shows a significantly higher light sensitivity compared to the LT reference, which we attribute 



to a shaper absorption band edge and the higher mobility in the 400 °C grown material 
compared to the LT-grown material. 
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Fig 4. Emitted THz-pulse amplitude detected by a PCA receiver in a THz TDS setup, as a function of applied bias 
field at the emitter for a MLHS grown at Ts =400 °C (squares) and a MLHS grown at Ts = 130 °C, Be-doped 

(triangles). The applied optical power was 10 mW for both emitter and receiver. 
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Fig 5. Emitted THz-pulse amplitude detected by a PCA receiver in a THz TDS setup, as a function of optical 

excitation power at the emitter for a MLHS grown at Ts =400 °C (squares) and a MLHS grown at Ts = 130 °C, Be-
doped (triangles). The applied emitter bias field was 2 kV/cm. 

 

 
5. Conclusion and Outlook 
 

We presented a new concept and the first realization of InGaAs based THz emitters that 
combine fast trapping times with high mobility and efficient absorption. The new emitters are 
capable of broadband THz emission while raising the optical-to-THz conversion efficiency by 
almost one order of magnitude. Future designs comprising optimized growth conditions and 
trapping layer thicknesses will potentially further improve the performance of these pulsed 
THz emitters.  
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Abstract

The influence of localization and disorder in (GaIn)As/(AlIn)As heterostructures with spatially separated photoconduc-
tive and recombination regions designed as material for THz antennas for telecom applications at 1.55µm is investigated
by photoluminescence spectroscopy. The emission is studied as a function of lattice temperature for a series of samples
with different growth temperatures. Strain-induced disorder is identified as the main contribution to carrier localization.
In addition, inhomogeneous broadening as well as PL intensity are strongly influenced by the impurity density in the
barrier material. The optimal configuration as THz antenna material is achieved at a growth temperature of 375 ◦C.

Keywords: III-IV semiconductors, photoluminescence,
disorder, THz-emitters

1. Introduction

Terahertz (THz) time-domain spectroscopy (TDS) is
the method of paramount importance and potential within
the rapidly developing field of THz technology [1–3]. This
technique is based on the optoelectronic generation and
detection of short THz pulses either in non-linear crys-
tals or in semiconductor-based photoconductive antennas.
In particular, the latter scheme is widely used. For these
applications, it is essential that the antenna material com-
bines an ultra-short carrier lifetime in the range of a few
hundreds of femtoseconds and high carrier mobility; see [4,
5] for more details. Originally, photoconductive antennas
were made from radiation-damaged silicon-on-sapphire [6,
7]. Later, low-temperature (LT) GaAs became the stan-
dard material [8–10]. Both material systems are typically
excited with laser pulses in the 800 nm range provided by
Ti:sapphire lasers.

Many attempts have been made over the last 15 years
to optimize photoconductive emitters and receivers regard-
ing, e.g., the antenna structure [10, 11], metallization [12],
and carrier lifetime [13]. Additionally, new material sys-
tems have been explored including LT-Ga(AsSb) [14],
Ga(AsBi) [15], and GaAs with ErAs islands [16, 17], only
to name a few. Much effort was directed towards the devel-
opment of antennas for excitation at the so-called ”telecom
wavelength” around 1550 nm using more cost-efficient fibre

∗Corresponding author. Tel: +49 6421 2824427, fax: +49 6421
2827036

Email address: tilmann.jung@physik.uni-marburg.de

(T. Jung)

lasers. In 2005 ion-implanted InGaAs was demonstrated
as antenna material for this frequency window [18–21].
Later, LT molecular beam epitaxy (MBE) grown Be-doped
(GaIn)As/(AlIn)As quantum wells on InP substrate were
introduced [22]. An all-fibre coupled THz spectrometer
without any free-space paths was demonstrated using an-
tennas fabricated from these materials [23, 24]. However,
further doping of LT grown antenna materials typically re-
duces carrier mobility due to scattering effects. To avoid
this, a most recent approach intends the spatial separation
of the antennas photoconductive regions from regions with
high defect densities, thus ensuring short carrier lifetimes
while maintaining high carrier mobility. This separation
can be achieved under certain growth conditions. A first
experimental demonstration that this scheme works well
for terahertz emission was recently reported by Dietz et
al. for a structure grown at 400 ◦C [25].

In this paper, we present a comprehensive characteri-
zation of the photoluminescence (PL) properties of a series
of such (GaIn)As/(AlIn)As heterostructures grown at sub-
strate temperatures between 325 ◦C and 450 ◦C. The pho-
toluminescence data are corelated with X-ray diffraction
(XRD) measurements. In particular, we investigate lo-
calization and disorder effects in the (GaIn)As layers and
how they are influenced by different growth conditions.
We aim to identify the optimal combination between fast
non-radiative capture and minimal localization effects.

2. Samples and Experiment

We study a series of samples grown onto (100)-oriented
InP:Fe substrates using MBE at substrate temperatures of
325, 350, 375, 400, 425, and 450 ◦C. The initial substrate
temperature was set to 500 ◦C which was then ramped to
the desired final growth temperature. Next, a ∼ 0.8µm

Preprint submitted to Elsevier March 19, 2012



(GaIn)As buffer layer was grown on top of the substrate.
The active structural element was repeated 30 times, con-
sisting of 12 nm (GaIn)As quantum wells with 8 nm (AlIn)As
barriers. Finally, a 10 nm (GaIn)As cap layer concluded
the growth of the structure.

For the PL measurements, a Ti:sapphire laser emitting
100 fs pulses at 80MHz centered at 800 nm is used as a
pump. We focus the laser to obtain an excitation photon
fluence at the sample surface of 2 · 1014 photons cm−2 per
pulse, corresponding to the typical excitation conditions
for THz antenna applications. The samples are mounted
in a He-flow cryostat, enabling measurements from 4K
to room temperature. The PL is collected in reflection
geometry and is imaged into an optical spectrum analyzer
using 0.3NA collection optics.
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Figure 1: Exemplary PL spectra for the sample grown at 375 ◦C
taken for lattice temperatures from 10K to room temperature shown
from top (grey) to bottom (black). The PL maximum shifts to lower
energies with increasing lattice temperature while the peak broadens
significantly; no clear s-shape is observed. The inset shows the ex-
ponential fit parameters for the lower (black squares) and the higher
energy flank (red dots).

To characterize the samples we acquire PL spectra at
lattice temperatures of 10, 30, 60, 90, 120, 150, 190, 240
and 292K (room temperature). A typical data set is shown
in Fig. 1 for the sample grown at 375 ◦C. The peak emis-
sion continuously shifts towards lower energies and the
lines broaden as the lattice temperature increases. The
non-Lorentzian shape of the low energy flank indicates
inhomogeneos broadening. To quantify the lineshape of
the PL, we now fit the high- and low-energy flanks of the
emission with exponential functions IPL ∼ exp{−E / εD}.
This function corresponds to the typical density of the
band-tail states in a disordered system [26, 27] and is
well suited for the description of Boltzmann-shaped high-
energy flanks. The fit parameters εD are now plotted ver-
sus lattice temperature for both flanks as shown in the
inset of Fig. 1. As expected, the εD value for the high-
energy flank roughly corresponds to kBT and thus in-
creases with lattice temperature. However, a constant εD
value of about 10meV is found for the low-energy flank,

determined by the inhomogeneous broadening associated
with disorder. Similar observations are made for the sam-
ples grown at temperatures of 325, 350, and 400 ◦C.

Figure 2: Peak energy over lattice temperature for three different
samples. Growth temperatures at 325 ◦C (black squares), 375 ◦C
(green triangles) and 425 ◦C (red dots). The dashed lines represent
Varshni-like behavior. The inset shows the XRD measurements of
the 375 ◦C and the 425 ◦C samples in their respective color.

The influence of localization is typically studied by
analysing the temperature dependence of the PL max-
ima [26, 28]. We plot the maxima of the low-power emis-
sion spectra versus lattice temperature for the samples
grown at 325, 375, and 425 ◦C in Fig. 2. The data are
fit with the standard Varshni model for the temperature
dependent band-gap shift, the results are shown as dashed
lines. Little to no deviations from Varshni-behavior are
found for low and medium growth temperatures up to
400 ◦C while at high growth temperatures of 425 ◦C and
above, we find clear signatures of the so-called s-shape.
The latter is typically observed in disordered systems as a
hallmark of carrier hopping between localized states [29,
30]. The s-shape further allows the determination of the
characteristic localization scale [28]. Here, the localization
energy is estimated to ε0 ≈ 6meV (+ − 1)meV, roughly
corresponding to the value extracted from the low-energy
flank.

3. Results and discussion

The physical origin of this increased localization is found
in XRD measurements shown in the inset of Fig. 2. Here,
the angular dependence of the XRD intensity is plotted
for the samples grown at 375 ◦C and 425 ◦C on a loga-
rithmic scale. The peak indicating the substrate is set to
an angle of 0mrad in both cases while the other two peaks
are assigned to the (GaIn)As and the (AlIn)As layers. The
425 ◦C sample yields a significantly higher deviation of the
deposited material stack from the substrate, indicating a
differing lattice constant, i.e., higher strain. The localiza-
tion effects in the heterostructures grown at temperatures

2



of 425 ◦C and above are therefore correlated to the lattice
mismatch and are thus strain-induced. However, even in
this case the deduced disorder parameter is rather small
when compared to other material systems [26, 30, 31].
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Figure 3: a) Comparison of the exponential factors fitted to the lower
energy part of the PL spectra in dependence of the growth temper-
ature. The data represents measurements obtained at 10K (black
squares), 150K (green triangles) and 292K (red dots). A significant
broadening is observed for the 375 ◦C sample. b) Normalized PL
intensity vs. growth temperature plotted semi-logarithmically show-
ing a significant dip for 375 ◦C growth temperature. The lines are
guides to the eye in both a) and b).

So far, we have dealt with the quantification of local-
ization for each sample and thus growth temperature in-
dividually. Now we compare the samples with respect to
inhomogeneous broadening and PL intensity to identify
the optimal growth conditions for THz antennas. For this
purpose, we fit the lower energy part of the measured PL
spectra with an exponential curve to quantify the broad-
ening, as done in Fig. 1. The obtained exponential fit pa-
rameters are plotted versus growth temperature in Fig. 3a
for measurements at lattice temperatures of 10, 150, and
292K. The broadening increases only slightly with increas-
ing lattice temperature. However, a much more significant
increase is found at the intermediate growth temperature
of 375 ◦C. This increased broadening indicates a second,
independent mechanism, which influences carrier dynam-
ics, besides strain.

For further analysis we compare the integrated PL in-
tensities as a figure-of-merit for the relative quantum ef-
ficiency of the materials. Fast carrier capture is one of
the desired material properties for a receiver and typically
manifests itself in a low PL emission strength. The PL

intensities are plotted as a function of growth tempera-
ture for different lattice temperatures in Fig. 3b. A strong
drop in emission intensity at 375 ◦C is found. Note, that
while normalized data is shown, the relative intensities for
the different growth temperatures are comparable and the
emission at room temperature is quenched by roughly one
to two orders of magnitude compared to the 10 K data.
Both the PL intensity drop and the increase of the ex-
ponential fit factors indicate a significant influence of the
growth temperature on the carrier dynamics. Former stud-
ies suggest a temperature dependent arsenic cluster forma-
tion in the (AlIn)As barrier material, maximizing the effect
in the corresponding temperature region [32]. The local in-
ternal strain induces the formation of deep level impurities
reaching a maximum density at a growth temperature of
375 ◦C. This leads to non-radiative carrier recombination,
as well as to very fast carrier entrapping in the barrier, ex-
plaining both increase of the PL linewidth and dramatic
intensity decrease.

4. Conclusions

In conclusion, we have investigated a series of
(GaIn)As/(AlIn)As QW samples for THz antenna applica-
tions at the telecom wavelength of 1.55µm. Most samples
show no disorder-related signatures of carrier hopping be-
tween localized states. Only when the growth temperature
of the material is increased beyond 425 ◦C, weak influence
of localization with a characteristic energy scale around
6meV is observed in the PL. Supported by XRD measure-
ments, the origin of this localization is attributed to strain.
In addition, optimal growth temperatures with respect to
non-radiative recombination are identified to be 375 ◦C.
The corresponding short carrier-lifetimes yield promising
perspectives for the desired THz-applications [25].

This work was supported by the Deutsche Forschungs-
gemeinschaft under grant KO 1520/5-1 and SA/784/4-1.
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Abstract: We present results on optimized growth temperatures and layer structure design of 

high mobility photoconductive THz emitters based on molecular beam epitaxy (MBE) grown 

In0.53Ga0.47As/In0.52Al0.48As multilayer heterostructures (MLHS). The photoconductive 

antennas (PCA) made of these MLHS are evaluated as THz emitters in a THz time domain 

spectrometer and with a Golay cell. We measured a THz bandwidth in excess of 4 THz and 

average THz powers of up to 64 µW corresponding to an optical power-to-THz power 

conversion efficiency of up to 2×10
-3

. 

 

Terahertz time domain spectroscopy (THz 

TDS) is among the most promising methods for 

industrial and scientific applications within the 

rapidly developing and promising field of terahertz 

technology.1 In order to find widespread 

applications, THz TDS systems have to be 

compact, stable and cost effective. Therefore, 

various attempts have been made to exploit readily 

available Er-doped femtosecond fiber lasers at 

1550 nm wavelength, of-the-shelf telecom 

components as well as efforts to design suitable 

InGaAs based PCAs.
2,3,4,5,6

 However, great potential 

remains for further improvement of InGaAs based 

PCAs concerning their efficiency and output power. 

It has recently been shown that InAlAs/InGaAs 

MLHS grown by MBE at substrate temperatures of 

approx. 400 °C exhibit a high optical-to-THz 

conversion efficiency and broadband THz 

emission.
7
 In this growth temperature range InGaAs 

shows a minimum of defect incorporation with a 

residual carrier concentration on the order of 

n = 10
16

 cm
-3

.
8
 On the contrary, InAlAs exhibits 

increased defect incorporation in this temperature 

range, associated with alloy clustering due to the 

interplay of surface kinetics and thermodynamics 

during the MBE growth process.
9
 By exploiting 

above characteristics it is possible to obtain 

InAlAs/InGaAs MLHS with low defect density and 

high mobility InGaAs layers adjacent to high defect 

InAlAs layers for carrier trapping at the same 

growth temperature. 

For further understanding and optimization of 

these MLHS for THz generation we investigated 

the influence of growth temperature and InAlAs 

layer thickness on the defect incorporation, carrier 

relaxation dynamics and THz emission 

characteristics.  

__________________ 
a) Electronic mail: Roman.Dietz@hhi.fraunhofer.de. 
Tel.:+493031002522 

 

Therefore, we performed differential transmission 

(DT) measurements, THz time domain 

spectroscopy (TDS) and determined the emitted 

THz power with a Golay cell. To investigate the 

influence of the MBE growth temperature two 

sample series were grown. The first one with 

substrate temperatures ranging from Tg = 325 °C to 

Tg = 450 °C in steps of 25 °C with 30 periods of 

12 nm InGaAs and 8 nm InAlAs (Tg-series 1), and 

the second series (Tg-Series 2) with temperatures 

ranging from Tg = 350 °C to Tg = 425 °C in 25 °C 

steps grown with 100 periods and the same layer 

thicknesses as in Tg-Series 1. 

In order to probe the carrier relaxation 

dynamics we performed DT measurements using an 

Er-doped femtosecond fiber laser with 100 MHz 

repetition rate and a center wavelength of 1560 nm 

as excitation source. The pump and probe beam 

were focused on the sample with a spot size of 

approx. 15 µm diameter. Their polarizations were 

kept orthogonal to avoid interference effects 

between pump and probe beam. The probe power 

was kept constant at 0.1 mW while the pump power 

was varied between 1 mW and 16 mW in order to 

investigate possible trap saturation effects. Fig. 1(a) 

shows an example of the measured DT signals for a 

pump power of 16 mW for Tg-Series 2 as well as 

the DT measurement of a low temperature (LT) 

grown (Tg = 130 °C) and Beryllium doped MLHS 

sample. This sample will serve as a reference, since 

LT-grown Be-doped MLHS are known to exhibit 

very fast carrier trapping and have been 

demonstrated to be suitable materials for THz 

PCAs.
6
 The LT-grown Be-doped MLHS sample 

shows a fast mono-exponential decay with a decay 

time of approx. 550 fs for 1 mW (not shown) and 

approx. τ1 = 770 fs at 16 mW of pump power. This 

fast decay in the DT signal is governed by electron 

trapping out of the conduction band (CB) into AsGa-

anti-site defect related trap states inside the InGaAs 

layers.
10,11
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FIG. 1. Example of differential transmission signals measured 

with 16 mW pump power and at 0.1 mW probe power for 
samples of Tg-series 2 and a LT-grown Be-Doped MLHS as 

reference sample. (b) Example of the short decay component τ1 

for samples of Tg-series 2. The thin red solid lines in (a) indicate 
the fit functions, mono-exponential for the LT-grown reference 

and bi-exponential for all other samples. 

 

The slight increase of the decay time for increased 

pump powers, which also leads to a deviation from 

a purely mono-exponential decay, is assumed to be 

due to partial trap state filling. Trap state filling 

occurs because of the relatively slow recombination 

of electrons within trap states with holes in the 

valence band (VB), for which the time constant is 

assumed to be on the order of several tens of 

picoseconds. The samples of Tg-Series 1 and 2 on 

the other hand show two distinct decay 

components: A relatively small component with a 

very fast decay time (τ1) on the order of a few 

hundred femtoseconds (example in Fig. 1(b)) and a 

dominating decay component with a relatively slow 

decay time (τ2) of several tens of picoseconds. The 

origin of the short time constant τ1 is manifold: Part 

of the signal is due to the coherent interaction of 

pump and probe beam that is present despite the 

thoroughly crossed polarization. Furthermore, some 

of the absorption recovery is due to the 

redistribution of the carrier population in the CB via 

carrier-carrier scattering and phonon emission. 

Another part is assumed to originate from fast 

carrier trapping into a small amount of AsGa-related 

defects in the InGaAs layers that exist even for 

these elevated growth temperatures. This 

contribution becomes slightly more dominant for 

samples grown at Tg ≤ 375 °C. However, there is no 

strong correlation of this combined short decay τ1 

with growth temperature or THz dynamics of the 

samples. The second time constant τ2 is associated 

with electron trapping into defect states within the 

InAlAs layer and shows a strong dependence on 

growth temperature (Fig. 2). Furthermore we see a 

strong correlation between THz dynamics and τ2, as 

will be shown later on. As visible in Fig. 2 there is a 

minimum of τ2 for samples grown at Tg = 375 °C 

and Tg = 350 °C, for series 1 and 2, respectively. 

This indicates the expected maximum of defect 

incorporation in the InAlAs layers at these growth 

temperatures. The two growth series seem to be 

shifted in temperature with respect to each other. 

This is supposed to originate from a systematic 

error in the calibration of Tg that is constant over 

each growth series. The temperature calibration was 

performed via the observation of oxide desorption 

from the InP substrate on the RHEED signal at 

Tg ≈ 500 °C. We assume an uncertainty of up to 

∆Tg = ±15 °C in this calibration, especially for 

growth series that were not grown in direct 

succession as it is the case for Tg-series 1 and 2. 

The vertical shift, i.e. the on average faster decay 

times for samples from Tg-Series 2, is attributed to 

the increased number of periods, i.e. 100 versus 30, 

thus offering a higher total amount of traps. 

The fastest decay time with 

τ2 = 12.78 ± 0.04 ps for sample HHI33129 is still at 

least one order of magnitude higher than for LT-

grown samples. This indicates that the capture cross 

section and/or the density of the trap states in the 

InAlAs layers is still small compared to arsenic 

anti-site related trap states obtained via LT-growth 

of InGaAs. We see a minor influence of the pump 

power on the slow decay component τ2 tending 

towards faster relaxation for higher pump powers 

and for samples with high defect densities, i.e. 

Tg = 350-400 °C. Higher electron excitation 

densities result, after thermalization with the lattice, 

in a higher phonon density that in turn increases the 

carrier trapping probability into defects states 

within the InAlAs layers. 

 
 
FIG. 2. Fit results for slow decay time constant τ2 extracted from 

bi-exponential fits on DT measurements for Tg-series 1 (empty 

symbols) and Tg-series 2 (filled symbols) at various pump 
powers. 
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For a detailed analysis of the carrier capture 

into trap states associated with defects in the 

InAlAs barrier, we investigated the influence of the 

barrier thickness (dB) on carrier relaxation 

dynamics. Therefore, samples with 2 nm, 4 nm, 

8 nm, 16 nm of InAlAs layer thickness were grown 

while keeping the InGaAs thickness fixed at 12 nm 

(dB-Series). All samples consisted of 100 periods 

and where grown at substrate temperature of 

approx. Tg = 400 °C.  

 

FIG. 3. Fit results for decay time constant τ2 from bi-exponential 
fit on differential transmission signals for samples with different 

barrier thicknesses (right) and the calculated average penetration 

depth of the electron wave-function in to the barrier as a function 
of barrier thickness (left). The lines are guidelines for the eyes. 

Additionally, we calculated the electron wave 

functions (WF) solving one dimensional (1D) 

Schroedinger equation for a 30 period MLHS. The 

WF was used to calculate an averaged penetration 

depth of the WF into the barrier, by summing over 

all positions within the barrier with non-zero WF 

values and averaging over all 30 (in 1D) degenerate 

energy eigenvalues of the first sub-band. 

Considering a homogeneous trap density within the 

barrier, this quantity gives a measure of how many 

defect states are “reachable” by an electron. The 

results from the DT measurements on the samples 

and the results from the above mentioned 

calculation are shown in Fig. 3. As can be seen 

from the measurements, an increased barrier 

thickness leads to a faster decay. This is due to the 

higher absolute number of available and/or 

reachable trap states in the InAlAs barrier assuming 

that the trap state density is independent of the 

barrier thickness and solely dependent on Tg. The 

slightly reduced slope of the curve for 1 mW pump 

supports this assumption if possible trap saturation 

at higher carrier densities is taken into account. 

In order to investigate the THz emission the 

samples were structured with mesa-type strip-line 

antennas with gap sizes of 100 µm and employed as 

emitters in a THz-TDS setup.
6
 The applied receiver 

was a mesa-type dipole antenna with a gap size of 

10 µm and a contact line separation of 25 µm made 

from the LT Be-doped reference sample HHI33122 

shown in Fig. 1(a). For the sake of brevity we only 

show pulse traces and spectra for four of the 

samples. The sample parameters and the measured 

τ2 are given in Table I. As visible in Fig. 4(b) the 

THz-TDS spectrum of the fast LT-sample shows a 

slight shift of the spectral maximum towards higher 

frequencies compared to the other samples. 

However, no significant difference in overall 

bandwidth or dynamic range is evident. This 

strongly suggests that the bandwidth of the 

generated THz radiation is mainly governed by the 

rising edge of the carrier density, i.e. the exiting 

laser pulse duration, and not trapping or 

recombination dynamics. This is in agreement with 

studies conducted on Si:GaAs by Liu et al.
12

  
 

Sample Tg 

[°C] 

Be-doping 

[cm-3] 

dB 

[nm] 

decay time [ps] 

33122 130 3×1018 8 0.77±0.07 (τ1) 

33129 350 no doping 8 12.78±0.04 (τ2) 

33124 400 no doping 8 31.53±0.04 (τ2) 

33141 400 no doping 2 86.0±0.2 (τ2) 

 

Table I. List of samples measured in THz-TDS Setup with 

respective growth and DT parameters. 

 

Furthermore, the samples with slower decay time 

show strongly increased THz emission amplitudes 

under equal excitation conditions as visible from 

the THz pulse traces in Fig. 4(a).  

 

 

FIG. 4. Pulse traces (a) and corresponding Fourier spectra (b) 

obtained for 100 µm strip-line antennas made of samples listed 

in Table I. The receiver was a 10 µm dipole antenna made from 
sample HHI33122. Emitter bias was 10 kV/cm and 16 mW 

optical power for both, emitter and receiver. The spectra are 

shifted vertically for clarity. 
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FIG. 5. Measured average THz power obtained from samples of 

Tg-Series 2 and the LT-grown Be-doped sample in dependence 
on the decay time obtained from DT measurements. The bias 

field strength was 10 kV/cm and 16 mW of optical power were 

used for all measurements. 
 

In order to quantify the emitted THz power, 

the coherent receiver, i.e. the dipole antenna, was 

substituted with a Golay cell. For each sample of 

Tg-Series 2 and the dB-Series several 100 µm strip-

line antennas were tested in this setup to eliminate 

adjustment errors and possible fluctuations of 

antenna quality. We observe a clear increase of the 

average emitted THz power for samples with 

increasing decay time τ2 for both sample series as 

shown in Figure 5 and 6.  

 
FIG. 6. Measured average THz power obtained from samples of 

the dB-Series in dependence on the decay time obtained from DT 

measurements. The bias field strength was 10 kV/cm and 16 mW 
of optical power were used for all measurements. 

 

Considering that the measured decay time of 

all samples (except HHI33122) is long compared to 

the time scale on which the THz radiation is 

produced, i.e. < 2 ps, this result is counterintuitive. 

However, this correlation does not necessarily mean 

that the underlying physical process is carrier 

capture. The decay time τ2 can be considered an 

adequate measure of the trap state density in the 

InAlAs layers. Considering this, the decrease in 

THz emission can be explained in terms of an 

elastic scattering process of electrons that is trap 

density related and hence limiting the carrier 

mobility. There are two possible mechanisms for 

this scattering process. One is scattering due to 

surface roughness at the interfaces between InAlAs 

and InGaAs layers that is increased for increased 

clustering in the InAlAs layers. However, in case of 

the dB-series this explanation would only be valid if 

surface roughness is strongly dependent on the 

InAlAs layer thickness which we assume is not the 

case. More plausible is elastic scattering directly at 

the defects within the InAlAs barrier. Other than a 

capture process, an elastic scattering process does 

not require the emission of phonons for the sake of 

energy conservation. An elastic scattering process is 

thus assumed to have a much higher probability 

than a capture process at the same defect state. 

We like to point out, that complete removal of the 

InAlAs layers, i.e. bulk InGaAs, increases dark 

conductivity by several orders of magnitude due to 

the relatively high residual carrier concentration of 

InGaAs of n ≈ 10
16

 cm
-3

 and thus would render the 

application of sufficiently strong bias fields 

impossible. This is also the case for growth 

temperatures of Tg ≥ 450 °C where the reduced 

density in the InAlAs barriers does not suffice to 

obtain an overall semi-insulating sample. 

The maximum applicable field strength for 100 µm 

strip-line antennas reached up to 15 kV/cm. The 

dependence of the THz power on the optical 

excitation power emitted by antennas from samples 

HHI33122 and 33141 are given in Fig. 7. At 

32 mW optical excitation we measured an average 

THz output power for the antenna from HHI33141 

of 64 µW corresponding to an optical power-to-

THz power conversion efficiency of 2×10
-3

. 

 

 
FIG. 7. Emitted THz power of a 100 µm strip-line antenna from 
sample HHI33141 and HHI33122 in dependence on the optical 

excitation power at a bias field of 15 kV/cm. 

 

In conclusion we have shown that the carrier 

relaxation shows a (local) minimum at a growth 

temperature of around Tg = 350-375°C. 

Additionally the carrier relaxation time decreases 

when the barrier thickness is decreased. However, 

the emitted THz bandwidth has been shown to be 

mostly independent on the carrier relaxation time in 

the semiconductor and is hence governed by the 

excitation laser pulse width. Furthermore, the THz 

emission efficiency is reduced for increasing trap 

densities, which is associated with trap related 
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elastic carrier scattering. For optimal growth 

parameters of the semiconductor material we 

measured 64 µW of emitted average THz power for 

32 mW of optical excitation. This corresponds to an 

achieved optical-to-THz conversion efficiency of 

2×10
-3

 which is two orders of magnitude higher 

than values accessible with LT-grown Be-doped 

InGaAs/InAlAs MLHS and the highest value for 

InGaAs based emitters reported so far. This work 

was funded by the German Research Foundation 

(DFG). 
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Abstract: We present results on optimized growth temperatures and layer structure design of 

high mobility photoconductive THz emitters based on molecular beam epitaxy (MBE) grown 

In0.53Ga0.47As/In0.52Al0.48As multilayer heterostructures (MLHS). The photoconductive 

antennas (PCA) made of these MLHS are evaluated as THz emitters in a THz time domain 

spectrometer and with a Golay cell. We measured a THz bandwidth in excess of 4 THz and 

average THz powers of up to 64 µW corresponding to an optical power-to-THz power 

conversion efficiency of up to 2×10
-3

. 

 

Terahertz time domain spectroscopy (THz 

TDS) is among the most promising methods for 

industrial and scientific applications within the 

rapidly developing and promising field of terahertz 

technology.1 In order to find widespread 

applications, THz TDS systems have to be 

compact, stable and cost effective. Therefore, 

various attempts have been made to exploit readily 

available Er-doped femtosecond fiber lasers at 

1550 nm wavelength, of-the-shelf telecom 

components as well as efforts to design suitable 

InGaAs based PCAs.
2,3,4,5,6

 However, great potential 

remains for further improvement of InGaAs based 

PCAs concerning their efficiency and output power. 

It has recently been shown that InAlAs/InGaAs 

MLHS grown by MBE at substrate temperatures of 

approx. 400 °C exhibit a high optical-to-THz 

conversion efficiency and broadband THz 

emission.
7
 In this growth temperature range InGaAs 

shows a minimum of defect incorporation with a 

residual carrier concentration on the order of 

n = 10
16

 cm
-3

.
8
 On the contrary, InAlAs exhibits 

increased defect incorporation in this temperature 

range, associated with alloy clustering due to the 

interplay of surface kinetics and thermodynamics 

during the MBE growth process.
9
 By exploiting 

above characteristics it is possible to obtain 

InAlAs/InGaAs MLHS with low defect density and 

high mobility InGaAs layers adjacent to high defect 

InAlAs layers for carrier trapping at the same 

growth temperature. 

For further understanding and optimization of 

these MLHS for THz generation we investigated 

the influence of growth temperature and InAlAs 

layer thickness on the defect incorporation, carrier 

relaxation dynamics and THz emission 

characteristics.  
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Therefore, we performed differential transmission 

(DT) measurements, THz time domain 

spectroscopy (TDS) and determined the emitted 

THz power with a Golay cell. To investigate the 

influence of the MBE growth temperature two 

sample series were grown. The first one with 

substrate temperatures ranging from Tg = 325 °C to 

Tg = 450 °C in steps of 25 °C with 30 periods of 

12 nm InGaAs and 8 nm InAlAs (Tg-series 1), and 

the second series (Tg-Series 2) with temperatures 

ranging from Tg = 350 °C to Tg = 425 °C in 25 °C 

steps grown with 100 periods and the same layer 

thicknesses as in Tg-Series 1. 

In order to probe the carrier relaxation 

dynamics we performed DT measurements using an 

Er-doped femtosecond fiber laser with 100 MHz 

repetition rate and a center wavelength of 1560 nm 

as excitation source. The pump and probe beam 

were focused on the sample with a spot size of 

approx. 15 µm diameter. Their polarizations were 

kept orthogonal to avoid interference effects 

between pump and probe beam. The probe power 

was kept constant at 0.1 mW while the pump power 

was varied between 1 mW and 16 mW in order to 

investigate possible trap saturation effects. Fig. 1(a) 

shows an example of the measured DT signals for a 

pump power of 16 mW for Tg-Series 2 as well as 

the DT measurement of a low temperature (LT) 

grown (Tg = 130 °C) and Beryllium doped MLHS 

sample. This sample will serve as a reference, since 

LT-grown Be-doped MLHS are known to exhibit 

very fast carrier trapping and have been 

demonstrated to be suitable materials for THz 

PCAs.
6
 The LT-grown Be-doped MLHS sample 

shows a fast mono-exponential decay with a decay 

time of approx. 550 fs for 1 mW (not shown) and 

approx. τ1 = 770 fs at 16 mW of pump power. This 

fast decay in the DT signal is governed by electron 

trapping out of the conduction band (CB) into AsGa-

anti-site defect related trap states inside the InGaAs 

layers.
10,11
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FIG. 1. Example of differential transmission signals measured 

with 16 mW pump power and at 0.1 mW probe power for 
samples of Tg-series 2 and a LT-grown Be-Doped MLHS as 

reference sample. (b) Example of the short decay component τ1 

for samples of Tg-series 2. The thin red solid lines in (a) indicate 
the fit functions, mono-exponential for the LT-grown reference 

and bi-exponential for all other samples. 

 

The slight increase of the decay time for increased 

pump powers, which also leads to a deviation from 

a purely mono-exponential decay, is assumed to be 

due to partial trap state filling. Trap state filling 

occurs because of the relatively slow recombination 

of electrons within trap states with holes in the 

valence band (VB), for which the time constant is 

assumed to be on the order of several tens of 

picoseconds. The samples of Tg-Series 1 and 2 on 

the other hand show two distinct decay 

components: A relatively small component with a 

very fast decay time (τ1) on the order of a few 

hundred femtoseconds (example in Fig. 1(b)) and a 

dominating decay component with a relatively slow 

decay time (τ2) of several tens of picoseconds. The 

origin of the short time constant τ1 is manifold: Part 

of the signal is due to the coherent interaction of 

pump and probe beam that is present despite the 

thoroughly crossed polarization. Furthermore, some 

of the absorption recovery is due to the 

redistribution of the carrier population in the CB via 

carrier-carrier scattering and phonon emission. 

Another part is assumed to originate from fast 

carrier trapping into a small amount of AsGa-related 

defects in the InGaAs layers that exist even for 

these elevated growth temperatures. This 

contribution becomes slightly more dominant for 

samples grown at Tg ≤ 375 °C. However, there is no 

strong correlation of this combined short decay τ1 

with growth temperature or THz dynamics of the 

samples. The second time constant τ2 is associated 

with electron trapping into defect states within the 

InAlAs layer and shows a strong dependence on 

growth temperature (Fig. 2). Furthermore we see a 

strong correlation between THz dynamics and τ2, as 

will be shown later on. As visible in Fig. 2 there is a 

minimum of τ2 for samples grown at Tg = 375 °C 

and Tg = 350 °C, for series 1 and 2, respectively. 

This indicates the expected maximum of defect 

incorporation in the InAlAs layers at these growth 

temperatures. The two growth series seem to be 

shifted in temperature with respect to each other. 

This is supposed to originate from a systematic 

error in the calibration of Tg that is constant over 

each growth series. The temperature calibration was 

performed via the observation of oxide desorption 

from the InP substrate on the RHEED signal at 

Tg ≈ 500 °C. We assume an uncertainty of up to 

∆Tg = ±15 °C in this calibration, especially for 

growth series that were not grown in direct 

succession as it is the case for Tg-series 1 and 2. 

The vertical shift, i.e. the on average faster decay 

times for samples from Tg-Series 2, is attributed to 

the increased number of periods, i.e. 100 versus 30, 

thus offering a higher total amount of traps. 

The fastest decay time with 

τ2 = 12.78 ± 0.04 ps for sample HHI33129 is still at 

least one order of magnitude higher than for LT-

grown samples. This indicates that the capture cross 

section and/or the density of the trap states in the 

InAlAs layers is still small compared to arsenic 

anti-site related trap states obtained via LT-growth 

of InGaAs. We see a minor influence of the pump 

power on the slow decay component τ2 tending 

towards faster relaxation for higher pump powers 

and for samples with high defect densities, i.e. 

Tg = 350-400 °C. Higher electron excitation 

densities result, after thermalization with the lattice, 

in a higher phonon density that in turn increases the 

carrier trapping probability into defects states 

within the InAlAs layers. 

 
 
FIG. 2. Fit results for slow decay time constant τ2 extracted from 

bi-exponential fits on DT measurements for Tg-series 1 (empty 

symbols) and Tg-series 2 (filled symbols) at various pump 
powers. 
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For a detailed analysis of the carrier capture 

into trap states associated with defects in the 

InAlAs barrier, we investigated the influence of the 

barrier thickness (dB) on carrier relaxation 

dynamics. Therefore, samples with 2 nm, 4 nm, 

8 nm, 16 nm of InAlAs layer thickness were grown 

while keeping the InGaAs thickness fixed at 12 nm 

(dB-Series). All samples consisted of 100 periods 

and where grown at substrate temperature of 

approx. Tg = 400 °C.  

 

FIG. 3. Fit results for decay time constant τ2 from bi-exponential 
fit on differential transmission signals for samples with different 

barrier thicknesses (right) and the calculated average penetration 

depth of the electron wave-function in to the barrier as a function 
of barrier thickness (left). The lines are guidelines for the eyes. 

Additionally, we calculated the electron wave 

functions (WF) solving one dimensional (1D) 

Schroedinger equation for a 30 period MLHS. The 

WF was used to calculate an averaged penetration 

depth of the WF into the barrier, by summing over 

all positions within the barrier with non-zero WF 

values and averaging over all 30 (in 1D) degenerate 

energy eigenvalues of the first sub-band. 

Considering a homogeneous trap density within the 

barrier, this quantity gives a measure of how many 

defect states are “reachable” by an electron. The 

results from the DT measurements on the samples 

and the results from the above mentioned 

calculation are shown in Fig. 3. As can be seen 

from the measurements, an increased barrier 

thickness leads to a faster decay. This is due to the 

higher absolute number of available and/or 

reachable trap states in the InAlAs barrier assuming 

that the trap state density is independent of the 

barrier thickness and solely dependent on Tg. The 

slightly reduced slope of the curve for 1 mW pump 

supports this assumption if possible trap saturation 

at higher carrier densities is taken into account. 

In order to investigate the THz emission the 

samples were structured with mesa-type strip-line 

antennas with gap sizes of 100 µm and employed as 

emitters in a THz-TDS setup.
6
 The applied receiver 

was a mesa-type dipole antenna with a gap size of 

10 µm and a contact line separation of 25 µm made 

from the LT Be-doped reference sample HHI33122 

shown in Fig. 1(a). For the sake of brevity we only 

show pulse traces and spectra for four of the 

samples. The sample parameters and the measured 

τ2 are given in Table I. As visible in Fig. 4(b) the 

THz-TDS spectrum of the fast LT-sample shows a 

slight shift of the spectral maximum towards higher 

frequencies compared to the other samples. 

However, no significant difference in overall 

bandwidth or dynamic range is evident. This 

strongly suggests that the bandwidth of the 

generated THz radiation is mainly governed by the 

rising edge of the carrier density, i.e. the exiting 

laser pulse duration, and not trapping or 

recombination dynamics. This is in agreement with 

studies conducted on Si:GaAs by Liu et al.
12

  
 

Sample Tg 

[°C] 

Be-doping 

[cm-3] 

dB 

[nm] 

decay time [ps] 

33122 130 3×1018 8 0.77±0.07 (τ1) 

33129 350 no doping 8 12.78±0.04 (τ2) 

33124 400 no doping 8 31.53±0.04 (τ2) 

33141 400 no doping 2 86.0±0.2 (τ2) 

 

Table I. List of samples measured in THz-TDS Setup with 

respective growth and DT parameters. 

 

Furthermore, the samples with slower decay time 

show strongly increased THz emission amplitudes 

under equal excitation conditions as visible from 

the THz pulse traces in Fig. 4(a).  

 

 

FIG. 4. Pulse traces (a) and corresponding Fourier spectra (b) 

obtained for 100 µm strip-line antennas made of samples listed 

in Table I. The receiver was a 10 µm dipole antenna made from 
sample HHI33122. Emitter bias was 10 kV/cm and 16 mW 

optical power for both, emitter and receiver. The spectra are 

shifted vertically for clarity. 
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FIG. 5. Measured average THz power obtained from samples of 

Tg-Series 2 and the LT-grown Be-doped sample in dependence 
on the decay time obtained from DT measurements. The bias 

field strength was 10 kV/cm and 16 mW of optical power were 

used for all measurements. 
 

In order to quantify the emitted THz power, 

the coherent receiver, i.e. the dipole antenna, was 

substituted with a Golay cell. For each sample of 

Tg-Series 2 and the dB-Series several 100 µm strip-

line antennas were tested in this setup to eliminate 

adjustment errors and possible fluctuations of 

antenna quality. We observe a clear increase of the 

average emitted THz power for samples with 

increasing decay time τ2 for both sample series as 

shown in Figure 5 and 6.  

 
FIG. 6. Measured average THz power obtained from samples of 

the dB-Series in dependence on the decay time obtained from DT 

measurements. The bias field strength was 10 kV/cm and 16 mW 
of optical power were used for all measurements. 

 

Considering that the measured decay time of 

all samples (except HHI33122) is long compared to 

the time scale on which the THz radiation is 

produced, i.e. < 2 ps, this result is counterintuitive. 

However, this correlation does not necessarily mean 

that the underlying physical process is carrier 

capture. The decay time τ2 can be considered an 

adequate measure of the trap state density in the 

InAlAs layers. Considering this, the decrease in 

THz emission can be explained in terms of an 

elastic scattering process of electrons that is trap 

density related and hence limiting the carrier 

mobility. There are two possible mechanisms for 

this scattering process. One is scattering due to 

surface roughness at the interfaces between InAlAs 

and InGaAs layers that is increased for increased 

clustering in the InAlAs layers. However, in case of 

the dB-series this explanation would only be valid if 

surface roughness is strongly dependent on the 

InAlAs layer thickness which we assume is not the 

case. More plausible is elastic scattering directly at 

the defects within the InAlAs barrier. Other than a 

capture process, an elastic scattering process does 

not require the emission of phonons for the sake of 

energy conservation. An elastic scattering process is 

thus assumed to have a much higher probability 

than a capture process at the same defect state. 

We like to point out, that complete removal of the 

InAlAs layers, i.e. bulk InGaAs, increases dark 

conductivity by several orders of magnitude due to 

the relatively high residual carrier concentration of 

InGaAs of n ≈ 10
16

 cm
-3

 and thus would render the 

application of sufficiently strong bias fields 

impossible. This is also the case for growth 

temperatures of Tg ≥ 450 °C where the reduced 

density in the InAlAs barriers does not suffice to 

obtain an overall semi-insulating sample. 

The maximum applicable field strength for 100 µm 

strip-line antennas reached up to 15 kV/cm. The 

dependence of the THz power on the optical 

excitation power emitted by antennas from samples 

HHI33122 and 33141 are given in Fig. 7. At 

32 mW optical excitation we measured an average 

THz output power for the antenna from HHI33141 

of 64 µW corresponding to an optical power-to-

THz power conversion efficiency of 2×10
-3

. 

 

 
FIG. 7. Emitted THz power of a 100 µm strip-line antenna from 
sample HHI33141 and HHI33122 in dependence on the optical 

excitation power at a bias field of 15 kV/cm. 

 

In conclusion we have shown that the carrier 

relaxation shows a (local) minimum at a growth 

temperature of around Tg = 350-375°C. 

Additionally the carrier relaxation time decreases 

when the barrier thickness is decreased. However, 

the emitted THz bandwidth has been shown to be 

mostly independent on the carrier relaxation time in 

the semiconductor and is hence governed by the 

excitation laser pulse width. Furthermore, the THz 

emission efficiency is reduced for increasing trap 

densities, which is associated with trap related 
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elastic carrier scattering. For optimal growth 

parameters of the semiconductor material we 

measured 64 µW of emitted average THz power for 

32 mW of optical excitation. This corresponds to an 

achieved optical-to-THz conversion efficiency of 

2×10
-3

 which is two orders of magnitude higher 

than values accessible with LT-grown Be-doped 

InGaAs/InAlAs MLHS and the highest value for 

InGaAs based emitters reported so far. This work 

was funded by the German Research Foundation 

(DFG). 
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This supplementary material contains the derivation of the analytical equations for the carrier population in the 

CB in the cases of trap saturation and partial trap filling, i.e. the derivation of Eq. (6) and Eq. (7) of the main 

article are described. 

First, we account for carrier conservation in Eqs. (3). Electrons in the CB and electrons trapped by ionized 

arsenic antisites equal holes in the VB and trapped holes in ionized Be dopants. Hence, the following equation 

holds for all times t: 

 

       thtntntn BeT   (A1) 

 

Additionally, we introduce dimensionless variables in order to simplify the subsequent analysis: 

 
 AsNnN / ; 

 AsTT NnN / ; 
 AsBeBe NnN / ; ett /  (A2) 

 

Here, carrier densities are normalized to the number of ionized antisites NAs
+
 and time is measured in units of 

the electron trapping time τe. Inserting Eq. (A1) and Eq. (A2) into Eqs. (3) of the main article yields: 
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Here,  NtG ,
~

  and 
 AscRR NBB 

~
 denote the normalized generation rate and the normalized recombination 

rate. The dynamic equation for the valence band holes has been eliminated with Eq. (A1). Subsequently, 

Eqs. (A3a)-(A3c) are expanded under trap saturation conditions and partial trap filling, respectively.  

 

Trap saturation 
The condition of complete electron trap saturation means that the each arsenic antisite defect is occupied by an 

electron from the CB. Saturation occurs when the density of excited electrons outnumbers the density of 

trapping states. After the initial trap filling process TN  is clamped to its maximum value 1TN  since electron 

trapping is much faster than electron recombination. Taking this situation as the starting point of the dynamic 

development each recombined electron is directly replaced by another free electron from the CB (detailed 

balance). Hence, the two terms on the RHS of Eq. (A3b) are equal as long as the saturation condition holds true. 

The same assumption holds true for holes captured by negatively charged Be dopants in Eq. (A3c). In order to 

simplify the terms in Eqs. (A3) we consider small deviations from this temporary equilibrium and write: 

 

    tutNT  1 , (A4a) 

    tvtNBe  1 . (A4b) 

 

Here, ε is a small parameter and  tu  ,  tv   denote the time dependent deviations from the saturation condition. 

Inserting Eq. (A4a) and Eq. (A4b) into Eqs. (A3) and neglecting terms in ε
2
 yields: 
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Now, Eq. (A5b) and Eq. (A5c) can be solved by the detailed balance relation mentioned above: 
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Solving for u and v and inserting the results in Eq. (A5a) leads to the expression: 
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In order to simplify Eq. (A7) we solve Eq. (A3b) for 1 BeT NN . In this case one neglects the refilling of 

traps with conduction band electrons and simply accounts for carrier recombination. 
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Eq, (A8) describes a linear decay of the trapping centers with 

AsAsR NNB /

~
. Since carrier capture is assumed to 

be much faster than carrier recombination the condition: 
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holds true. Using this relation in Eq. (A7) we obtain: 
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Hence, the dynamics of the population in CB is completely determined by the recombination process. Solving 

Eq. (A10) and transforming back to real quantities leads to: 

 

   tNNBntn AsAsR
satsat 

~
0 , (A11) 

 

Here, 
satn0 is the conduction band population when trap saturation occurs. The discussion of Eq. (A11) is done in 

the main article.  

 

 

 



 

Partial trap filling 
For partial trap filling the number density of electrons excited to the CB is still small compared to the total 

number of trapping centers. Nevertheless, it is assumed to be high enough to decrease the probability for carrier 

trapping due to partial trap filling. Since carrier recombination is much slower than carrier capture we neglect 

the second term on the RHS of Eq. (A3b). For simplicity, we account for the generation term in Eq. (A3a) by an 

appropriate initial condition. Hence, the dynamic equations reduce to: 
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These above equations can be solved analytically and the result for the conduction band population reads: 
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Note that N is normalized to NAs
+
. Hence the term 1exN  describes the difference between excited electrons in 

CB and the number of available trapping centers NAs
+
. Next, we analyze Eq. (A14) with respect to partial trap 

filling, i.e. 011  exN .  
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with 1/1 exN ,    11exp  tNex  for all 0t . Since the number of excited carriers has assumed to be 

smaller than NAs
+
 the quadratic term in Nex can be neglected. Transforming back to real quantities yields Eq. (7) 

of the main article: 
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Abstract: We investigate the influence of Beryllium (Be) doping on the 

performance of photoconductive THz detectors based on molecular beam 

epitaxy (MBE) of low temperature (LT) grown In0.53Ga0.47As/In0.52Al0.48As 

multilayer heterostructures (MLHS). We show how the optical excitation 

power affects carrier lifetime, detector signal, dynamic range and bandwidth 

in THz time domain spectroscopy (TDS) in dependence on Be-doping 

concentration. For optimal doping we measured a THz bandwidth in excess 

of 6 THz and a dynamic range of up to 90 dB. 
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OCIS codes: (040.2235) Far infrared or terahertz; (260.5150) Physical optics: Photoconductivity; 

(300.6495) Spectroscopy: Spectroscopy, terahertz; (320.7130) Ultrafast processes in condensed matter, 

including semiconductors. 
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1. Introduction  

 

Over the past decade, terahertz time domain spectroscopy (THz TDS) has matured from pure 

scientific research and expensive laboratory sized setups to industrial applications and 

compact, portable THz-TDS systems [1]. Therefore, many future applications for terahertz 

technology have come into close reach [2]. A great portion of this development originates 

from the utilization of readily available Er-doped femtosecond fiber lasers at 1550 nm 

wavelength, of-the-shelf telecom components, and the design of suitable photoconductive 

antennas (PCAs) [3-7]. More recently, progress has been made concerning photoconductive 

THz emitters based on InGaAs/InAlAs multi-layer heterostructures (MLHS) [8]. Here, MBE 

growth at substrate temperatures of approx. 375-400 °C together with an adjusted 

heterostructure design led to good optical-to-THz conversion efficiencies with output powers 

up to 64 µW [9]. However, the results of principal physical models of THz generation and 

detection predict that material development for emitters and receivers has to be done 

separately, since the main requirements are different [10-12]. The goal of this paper is the 

careful investigation of how the interplay of carrier lifetime and carrier mobility in PCA 

detectors influences THz bandwidth, dynamic range and detector noise. Therefore, we 

investigated four different samples of low temperature (LT) grown Beryllium (Be)-doped 

InGaAs/InAlAs MLHS with different nominal Be-doping concentrations of 0.3×10
18 

cm
-3

, 

0.9×10
18 

cm
-3

, 2.0×10
18 

cm
-3

 and 4.0×10
18 

cm
-3

 (cf. Table 1). To obtain a detailed picture of the 

carrier trapping, carrier recombination and trap saturation dynamics, the samples were probed 

via differential transmission (DT) measurements at different pump pulse powers. A detailed 

presentation of the results on the DT measurements performed with these samples and their 

theoretical interpretation has been published in [13]. After giving a brief overview on these 

DT results for illustration, this paper focuses on the influence of carrier dynamics and carrier 

lifetime on PCA detector performance in a THz-TDS system made from the exact same 

samples.  

2. Influence of Beryllium Doping on the Carrier Lifetime  

 

The dominating mechanism of electron relaxation from the conduction band (CB) in LT-

grown Be-doped InGaAs/InAlAs MLHS is phonon-assisted electron capture into arsenic anti-

http://www.opticsinfobase.org/abstract.cfm?URI=josab-13-11-2424


site defects (AsGa) and subsequent recombination with a hole. More precisely, electron capture 

is dominated by the part of the arsenic antisite defects that has been positively ionized (AsGa
+
) 

due to doping with Be-acceptors and hence lowering the Fermi level. Since, to a good 

approximation, every Be-dopant ionizes one AsGa defect, the density of fast traps is equal to 

the Be-doping concentration [13, 14]. The time constants for the electron capture process are 

typically on the order of a few hundred femtoseconds (fs) to picoseconds (ps) depending on 

the AsGa
+
 density. The time constant for the recombination process of electrons captured in 

AsGa defects with holes is on the order of a few tens of ps to hundreds of ps. As pointed out in 

[13], there is strong evidence that the recombination occurs with holes captured by Be-dopants 

rather than with free holes in the valence band (VB) and hence is also dependent on the Be-

doping concentration. However, even for high doping concentrations the recombination time 

remains on the order of several tens of picoseconds. The excitation source for all DT and 

THz-TDS measurements was a mode-locked fiber ring laser with a center wavelength of 

1550 nm, a pulse width of approx. 90 fs and 100 MHz repetition rate. The excitation spot size 

was approx. 12 µm for both DT and THz TDS measurements in order to obtain similar 

excitation conditions for a quantitative comparison between both measurements. Additionally, 

all the samples were structured with mesa-type dipole antennas with a 10 µm×10 µm 

photoconductive gap. Hence, the optically excited photoconductive region was precisely 

defined for both measurement methods. 

The results obtained from DT measurements at 1550 nm pump and probe wavelength are 

given in Fig. 1(a), Fig. 1(b) and Fig. 1(c) for a low (0.25 mW), intermediate (2 mW) and a 

high pump power (16 mW), respectively. These excitation powers correspond to carrier 

densities in the CB directly after fs-excitation of approx. 1×10
17 

cm
-3

, 6.5×10
17 

cm
-3 

and 

1.28×10
18 

cm
-3

, respectively. For the calculation of these carrier densities, the absorption 

saturation due to the limited density of states in the CB over the photon energies covered by 

the excitation laser pulse was taken into account.  

For 0.25 mW pump power none of the samples shows significant trap filling as the induced 

carrier density in the CB is a least a factor of three smaller than the AsGa
+
 density of every 

sample. Thus the absorption relaxation, i.e. the DT signal, can be fitted by assuming a mono 

exponentially declining carrier density within the CB. The respective fit results for the 

electron lifetime from the DT data are given in Table 1, the corresponding  capture cross 

section according to Shockley-Read-Hall theory for the AsGa
+
 defects was determined to 

σe
As+

≈2×10
-14

 cm
2
 [13]. 

 
Sample Tg [°C] Be-doping 

[cm-3] 
Unsaturated 

capture time [ps] 
Scattering time from 
Hall mobility data [fs] 

MLHS 1 130 0.3×1018 3.29 50.15 
 

MLHS 2 130 0.9×1018 1.03 24.76 
 

MLHS 3 130 2×1018 0.32 10.36 
 

MLHS 4 130 4×1018 0.19 6.882 
 

 
Table 1. List of samples used as detectors in THz-TDS Setup with respective growth and DT parameters. 

 

For the intermediate pump power of 2 mW MLHS 1 already shows a very slow absorption 

recovery. This is because the induced carrier density in the CB is on the same order as the 

available AsGa
+ 

trap density, i.e. ≈0.3×10
18 

cm
-3

. Hence, the DT signal is dominated by the 

recombination time of electrons in AsGa defects with holes captured by Be-dopants, since this 

process forms a bottleneck for the carrier relaxation. MLHS 2 shows a slightly increased 

absorption recovery time which is caused by partial filling of the available AsGa
+ 

traps.  



 
 

Fig 1. Plot of the logarithmic DT signals measured for (a) 0.25 mW, (b) 2 mW and (c) 16 mW pump power for all 

four different doping levels. At 0.25 mW all signals decay mono-exponentially. At 2 mW, there is an onset of trap 

saturation for MLHS 2 and 1, respectively. For 16 mW, both MLHS 1 and 2 show strong trap saturation, while 
MLHS 3 and 4 only show minor partial trap filling. 

 



 

MLHS 3 and 4 show no significant increase of absorption recovery time due to the high 

amount of AsGa
+ 

that still exceeds the density of electrons in CB at this excitation power.  

For 16 mW pump power [Fig. 1(c)], the samples MLHS 1 and 2 both show strong AsGa
+ 

trap 

saturation and thus very long relaxation times in the DT signal, again governed by the 

electron-hole recombination time. The DT signal of MLHS 3 shows a slight deviation from a 

mono-exponential decay and an increased carrier lifetime due to partial trap filling. MLHS 4 

still shows almost no change in the DT signal since the density of AsGa
+ 

traps, i.e. 

nt ≈ 4×10
18 

cm
-3

, is still significantly higher than the excited carrier density in the CB of 

ne ≈ 1.28×10
18 

cm
-3

.  
 

3. Influence of the Optical Power on the detected THz Signal and Bandwidth 

 

For further investigation of the influence of the Be-doping concentration and the resulting 

carrier dynamics on the THz detection properties, we performed THz-TDS measurements in 

dependence of the optical power at the detector. The photoconductive THz emitter used for 

the measurements in this chapter was a strip-line mesa-antenna with 25 µm gap made from the 

4.0×10
18 

cm
-3

 Be-doped sample MLHS 4. For all measurements the applied bias was 50 V at 

an optical excitation power of 25 mW. For an efficient out-coupling of the THz radiation, the 

emitter and the respective detectors were attached to hyper-hemispherical HRFZ silicon 

substrate lenses. Furthermore, two off-axis parabolic mirrors for THz collimation and 

focusing were used.  

The peak-to-peak signals obtained from THz-TDS measurements for the case of low 

excitation power (0.25 mW) are given in Fig. 2. In this low carrier density regime, the 

potential influence of THz field screening by free carriers in the CB and VB can be safely 

neglected leaving only two main influences to the current signal. One is the carrier scattering 

time (cf. Table 1) which limits carrier velocity and hence the detector current. The other 

influence is the carrier capture time which limits the integrated detector current, i.e. the value 

of the convolution integral in TDS detection Eq. (1). The scattering time extracted from Hall 

mobility data and the unsaturated carrier capture time from DT measurements at 0.25 mW are 

also shown in Fig. 2. It should be noted that the carrier capture time enters the carrier 

scattering time via Matthiessens rule since carrier capture is inelastic scattering.  

 
Fig. 2. Measured scattering time constants (black squares), unsaturated capture time constants (blue triangles) for DT 

measurements and THz peak-to-peak detector current (green circles) from THz-TDS measurements at an 

optical excitation of 0.25 mW. 



However, because scattering mechanisms such as phonon scattering and more importantly 

elastic ionized impurity scattering due to the Be-doping are dominant in our case, the 

contribution of carrier capture to the carrier scattering time can be safely neglected.  

For an understanding of the influence of carrier capture time on the frequency behavior of a 

PCA detector, it is instructive to consider two simplified limiting cases:  

 

1. An infinitely short carrier lifetime, i.e. a Dirac delta function like carrier density in 

the CB: ( ) ( )n t t . 

2. An infinitely long carrier lifetime, i.e. a theta function like carrier density in the CB:

( ) ( )n t t . 

 

The TDS current of the detector for a linear response with respect to the electric field, i.e. 

neglecting influences such as THz field screening by charged carriers, can be described by the 

convolution: 

 

( ) ( ) ( ) e n(t) (t) ( )THz THzj t E t E t        ,     (1) 

 

which in Fourier space is given by 

 

( ) e n( ) ( ) ( )THzj E        .      (2) 

 

Here  is the conductivity, 
THzE is the incident THz field, n is the carrier density,  is the 

mobility,   denotes the convolution operation and e  is the elementary charge. 

For the first case Eq. (2) yields 

 

1( ) e ( ) ( )
2

delta THzj E   


    ,     (3) 

 

where for second case Eq. (2) yields 

 

( ) e ( ) ( ) ( )
2

theta THz
ij E     



 
     

 
.    (4) 

 

From Eq. (3) and Eq. (4) it is obvious that for a slow, integrating detector one would expect a 

nonzero DC component in the signal and a faster roll-off towards higher frequencies as 

compared to a Dirac-like sampling detector. To investigate the effects of partial trap filling 

and trap saturation on the THz detector performance in terms of dynamic range and bandwidth 

we performed THz-TDS measurements in dependence of the optical excitation at the receiver. 

The obtained THz-TDS spectra for 0.25 mW, 2 mW and 16 mW excitation power are given in 

Fig. 3. The measurement time for each trace was approx. 1 minute (average over 1000 pulse 

traces measured at 16 Hz).  

In case of the 0.25 mW, i.e. without trap saturation, MLHS 1 shows the highest THz peak-to-

peak amplitude (cf. Fig. 2). When compared with the other samples it is obvious that the 

amplitude increase is mostly due to an increase of lower frequency components, i.e. < 2 THz. 

At higher frequencies, e.g. 2-4 THz, the detected amplitudes are smaller as compared to the 

other MLHS. We attribute this to the slow trapping time (cf. Table 1). A closer investigation 

of the results in Fig. 2 reveals that, in general, longer carrier lifetimes in the detector shift the 

center frequency towards lower frequencies and enhance the frequency roll-off, as expected 

from Eq. (3) and Eq. (4). Furthermore, it agrees with predictions from more sophisticated 

Monte Carlo calculations in [12].  



 

Fig. 3 THz-TDS spectra obtained from detectors made from the different MLHS samples for  0.25 mW, 2 mW and 
16 mW of optical excitation power at the detector. The grey striped line indicates the noise of the detection electronics 

without a connected antenna. 

The 2.0×10
18 

cm
-3

 doped MLHS 3 shows the highest signal in the frequency range of 2-4 THz 

at this low excitation power, indicating a trade-off between fast trapping and high mobility. 

The dynamic range for all detectors under this excitation condition was limited by the noise of 

the detection system itself and not the respective MLHS. The system noise amplitude 

measured with an open circuit, i.e. without an antenna, is depicted as a grey line in Fig. 3.For 

medium optical excitation power of 2 mW, the frequency roll-off for MLHS 2-4 remains 

almost equal to the roll-off at 0.25 mW. For MLHS 1, a minor shift of the center frequency 

towards lower frequencies and a slightly steeper roll-off is visible. Considering the prolonged 

carrier lifetime of MHLS 1 at this excitation condition (cf. Fig. 1(b)) the change of the 



frequency roll-off is weaker than what would be expected from Eq. (4). The relative increase 

of the THz signal amplitude as compared to the other samples is small indicating the onset of 

a saturation behavior, as will be discussed later in more detail. 

At 16 mW MLHS 1 shows a further red shift of the center frequency as expected for this long 

carrier lifetime and hence a mostly integrating antenna behavior. The peak in the frequency 

components around 5-30 GHz originates from resonances in the contact metallization. The 

damping of these resonances is reduced for long carrier lifetimes. MLHS 2 also shows a 

steeper frequency roll-off due to the prolonged carrier lifetime at 16 mW. However the effect 

is not as pronounced as for the MLHS 1. MLHS 3-4 show almost no difference in the roll-off 

behavior and MLHS 3 shows only a slight shift of the center frequency and thus a superior 

bandwidth. These results indicate that the benefit of a short carrier capture time outweigh the 

lower detector signals due to the simultaneous increase of the carrier scattering time for higher 

Be doping concentrations. Furthermore, in case of MLHS 1 we observed a strong saturation 

and even reduction of the detector peak-to-peak pulse amplitude for higher excitation powers 

which can be seen in Fig. 4. We assume that the decrease is due to screening of the incident 

THz field by free and trapped carriers which in case for MLHS 1 gets relevant due to the long 

carrier capture and recombination lifetimes. In this case the detector response is not linear in 

the electric field since the carrier acceleration becomes dependent on the CB carrier density 

and Eq. (1) loses its validity. A model describing carrier screening effects in the 

semiconductor response of a PCA has been proposed by Jepsen et al. [10].  

The peak-to-peak amplitudes of MLHS 2 to 4 do not show such a saturation behavior even at 

higher optical excitation powers suggesting a linear response. The slight sub-linear behavior 

of the peak-to-peak amplitude with respect to the optical power is assumed to be due to 

absorption saturation. The amplitudes of MLHS 2-4 are therefore determined by the carrier 

scattering time and the carrier capture lifetime which enters via the convolution integral 

[Eq. (1)] as explained before. 

 

Fig. 4. Peak-to-peak amplitude of the detected THz-TDS pulse in dependence of the optical excitation power at the 
detectors made form MLHS 1-4. The striped lines are guidelines for the eyes. 



 

 

4. Noise and Bandwidth 

 

Another important characteristic of THz detectors is the electronic detector noise which 

potentially limits the dynamic range and thus the detectable bandwidth. Duvillaret et al. [15] 

and Jepsen et al. [16] have analyzed how noise limits the extractable data in THz-TDS 

spectroscopy. Even though, the authors of [15] show that emitter noise dominates the noise in 

TDS measurements they find that detector noise contributions are not negligible. 

Grischkowsky and Van Exter [17] as well as Castro-Camus et al. [18] have shown that the 

major detector noise contribution arises from thermal Nyquist noise. Shot noise and 

generation-recombination (GR) noise are found to have only minor influence as they scale 

with the square root of the THz field induced detector current which is generally relatively 

small. The Nyquist noise current is given by: 

14N BI K T f R         (5) 

where
BK , T  and f  are Boltzmann constant, absolute temperature and measurement 

bandwidth, respectively. R  is the detector resistance. Since the measurement of the signal in 

TDS detection is essentially a DC or very low frequency current measurement, the time 

average resistance of the detector is sufficient for analysis. 

We measured the average root-mean-square (rms) noise current in the detector, without an 

incident THz field, in dependence of the optical power at the detector. Additionally, we 

calculated the Nyquist noise currents from PCA resistances by numerically solving the carrier 

density equations given in [13]. Both results are given in Fig. 5. For MLHS 1 and 2 there is a 

strong increase (~factor 7) in the measured and calculated Nyquist noise current for higher 

excitation powers, which is due to the long carrier lifetimes in the saturation regimes and 

hence a low average resistivity. For MLHS 1 and 2 the general behavior of the Nyquist noise 

as a function of optical excitation power, is covered quite well by the simulation results. 

However, the absolute values differ by a factor of approx. 2. Here, it should be noted that 

thermal re-excitation of carriers from trap states into to the CB and the VB was not included 

in the calculation. After the optical excitation and until electrons and holes in trap states have 

recombined, only Quasi Fermi levels are defined.  

 

 
Fig. 5 Measured (full symbols) root mean square noise current and calculated Nyquist noise current (open symbols) 

shown in dependence of the optical excitation power for four different detectors made form MLHS 1-4. The grey 
striped line indicates the system noise measured with an open circuit. 



 

During this time the probability for thermal re-excitation is increased, leading to a further 

reduction of the samples resistance. This effect could explain the discrepancy between 

measurement and simulation. 

For MLHS 3 and 4 the measured noise currents seem to show a minor increase (~ factor 1.5). 

However, since the measured noise currents are very close to the average system noise level 

(measured with an open circuit) the result is inconclusive. The prediction of the simulation for 

MLHS 3 is within the margin of the factor 2 discrepancy. The simulation of MLHS 4, 

however, is significantly lower than the measured one, suggesting that the system noise could 

be the limiting factor in this case. 
 

To further examine the influence of the Be-doping level, we extracted the dynamic range and 

measureable bandwidth from all measured TDS spectra at different detector excitation powers 

for each of the MLHS samples. The noise floor for the dynamic range calculation was defined 

as the average value of the spectral amplitude between 6.5 and 10 THz. The detectable 

bandwidth was defined as the highest frequency component with an amplitude 6 dB above the 

noise floor in the respective THz power spectrum. The obtained results are given in Figs. 6(a) 

and 6(b). For MLHS 1, the dynamic range decreases for excitation powers in excess of 4 mW 

due to the amplitude saturation and the increase in Nyquist noise. In conjunction with the 

strong frequency roll-off, the detectable bandwidth is significantly limited at high excitation 

powers. Similarly, MLHS 2 shows a saturation behavior of the dynamic range for the highest 

excitation power due to an increased noise level (cf. Fig. 5) and a decrease of the detectable 

bandwidth for higher excitation. Both MLHS 3 and 4 show no saturation in the dynamic range 

or bandwidth as expected from their short carrier lifetime for all excitation levels. 

Interestingly, the highest measurable bandwidth is not obtained for MLHS 4 which features 

the shortest carrier lifetime. Instead, the slightly higher carrier lifetime and scattering time of 

MLHS 3 leads to an increase of the detected THz current. Since the noise level is defined by 

the system noise for these samples, the THz bandwidth increases for higher detector currents 

as long as the carrier lifetime is short enough. Considering the noise calculations shown in 

Fig. 5, MLHS 4 could potentially exceed the dynamic range of MLHS 3 if the system noise 

could be further reduced. 

 

 
 

Fig. 6. (a) Dynamic range and (b) detectable bandwidth of the THz-TDS signal in dependence of the optical excitation 

power for four different detectors made form MLHS 1-4. The striped lines are guidelines for the eyes. 

 

In an attempt to overcome the system noise limitation and increase the dynamic range, we 

employed a 100 µm strip-line emitter fabricated from a high mobility MLHS which has a 

significantly higher THz output than LT-grown Be-doped MLHS [8, 9]. The bias of the 

emitter was 100 V and the optical excitation was set to 25 mW. As detector we employed 

MLHS 4, which features the fastest trapping time. The average noise floor in the spectra was  



 
Fig. 7.  Average noise floor in THz-TDS spectra taken between 6.5 THz and 10THz in dependence of the optical 

excitation power at the detector made form MLHS 4 and for a high mobility MLHS emitter at 100 V bias (blue 

squares), a LT-grown emitter made from MLHS 4 at 50 V bias (green circles) and without an incident THz field 
(black triangles). 

 

extracted for different excitation powers at the detector for the high mobility emitter, the LT-

grown emitter and without a THz field present, which is shown in Fig. 7. In accordance with 

our previous results the noise of the LT grown emitter is on the order of the system noise 

level. However, there is an increase of the noise floor for higher excitation levels if a THz 

field is present in case of the high mobility emitter. The square root like behavior strongly 

suggests that the increase is due to shot noise from the detector current which in turn, to a 

good approximation, is directly proportional to the optical excitation power at the detector and 

is given by: 

,det2 2N THz optI e I e P         (6) 

Here 
THzI  is the THz-field induced detector current, 

,detoptP is the optical power at the detector 

and e  is the elementary charge. Since for the high mobility emitter the detector currents have 

much higher values (approx. 285 nA for 16 mW excitation at the detector) the shoot noise 

contribution appears to become significant. However, since the shoot noise scales with the 

square root of the detector current were as the signal scales linear with the detector current the 

dynamic range is further increased as compared to the previous emitter. 

Finally we increased the emitter bias to 120 V and averaged over ten thousand trace taken at 

16 Hz (approx. 10 min) resulting in a measureable bandwidth of over 6 THz and approx. 

90 dB dynamic range as can be seen in Fig. 8. For this emitter and detector combination the 

spectrum of a single pulse trace with a measurement time of 62.5 ms still shows a dynamic 

range in excess of 65 dB and a bandwidth >4.5 THz (not shown). 



  
Fig. 8.  FFT spectrum obtained for a high mobility MLHS emitter at 120 V bias and 25 mW optical excitation and a 

detector made from MLHS 4 at 16 mW optical excitation. The spectrum is obtained by averaging ten thousand pulse 
traces at 16 Hz measurement rate (approx. 10 min). The corresponding THz Pulse trace is shown in the inset. 

 

5. Conclusion and Outlook 

 

We have shown that knowledge of the influence of Beryllium doping on carrier dynamics in 

LT-grown InGaAs/InAlAs MLHS is crucial for the design of THz-TDS detectors made from 

this material. We have found that trap saturation, i.e. long carrier lifetime, limits the detector 

dynamic range and bandwidth because of increased frequency roll-off and Nyquist noise. 

Furthermore, we have shown that in case of detectors with short carrier lifetimes and 

sufficiently strong THz fields the shot noise in the detector becomes a relevant noise source. 

Finally, it was demonstrated that for fast LT-grown InGaAs/InAlAs detectors, i.e. with 

appropriate Be doping concentration, together with highly efficient THz emitters it is possible 

to obtain PCA based THz-TDS measurement systems at 1550 nm excitation with 90 dB 

dynamic range and more than 6 THz bandwidth. 
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Abstract: 

Many time-domain terahertz applications require systems with high bandwidth, high signal-to-noise ratio and 

fast measurement speed. In this paper we present a terahertz time-domain spectrometer based on 1550 nm fiber 

laser technology and InGaAs photoconductive switches. The delay stage offers both a high scanning speed of up 

to 60 traces / s and a flexible adjustment of the measurement range from 15 ps – 200 ps. Owing to a precise 

reconstruction of the time axis, the system achieves a high dynamic range: a single pulse trace of 50 ps is 

acquired in only 44 ms, and transformed into a spectrum with a peak dynamic range of 60 dB. With 1000 

averages, the dynamic range increases to 90 dB and the measurement time still remains well below one minute. 

We demonstrate the suitability of the system for spectroscopic measurements and terahertz imaging. 

Keywords: terahertz time domain spectroscopy, femtosecond fiber laser, InGaAs photoconductive switches, 

terahertz imaging 

Introduction 

Terahertz waves feature unique properties: like microwaves, terahertz radiation passes through a plethora of non-

conducting materials, including paper, cardboard, plastics, wood, ceramics and glass-fiber composites [1]. In 

contrast to microwaves, terahertz waves have a smaller wavelength and thus offer sub-millimeter spatial 

resolution. Whilst many different techniques coexist today, terahertz generation and detection with 

photoconductive switches has found particularly widespread use [2], [3]. Terahertz time-domain spectroscopy 

(THz TDS) [4] has become an established method for phase and amplitude-sensitive measurements with high 

time resolution and outstanding bandwidth. Recent applications of THz-TDS range from fundamental research 

[5], [6], medical diagnostics [7], security applications [8] to non destructive testing [9]–[12]. 

THz-TDS instrumentation has come a long way from free-space setups and bulky laboratory equipment to much 

more compact and inexpensive alternatives. In the past, terahertz pulses were mainly generated with GaAs 

photoconductive switches, which required laser excitation below 870 nm and often involved complex 

Ti:Sapphire lasers. With the advent of 1.5 µm fiber lasers and recent InGaAs/InAlAs-based terahertz emitters 

[13], a trend towards telecom-based technology has become evident. Terahertz spectrometers operating at 1.5 µm 



take full advantage of mature and cost-efficient telecom components and are thus well suited for real-world 

applications [14]. These advances notwithstanding, state-of-the-art THz-TDS systems usually achieve the 

targeted signal-to-noise (SNR) ratios via time-consuming signal averaging methods, which is no hurdle if the 

quality of the signal is more important than the measurement speed. However, there is still no system on the 

market that combines fast measurement speed with a top-level SNR performance and high bandwidth. 

Applications that call for such a system include studies of dynamic processes in biomolecules [15], 

measurements under rapidly changing environmental conditions, e.g. varying temperatures or magnetic fields 

[16], and inline process control of plastic materials [17].  

In this paper we present a compact fiber-coupled THz-TDS system based on 1.5 µm fiber laser technology and 

InGaAs/InAlAs photoconductive switches. Due to a precise reconstruction of the time axis, the system 

drastically reduces the effect of jitter noise and achieves a high dynamic range in conjunction with broad 

bandwidth and fast measurement speed.  

The performance of our system and its key components – femtosecond laser, terahertz antennas and delay stage – 

are described in the next section of this paper. Special emphasis will then be given to jitter noise and the 

reconstruction of the time axis. We conclude with application examples in the fields of spectroscopy and 

imaging. 

 

Terahertz time domain spectrometer 

System design and performance 

A photograph and a schematic representation of the spectrometer are shown in Figure 1 (a) and (b), respectively. 

The system comprises a 1.5 µm femtosecond fiber laser with dispersion compensation. A 50 / 50 fiber splitter 

divides the output beam into an emitter and a detector branch. Both optical paths feature highly precise, fiber-

coupled mechanical delay stages: the emitter path includes a fast, scanning delay and the receiver path a slow, 

long-travel delay. Laser, fiber splitter, delay stages, driver electronics, power supply as well as a microcomputer 

for system control and data acquisition are all housed in one 19” box (48 x 40 x 20 cm). The system is equipped 

with an Ethernet data interface to allow flexible control e.g. via LabView software.  

The optical pulses in both arms are guided to fiber-coupled, InGaAs-based photoconductive switches, which 

serve as terahertz emitter and detector. The fiber-pigtailed design permits a flexible arrangement in either 

transmission or reflection geometry. The emitter converts the laser light into a terahertz pulse [18]. More 

precisely, the laser pulse excites charge carriers in the emitter antenna, which are accelerated by an externally 

applied bias field. The resulting current transient gives rise to an electromagnetic pulse - the terahertz pulse that 

is radiated into free space. The detection process is similar to the generation process. The laser pulse optically 

gates the detector antenna, while the generated charge carriers are accelerated by the electric field of the incident 

terahertz pulse. The resulting photocurrent is directly proportional to the terahertz electric field. A characteristic 

of any THz-TDS system is that the width of the generated terahertz pulse (~ 1 ps) is much longer than the width 



of the probing laser pulse (~ 80 fs). Thus, only a fraction of the terahertz pulse is sampled each time the laser 

pulse hits the detector antenna. To retrieve the full pulse shape, the terahertz pulse is scanned by varying the time 

delay between the two optical paths. 

 

Figure 1: (a) Photograph of the terahertz time-domain system and (b) schematic representation. Blue lines denote 

electric connections, red lines the optical signal paths. 

Figure 2 (a) shows the amplitude spectrum achieved with our system. The terahertz spectrum contains frequency 

components from 50 GHz to about 4.5 THz with a signal peak at approx. 480 GHz. The inset in Figure 2 (b) 

presents a typical time-domain signal measured with the system. A single trace of 50 ps can be acquired in only 

44 ms. Via the control software, the scan range can be flexibly changed between 15 ps and 200 ps. The width of 

the terahertz pulse, i.e. the time difference between the maximum and minimum amplitude, amounts to 650 fs.  

Figure 2 (b) shows the dependence of the peak dynamic range (PDR) on the number of averaged time traces. For 

a single measurement (acquisition time 44 ms), the PDR is 60 dB. This value increases with the number of 

averages: for 100 averages and a total acquisition time of only 4.4 s, a PDR of 82 dB is obtained. The PDR 

increases to90 dB for 1000 averages. The dependence of the peak dynamic range on the number of averages Nave 

and, consequently, the total measurement time tmeas is given by  

)log(20)log(20)( measave tNdBPDR  .   (Eq.1) 

The PDR of 90 dB presents, to the best of our knowledge, a record for commercial TD-THz systems. 



 

Figure 2: (a) Amplitude spectrum with a bandwidth that exceeds 4.5 THz. (b) Peak dynamic range at 480 GHz 

(black squares, right axis) and total acquisition time (red circles, left axis) versus the number of averaged time 

traces. The solid line depicts a fit of Eq. 1. A single trace of 50 ps is measured in 44 ms (inset).  

 

Femtosecond laser 

The spectrometer uses a robust all-fiber-based femtosecond laser system (Toptica FemtoFErb 1560 with fiber 

delivery FD5-PM). The laser radiation is centered at 1560 nm, the repetition rate is 100 MHz and the pulse width 

is typically 80 fs. The laser provides approx. 60 mW power at the polarization-maintaining fiber output. Pump 

diode, active fiber and driver electronics are integrated in one box (21 x 12 x 7.5 cm), which only requires a 12 V 

external power supply. Both the emitter and the receiver branch employ single-mode, polarization-maintaining 

fibers of approx. 5 m length. To account for dispersion effects in the fiber delivery, the laser includes dispersion-

compensating fibers (DCF) which are spliced into the fiber-optic beam path. 

Delay stages  

Long-travel delay line 

A long-travel delay line introduces a constant timing offset and thus compensates any changes of the terahertz 

path and/or fiber length. It comprises a motor-driven corner-cube mirror with a 4-fold optical path, and produces 

a delay of up to 3000 ps. The value of the time delay is measured with a resolution of 1.3 fs.  

Fast and highly precise delay 

A second, fast and equally precise delay provides the time variation required for sampling the terahertz pulse 

with high accuracy. It consists of a voice-coil driven corner-cube mirror combined with a digital, high-precision 

position sensor. The sensor records 50000 time stamps per second, with a resolution of 1.3 fs. These time stamps 

are synchronized with the readout of the signal values from the terahertz receiver. Data acquisition is 

accomplished both during the forward and the backward movement of the mirror, which minimizes the “dead 

time” of the system. The acquisition time of one pulse trace varies with the chosen delay range, since the swing 

speed of the voice coil is maintained constant. Consequently, a long travel distance requires more time: The 



system samples 60 pulses / s for a scan range of 15 ps, whereas a scan range of 200 ps corresponds to 6 pulses / 

s. The 50 ps traces as shown in Figure 2 (b) are recorded at 22.7 Hz.  

The effective scanning speed also depends on the travel distance. The highest rate of 1200 ps / s is attained for 

the maximum scan range of 200 ps, whilst a 15 ps range is scanned at 900 ps / s. The effective sampling time per 

step is ~ 25 fs, with even shorter sampling intervals at the turning points of the voice coil. This precise timing 

resolution gives rise to the high accuracy of the time scale, which results in superior PDR values when multiple 

traces are averaged. 

 

Terahertz antennas  

The photoconductive emitter employs a high-mobility InAlAs/InGaAs multilayer heterostructure (MLHS) as 

described in [19][20]. The receiver is based on an LT-grown Beryllium doped InAlAs/InGaAs MLHS [21][22] 

with short carrier lifetime. A strip-line antenna geometry with a 100 µm photoconductive gap was chosen for the 

emitter, and a dipole geometry with 10 µm gap for the receiver. Both transmitter and receiver feature a mesa-

structured gap region as detailed in [13].  

The antennas are packaged into compact housings (25 mm diameter) with single-mode, polarization-maintaining 

fiber pigtails which guarantee stable optical excitation. 

 

 Impact of jitter on the SNR 

In THz-TDS, various noise effects compromise the signal quality [23]–[25]. Noise contributions include optical 

and electronic effects [26], [27], laser intensity variations [28], and jitter noise [29], [30]. In the past a lot of 

effort has been put into reducing electronic detector noise, which played a dominant role in the SNR budget [26], 

[31]. In this section, we are going to discuss the effect of jitter noise, which has an equally significant impact on 

the attainable SNR level [25], [29], [32], [33].  

Generally, “jitter” denotes a deviation from true periodicity of an assumed periodic signal. In THz-TDS, the 

terahertz pulse is optically sampled at the detector antenna. More precisely, the terahertz transient is 

reconstructed from amplitude data acquired in discrete time delay steps. Timing jitter in THz-TDS systems 

results from a plurality of effects. Whilst contributions that plague free-space laser configurations (e.g., acoustic 

vibrations of opto-mechanical components, or refractive index fluctuations of air [34]) are largely avoided in our 

fiber-based design, the timing accuracy of the delay stage itself needs to be taken into account. More specifically, 

any linear translation stage has a limited length resolution and positional accuracy. Depending on the 

implementation, the actual position of the delay can differ from the set point by several micrometers [35], [36]. 

As the optical path length counts two-fold in a delay line with retroreflector, a length difference of only one 

micrometer already translates into a timing error of 6.6 fs, and the accumulated error can exceed several 10 fs. 



Any uncertainty in the time axis leads directly to an uncertainty of the amplitude and thus reduces the dynamic 

range of the signal. This effect is illustrated in  

Figure 3. For reasons of clarity a half-wave of a sinusoidal signal A(t) = sin(2THzt) with THz  = 480 GHz is 

shown, which corresponds to the PDR frequency of our system. It is evident that a time-domain jitter dt results in 

an amplitude uncertainty dA. The derivative dA/dt of the sine wave yields 2
.
cos(2t). The amplitude 

uncertainty reaches maximum values at the zero crossings of A(t), i.e. at t = k / 2 with k = 0, 1, 2, etc. The 

“worst-case” amplitude error is given by dtdA THz2 [33] and the dependence of the dynamic range on the 

timing jitter can be written [37] 

)2log(20RangeDynamic jitter dtTHz .   (Eq. 2) 

We note that the absolute value of the PDR depends on a plurality of other factors, such as available terahertz 

power, the sensitivity of the receiver and electronic noise in the readout circuit. However, Eq. 2 allows us to 

quantify the influence of the timing jitter in otherwise identical setups.  

The system described here determines the delay position with an uncertainty below 400 nm, and thus achieves a 

time resolution of 1.3 fs. This is an improvement of more than one order of magnitude, compared to the 10 fs 

level inferred from [35], [36]. Using Eq. 2, we conclude that the precision of the delay stage improves the PDR 

by more than 17 dB.  

 

Figure 3: Effect of timing jitter on the signal amplitude.  

  



Application examples 

Terahertz spectroscopy 

To demonstrate the suitability of our system for terahertz spectroscopy, we used three different polymer samples: 

high density polyethylene (HDPE, thickness 1.93 mm), polyamide (PA, 1.07 mm) and E540i
1
, a liquid-crystal 

polymer (LCP, 2.05 mm). The emitter / receiver modules, optics and the samples themselves were kept in a 

sealed box, which was purged with dry air to minimize absorption effects by water vapor. Refractive index 

values and absorption coefficients of the materials were obtained by comparing a reference pulse and a sample 

pulse, with 1000 averages per trace (measurement time = 44 s). Figure 4 shows a typical trace of a reference 

pulse in dry air (black solid line), together with pulses which propagated through the LCP sample in ordinary 

(dashed red line) and extraordinary direction (dashed dotted green line). The orientational order of the LCP 

molecules gives rise to anisotropic properties: The extraordinary refractive index is higher than the ordinary 

refractive index [38], [39] and consequently, the pulse undergoes a larger time shift in the case of extraordinary 

polarization. Note that the pulse amplitudes are nearly identical for both polarizations, indicating similar 

absorption coefficients.  

 

Figure 4: Pulse shift of an anisotropic liquid crystal polymer (LCP) sample. 

For extraction of the material parameters we used a quasi-space algorithm [40]. Refractive indices and 

absorption coefficients are shown in Figure 5 (a) and (b), respectively. The strong absorption of the terahertz 

wave in the LCP and PA samples at high frequencies lowers the dynamic range and consequently restricts the 

frequency span useable for analysis to ~ 2 THz.  

A nonpolar polymer, HDPE exhibits the lowest absorption (dashed blue line). For this sample almost the full 

bandwidth of the system is exploited. The absorption coefficient remains < 0.1 cm
-1

 for frequencies below 

1 THz, and increases slightly towards higher frequencies (approx. 1 cm
-1

 @ 2 THz). The refractive index of 1.53 

shows no dispersion over the entire frequency range investigated. In contrast to HDPE, PA is a polar plastic. Our 

measurements yield a higher, more rapidly increasing absorption coefficient (dotted green line). The refractive 

index of PA is 1.71 at 0.5 THz and decreases very slightly towards higher frequencies. Our results for PA and 

HDPE are in very good agreement with literature data [41]. 

                                                           
1
 E540i is a trademark of TICONA. 



The refractive indices of the LCP show a distinct anisotropy: at 0.5 THz, values for ordinary and extraordinary 

polarization amount to 1.86 and 2.03, respectively. The dispersive feature at around 1.2 THz corresponds to a 

distinct absorption peak, as seen in Fig. 5 (b). Note that at higher frequencies, the absorption coefficients follow 

different trends: The ordinary parameter rises faster than the extraordinary parameter. The absorption peak itself 

is caused by Talcum, a filling material, which is commonly added to LCP samples [42].  

 

Figure 5: (a) Refractive indices and (b) absorption coefficients of high-density polyethylene (HDPE), polyamide 

(PA) and a liquid-crystal polymer (LCP) for ordinary and extraordinary polarization. 

Terahertz imaging  

Besides terahertz spectroscopy, our system also lends itself for terahertz imaging. For proof-of-principle 

experiments, two test samples - a mail envelope with an enclosed birthday card featuring a built-in sound chip, 

and a polyamide step wedge - were mounted on an XY-scanner and moved through the focus of the terahertz 

beam. Figure 6 shows a photograph of the red envelope that contained the birthday card, and the corresponding 

terahertz image. The size of the scanned area was 150 mm x 60 mm and the step size was 0.5 mm. The XY-

scanner moved at a speed of 3 mm / s, resulting in a total measurement time just below two hours. The terahertz 

image clearly reveals the electronic board, and the speaker at the center of the envelope. 

 

Figure 6: (a) Constituent parts of the birthday card: loudspeaker and circuit board. (b) Photograph and overlay 

terahertz image of the envelope.  

Figure 7 shows a photograph of the polyamide step wedge and a 100 mm x 40 mm terahertz image. The scan 

speed was 2 mm / s, the step size was 0.3 mm and the total measurement time was 65 min. Red and blue colors 

denote sample regions with highest and lowest transmission, respectively, which correspond to the thinnest and 



thickest sections of the step wedge. The two dark-blue spots reveal air bubbles, which are not visible from the 

outside. This result demonstrates the suitability of the system for non-destructive testing. 

 

Figure 7: Photograph and overlay terahertz image of a polyamide step wedge. 

Conclusion and Outlook 

In conclusion we have designed and characterized a compact, fiber-coupled terahertz time-domain spectrometer 

operating at an excitation wavelength of 1.5 µm. The system combines mature telecom technology and 

photoconductive switches based on InAlAs/InGaAs multi-layer heterostructures. Owing to a highly precise 

mechanical delay stage, the spectrometer offers an outstanding dynamic range, along with a broad bandwidth 

and high measurement speed. Data acquisition rates range from 6 pulses / s to 60 pulses / s for sampling times of 

200 ps and 15 ps, respectively. A precise reconstruction of the time axis reduces the timing jitter to approx. 

1.3 fs, which translates into a peak dynamic range of 90 dB and an overall bandwidth of more than 4.5 THz, 

within a measurement time of less than one minute. 
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Steady progress of terahertz (THz) technologies, 

especially employing 1.55 µm fiber lasers and InGaAs-

based photoconductive antennas (PCA) has led to reliable 

and easy-to-handle THz systems within recent years. 

Potential applications for scientific and industrial 

applications are e.g. THz imaging, spectroscopy, chemical 

sensing or nondestructive testing  [1–5]. Nevertheless, up 

to now, the vast majority of THz systems and devices are 

still driven by scientific research interests. As a 

consequence, system size and cost as well as 

measurement speeds have been less important than 

flexibility and spectroscopic performance. In the future, 

however, for widespread industrial applications of THz-

time domain spectroscopy (TDS), the systems will have to 

be robust, compact, highly cost efficient, and 

measurement speed will have to increase to several kHz 

from today’s several Hz. Furthermore, some promising 

applications for THz-TDS, such as multilayer thickness 

determination, require the recording of several reflected 

THz pulses and therefore long time delay scan ranges of 

several hundred picoseconds. Yet, measurement rates in 

the kHz range with hundreds of picoseconds of time delay 

are almost impossible to obtain with linear or rotary 

mechanical stages, due to the inertia of the involved 

moving masses and restrictions to reasonable sizes. Hence 

one has to utilize electro-optically controlled time delays, 

i.e. systems based on changing the repetition rate of the 

pulse laser source, which are able to fulfill the 

aforementioned technical requirements. Several methods  

have been proposed for this purpose, i.e. asynchronous 

optical sampling (ASOPS)  [6,7], optical sampling by 

cavity tuning (OSCAT)  [8,9] and electrically controlled 

optical sampling (ECOPS)  [10–12]. All three techniques 

have their respective advantages and disadvantages. 

The main advantage of OSCAT is the use of only one 

laser source instead of two, as it is the case for ECOPS 

and ASOPS. However, OSCAT requires a very long fiber 

in either the pump or probe arm to obtain a sufficient 

scanning range. This inevitably deteriorates the laser 

pulse shape in the respective arm which limits the 

obtainable THz bandwidth. ASOPS allows for a scan 

range determined by the laser repetition frequency and at 

the same time for scan rates of several kHz. A drawback 

of ASOPS is the fixed scan range. In Terahertz TDS, a 

scan range of several hundreds of ps, e.g. 400 ps, are 

sufficient for almost every application, while the typical 

values are mostly in the range of 100 ps. Unfortunately, in 

ASOPS systems which employ compact and cost-efficient 

fiber lasers with repetition rates of 100 MHz or 250 MHz 

the scan ranges are fixed to 10 ns and 4 ns, respectively. 

As a consequence, the systems produce a lot of 

measurement dead time and thus exhibit a decreased 

measurement time efficiency of less than 10 %. In other 

words, ASOPS systems employing 100 MHz or 250 MHz 

lasers partly loose the advantage of the high scan speeds, 

as signal averaging for increased signal to noise ratios 

consume much more time than systems featuring flexible 

scan ranges. An alternative is to use 1 GHz laser 

oscillators, that would reduce the scan range to at least 

1 ns. Yet, as cost-efficient and robust gigahertz-fiber-laser 

are not commercially available, one has to employ 

expensive and complex 1 GHz-Titanium sapphire laser 

systems [6,7]. Such systems additionally require much 

more expensive and bulky free space optics, since mature 



and cost-efficient 1.55 µm fiber components cannot be 

employed. 

Thus, we believe that ECOPS offers the largest 

flexibility, as it allows for both an adjustable scan range 

and for scan rates of several kHz. By using ECOPS 

instead of ASOPS, the authors of  [11] found a reduction 

of the measurement time of a THz TDS system by a factor 

of 50 for 100 MHz lasers. Furthermore, employing cost 

efficient erbium-doped fiber laser at 1560 nm emission 

mitigates the cost increase due to the necessity of two 

lasers. In this paper we present the first all fiber-coupled 

ECOPS based THz-TDS system operating at 1560 nm. 

With this system we obtain measurement rates of up to 

8 kHz and up to 180 ps of time delay scan range. 

The presented system consists of two erbium-doped 

fiber oscillators (TOPTICA FemtoFErb 1560) which are 

passively mode-locked by a semiconductor saturable 

absorber mirror and emit at a center wavelength of 

1560 nm. The lasers yield optical pulse durations of 

< 100 fs with approx. 80 mW average power at a 

repetition frequency of 100 MHz.  

To employ the ECOPS principle, one of the lasers 

(laser 1) comprises a piezo-electric crystal within the 

oscillator cavity to electronically control the cavity length. 

For this purpose there is a very short free space part 

inside the oscillator, where the light is coupled out of the 

fiber oscillator and directed onto a mirror attached to the 

piezo crystal. The second laser (laser 2) has a fixed cavity 

length. The repetition frequency of both lasers can be 

slowly adjusted by oscillator temperature. The repetition 

frequency f1 of laser 1 is then phase-locked to the 

repetition frequency f2 of laser 2 by electronically 

controlling the piezo displacement by the use of a high 

bandwidth, 21 bit digital controller (TOPTICA DigiLock 

110). By additionally imposing a periodical, e.g. 

sinusoidal, modulation onto the piezo crystal, the phase 

difference ∆Φ(t) between the two lasers frequencies can be 

modulated around its zero position. Thus the laser pulses 

of laser 1 exhibit a time delay with respect to the pulses of 

laser 2 which is given by τ(t)=∆Φ(t)/2πf.   [10,11]. 

Since the system targets very high measurement 

rates, the THz emitter and detector have to be chosen 

carefully in order to obtain sufficiently high measurement 

signal strengths. Considering a 200 ps scan range with a 

50 fs delay time resolution at 2 kHz measurement rate, 

the measurement bandwidth of the detection electronics 

has to be at least 8 MHz. This sets an upper limit to the 

amplification that can be used in the detection electronics. 

For the generation and detection of the THz radiation we 

therefore employed highly efficient photoconductive 

antennas (PCA) based on InGaAs/InAlAs 

heterostructures. The emitter PCAs were based on a 

InGaAs/InAlAs heterostructures optimized for high THz 

powers due to increased carrier mobility and which have 

been shown to exhibit output powers of up to 64 µW 

 [13,14]. The detector PCAs were made from low 

temperature grown (LTG) beryllium doped 

InGaAs/InAlAs heterostructures, with short carrier 

lifetimes of a few hundred femtoseconds, which enable 

high  THz bandwidth and dynamic range  [15,16]. Both 

emitter and detector feature a mesa-design of the 

photoconductive gap to further improve their performance 

 [17] and were packaged into fiber coupled housings for an 

improved stability of the optical alignment. The 

combination of these PCAs yields detector current signals 

of up to 1 µA and therefore supports the aforementioned 

low amplification requirement formidably. The detector 

current was amplified using a transimpedance amplifier 

with a 3 dB bandwidth of 3.5 MHz and an amplification 

factor of 105.  The amplified signal was then digitized with 

a sampling rate of 21 MS/s. 

To build a completely fiber coupled THz-TDS system, 

both lasers comprised an internal pre-compensation of the 

dispersion of 6 m of SMF 28 fiber, by employing 

dispersion compensating fiber. The pulse widths of both 

lasers after the complete fiber length (i.e. at emitter and 

receiver position) were approximately 140 fs.  

Since ∆Φ(t) is modulated in a sinusoidal manner, a 

linear time axis had to be extracted from the 

measurement data. The control loop reacts on the applied 

modulation frequency and its error signal follows the 

sinusoidal modulation, yet with a certain phase offset and 

superimposed higher harmonics of the modulation 

frequency. The error signal was used as a measure of the 

actual delay timing of the system. First a sinusoidal 

model function, together with its 3rd and 5th harmonics, 

was used to fit the measured error signal. The 

measurement time axis was then replaced by the y-axis of 

the fit function. Subsequently, the new time axis and 

signal data were interpolated to obtain equidistant time 

steps. The exact scale of the linear time axis was then 

obtained by measuring the THz transmission through a 

500 µm thick silicon wafer, which served as a Fabry-Perot 

etalon for the THz beam, generating one transmitted THz 

pulse followed by multiple reflected THz pulses that are 

spread equidistant in time. 

The measurement records both the back and the forth 

motion of the phase difference ∆Φ(t), i.e. of the time delay, 

and thus we measure two THz pulse traces for each piezo 

oscillation cycle. At a scan rate of e.g. 1 kHz we thus 

obtain a measurement rate of 2 kHz.  

An example of two pulse traces measured with the 

ECOPS system at measurement rates of 2 kHz and 8 kHz 

(inset) is shown in Fig. 1. The displayed pulse traces are 

single pulse traces and hence correspond to total 

measurement times of 500 µs and 125 µs, respectively. 

For the 2 kHz measurement rate, it was possible to obtain 

a scan range of up to 180 ps. For 8 kHz measurement 

rate, the overall time delay was limited to approximately 

20 ps, due to limitations of the piezo crystal. However, a 

delay time of 20 ps equals 6 mm in air and is thus long 

enough for measurements of e.g. thin films and coatings.  



The different appearance of the THz pulses is mostly 

due to the different time scales, except for a small 

oscillation observed in front of the main pulse in the 2 kHz 

measurement. This feature originates from a second 

optical excitation of the detector caused by a reflection of 

the unabsorbed portion of the optical excitation pulse at 

the interface of PCA chip and SI-lens, which then excites 

the PCA detector for a second time. This second excitation 

of the detector results in a pre-pulse in the TDS signal, 

due to the convolutional nature of TDS measurements. 

These pre-pulses are significantly increased if the back-

side of the PCA chip (wafer) is polished. For the 

measurements of this publication we used different, but 

similarly grown wafers, to build several fiber-coupled 

detectors. Some of the wafers were polished (to be able to 

perform additional pump probe measurements) some of 

the wafers were not polished. In case of the 2 kHz 

measurement the detector chip was polished and thus 

there is a pre-pulse in the TDS trace, whereas the detector 

PCA used in the 8°kHz measurement was not polished. 

However, this pre-pulse oscillation has no spectroscopic 

significance and can therefore be completely ignored. 

 

Fig. 1. Single THz pulse traces obtained with the ECOPS system 

at measurement rates of 2 kHz and 8 kHz (inset). 

The Fourier spectrum obtained from averaging 1000 

pulse traces recorded at 2 kHz is shown in Fig. 2(a). For a 

total measurement time of 500 ms at 2 kHz, i.e. an 

average over 1000 traces, the system reaches a dynamic 

range (DR) of approx. 76 dB. In this case the usable THz 

bandwidth is in excess of 2 THz, as illustrated by the 

clearly resolved water vapor absorption lines in the 

spectrum of Fig 2(a). For a single recorded pulse trace at 

2 kHz, i.e. 500 µs measurement time, the dynamic range 

was still as high as 47 dB [Fig. 2(b)]. The DR shows a 

logarithmic behavior as a function of the number of 

averages, as indicated by the linear fit to the logarithmic 

plot of Fig. 2(b). 

It should be noted that the THz bandwidth of the 

present system is still lower than values that have 

previously been demonstrated with equal PCAs and 

lasers using a high precision mechanical delay, which 

reached up to 6 THz  [16,18]. There are two major 

influences that limit the THz bandwidth in the present 

system. The first is due to an insufficiently optimized fiber 

delivery that resulted in a broadening of the laser pulse 

width of 140 fs with additional small leading or trailing 

pulses and which in turn reduces the THz bandwidth 

 [19]. The pulse length can be further optimized in future 

systems to yield pulse widths <100 fs.  

 

Fig. 2.(a) Fourier spectrum for the pulse trace shown in Fig.1 

recorded at 2 kHz measurement rate and averaged over 1000 

single traces together with water vapor absorption lines. (b) The 

dependence of the dynamic range on the number of averaged 

pulse traces at 2 kHz measurement rate (full symbols) and a 

linear fit to the logarithmic plot (solid line). 

The second influence is the timing jitter of the laser 

pulses, i.e. fluctuation of their time position, due to 

variations of the laser repetition rates with respect to each 

other. The total static timing jitter of two oscillators, 

measured with a balanced optical cross-correlator  [20] 

integrated from 10 Hz (1 kHz) to the Nyquist frequency, is 

<40 fs (<20fs) in the static case, i.e. without phase 

modulation. The dynamic jitter over the course of one 

piezo oscillation, i.e. with phase modulation, was 

estimated from comparing arbitrary single THz pulse 

traces to be in the range of 50 fs. The fluctuations within 

one oscillation period are correspondingly lower. We are 

confident that the jitter can be further reduced by 

employing an improved mechanical mounting of the piezo 

crystal. Furthermore there are several options to further 



improve the frequency lock of the lasers, such as the use of 

higher harmonics of the error signal [11], which has not 

yet been employed in the present publication. Considering 

that the employed PCA antennas generally allow for 

much higher THz bandwidths [16], we assume that above 

improvements should help to allow for bandwidth in 

excess of 4 THz. 

However, the presented system already outperforms 

the previously demonstrated fiber-laser based ECOPS 

systems in terms of jitter by more than a factor of 3 and 

increases the maximum measurement speed by more 

than a factor of 10  [10,12]. Additionally, it features a 

much more compact and robust laser design as well as a 

complete fiber-coupled delivery. When compared to the 

large and expensive Ti:Sapphire laser system with 20 fs 

laser pulses and free-space optics of  [11], we are able to 

obtain the same bandwidth and dynamic range for half 

the measurement time at even higher measurement rate 

and longer scan range. In summary, we attribute the good 

performance to the combination of the high THz signal of 

the PCAs with of improved stability of the laser system, 

which is due to a more robust laser design and high 

precision control electronics. 

In conclusion we have demonstrated an all-fiber-

coupled ECOPS based THz-TDS system employing high 

performance InGaAs/InAlAs heterostructure PCAs with 

maximum measurement rates of up to 8 kHz. We have 

shown that a THz bandwidth of approx. 2 THz with a 

dynamic range of 76°dB is obtainable for measurement 

times as low as 500 ms at 2 kHz measurement rate with a 

total scan range of 180 ps. With such compact, robust and 

fast measurement systems at hand the widespread 

employment of THz technology for industrial applications 

comes within reach. 
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Abstract—We demonstrate pulsed THz emission and detection in low temperature (LT) MBE grown Be-

doped InGaAs/InAlAs multi-nanolayer structures for an excitation wavelength of 1030 nm. We obtained 

spectra with a bandwidth of up to 3 THz. Furthermore, we performed differential transmission 

experiments to investigate the material’s relaxation time constants. 

 

Terahertz (THz) technology is a rapidly developing field. In particular time-domain terahertz 

spectroscopy (THz TDS) [1-3] is a promising technique for which many applications are foreseen which 

range from industrial inspection [4-6], moisture mapping [7,8], investigation of cultural heritage [9], 

plant physiology [10] to medical diagnosis [11]. To further foster THz TDS, photoconductive THz 

emitters and detectors which can be excited at the telecom wavelength [12-14] are desired. In 

combination with 1550 nm femtosecond fiber lasers, cost-effective and mobile THz TDS systems [15] 

can be built. This is mostly due to the availability of competitive laser sources, easy fiber delivery and 

dispersion compensating fibers for dispersion management. However, Ytterbium-doped femtosecond 

fiber lasers operating at a center wavelength of approx. 1030 nm offer higher powers as compared to 

their 1550 nm counterparts. Hence, they are an interesting candidate for high power photoconductive 

terahertz generation. Recently, it was demonstrated that GaAsBi can be used as a photoconductive 

material at this wavelength [16]. An alternative material could be Be-doped LT-grown InGaAs/InAlAs 

based multi-nanolayer structures (MNLS). Antennas based on this material have been successfully 

demonstrated to operate with an excitation wavelength of 1550 nm [13,15]. 

 

In this paper, we evaluate the potential of MBE grown In0.53Ga0.47As/In0.52Al0.48As MNLS lattice 

matched to InP as a photoconductive material for 1030 nm excitation. The structure was made of 100 

periods of a 12 nm InGaAs layer followed by an 8 nm InAlAs layer. The samples were grown at a 

substrate temperature of approx. 130 °C following an in-situ annealing step at 500 °C for 60 min. The 

band-gap (valence to first sub-band) of the InGaAs layers is approx. 0.76 eV (≈1630 nm). The band-
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gap of the InAlAs layers is approx. 1.47 eV (≈850 nm), i.e. transparent for 1030 nm excitation. 

After growth the material was processed with mesa-type strip-line antennas with 25 µm gap and mesa-

type dipole antennas with 10 µm gap, for emitter (Tx) and detector (Rx) respectively [13]. 

Additionally, the antennas were packaged into fiber-coupled modules to ensure precise and stable 

optical coupling of the antennas, with a laser spot size on the semiconductor gap of approx. 10 µm. 

The packaged antennas performance was subsequently examined in a THz TDS setup with a mode-

locked femtosecond ytterbium-doped fiber oscillator laser by Menlo Systems (Orange Laser Head N 

Sync with Yb-Compressor) as excitation source. In addition, using the same laser, differential 

transmission experiments were performed on similar MNLSs in order to investigate the trapping and 

relaxation dynamics of the material. Furthermore, we compare these results with results obtained from 

similar experiments, for which the excitation source was a femtosecond Erbium-doped fiber laser with 

a center wavelength of 1550 nm. For the TDS measurements at 1550 nm we used fiber-coupled 

modules with standard SMF28 fiber. The PCAs that were built into the Tx module for 1550 nm 

excitation came from the same wafer as the PCAs employed in the Tx module for 1030 nm excitation. 

The same was the case for the Rx modules. 

Fig. 1 shows the normalized THz pulse traces obtained for excitation of the fibre coupled modules 

with 1030 nm and 1550 nm. In both cases the respective excitation power was chosen in a way that 

the incident photon density was 1.65×10
14

 cm
-2

, i.e. 5 mW for the 1030 nm excitation and 3.32 mW 

for the 1550 nm excitation, for both receiver and emitter. The optical pulse lengths were approx. 

120 fs for the 1030 nm and 90 fs for the 1550 nm excitation. The applied emitter bias was chosen to 

be 20V in both cases. 
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Fig. 1: THz TDS pulse traces for 1030 nm and 1550 nm wavelength excitation of Be-doped annealed MNLS grown at 

Ts=130°C 
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Fig. 2: Corresponding normalized FFT Spectrum for the pulses in Fig.2 for excitation with 1030 nm and 1550 nm wavelength. 

 

Fig. 2 shows the normalized FFT spectra obtained from the corresponding pulses. Both spectra clearly 

exceed 3 THz of bandwidth. However, the spectrum obtained for the 1030 nm excitation shows a 

stronger decrease of amplitude over frequency than in case of 1550 nm excitation. The slightly longer 

excitation pulse length in case of the 1030 nm laser might have a part in this behavior. Additionally, 

the cross section for carrier trapping into defect states could be reduced for electrons with higher 

energies. Since an excitation with 1030 nm results in hot electrons with energies well above the 

conduction band edge, this might have an impact. The matter will be further discussed below.  

To evaluate the overall THz TDS performance of the antennas at 1030 nm we measured the detected 

THz signal in dependence on the applied emitter bias from 1 up to 20 Volts (Fig.3). The incident 

photon density was kept at a value of approx. 1.65×10
14

 cm
-2

. In both cases, one can note a threshold 

like behavior for lower bias voltages and a slightly super linear behavior for higher voltages. 

However, for the 1030 nm excitation the detected THz signal at the detector is more than one order of 

magnitude, i.e. 35 times, higher as compared to the 1550 nm excitation. 

A possible contribution to this increase is the strongly enhanced absorption of 1030 nm wavelength in 

the InGaAs nano-layers compared to 1550 nm excitation, i.e. a factor of ≈4-5 [17]. We assume a 

linear dependence between incident photon density and generated carrier density, as well as a linear 

dependence between the carrier density and the generated THz emission on the emitter side, as well as 

on the THz sensitivity on detector side. Under these assumptions the higher absorption contributes 

multiplicatively to the detected THz signal resulting in a signal increase up to a factor of 25. For the 

pulses centered at 1550 nm, the estimated average absorption depth is 1.30 µm. Since the overall 

InGaAs width is 100 × 12 nm = 1.2 µm, approx. 40% of the light passes the MNLS without being 

absorbed. For the 1030 nm excitation the absorption depth is approx. 0.3 µm, so practically all of the 



photons are absorbed over a short distance within the sample, thus generating a higher carrier density 

as compared to 1550 nm excitation. This suggests that the THz performance is not only dependent on 

the absolute amount of generated carriers but rather the carrier density. 

On the other hand, since the valley separation between Γ-valley and L-valley in InGaAs at 300 K is 

approx. 0,55 eV [18], we would expect the probability for inter-valley scattering processes to increase 

within the applied bias field range for hot electrons, i.e. 1030 nm excitation (1.2 eV). Intervalley 

scattering reduces the average electron mobility due to the strongly increased effective mass in the L-

valley, i.e. 0.29×m0 compared to 0.041×m0 [19]. The lower mobility in turn should reduce the THz 

emission efficiency. However, this effect is in contradiction with the oserved monotonic increase of 

the THz signal over the complete applied bias field range. Furthermore, the devices show the same 

qualitativ behavior for both wavelengths. This leads to the assumption that intervalley scattering does 

not affect the THz generation efficiency. Nevertheless, additional measurements have to be conducted 

in order to further investigate the origin of the increased efficiency. 
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Fig. 3: Detected THz signal amplitude in dependence on the emitter bias voltage for 1550 nm and 1030 nm wavelength 

excitation and an incident photon density on receiver and emitter of 1.65×1014 cm-2 for both wavelengths. 

 

To further investigate the carrier trapping and recombination dynamics we performed differential 

transmission experiments using the abovementioned lasers as excitation source. The differential 

transmission (DT) data obtained from a MLNS sample, similar to the THz antenna material, for 

1550 nm and 1030 nm, and at two different pump powers for each wavelength is depicted in Fig.4 and 

Fig.5. The values for the probe powers were chosen such that they correspond to equal photon 

densities for the respective wavelengths, i.e. ≈5×10
13

 cm
-2

. The same holds true for the lower pump 



power value for the respective wavelength. In case of the higher pump power we were limited by the 

experimental setup, nevertheless reaching comparable excitation densities. A significant increase in 

the carrier relaxation time is visible when excited with 1030 nm as compared to an excitation with 

1550 nm. For all DT measurements we see two decay components in our signal. A fast decay 

component on a timescale of several hundred femtoseconds to picoseconds and a long decay 

component on the picosecond to tens of picoseconds range. Both decay components are dependent on 

the excitation wavelength. In order to obtain quantitative figures, i.e. decay time constants, we applied 

a simple bi-exponential fit to our measurement data. The results are given in Table. 1.  

 

 1 mW Pump; 

1550 nm 

8 mW Pump; 

1550 nm 

1.5 mW Pump; 

1030 nm 

10 mW Pump; 

1030 nm 

τ1 [ps] 0.23 ± 0.001 0.27 ± 0.002 1.2 ± 0.08 2.2 ±0.08 

τ2 [ps] 2.7 ± 0.07 3.5 ± 0.09 32 ± 1.3 51 ± 0.5 

 

Tab. 1: Time constants resulting from a bi-exponential fit function fitted on to measured differential transmission data of Fig. 4 

and Fig. 5. 

 

The short time constant τ1 is interpreted as the time constant for an electron to get trapped from the 

conduction band (CB) into a LT-growth related trap state, e.g. AsGa defect states. The increase of τ1 

for increasing pump power can be explained by partial trap filling at higher excitation densities. Once 

traps states are partially filled the probability of an electron being trapped into an empty trap state is 

reduced. Hence, it takes longer for the absorption to recover due to Pauli blocking from electrons 

remaining in the CB. As mentioned above, an increase of τ1 from 0.23 – 0.27 ps to 1.5 - 2.2 ps is 

visible when switching from 1550 nm to 1030 nm excitation. This supports our assumption that the 

trapping time for hot electrons is increased compared to that of electrons energetically close to the 

band edge. Even though the carrier densities at 1030 nm excitation are 4-5 times higher than for 

1550 nm at equal photon densities due to the stronger absorption, the rather strong increase of τ1 for 

1030 nm compared to 1550 nm, even at low pump photon densities, suggests that partial trap filling 

isn’t the only reason for this increase. It is more reasonable to assume that the capture cross section of 

the trap states is reduces for electrons with higher energies. These findings of an increase in trapping 

time for higher electron energies is also supported by a trend suggested by results obtained from 

differential transmission measurements on comparable samples [20]. Additionally, an elevated 

trapping time is in agreement with the reduced THz bandwidth in our TDS measurements, as 

compared to a 1550 nm excitation.  
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Fig. 4: Differential transmission data for an excitation with 1550 nm wavelength at two different pump powers. The black 

curves are obtained from bi-exponential fit functions. 
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Fig. 5: Differential transmission data for excitation with 1030 nm wavelength at two different pump powers. The black curves 

are obtained from bi-exponential fit functions. 

 

The longer time constant τ2 is mostly governed by the life time of an electron populating a trap state 

before recombining with a hole in the valence band (VB). In case of the 1550 nm excitation and high 

pump fluence a slowly decaying positive signal component is visible. This originates from Pauli 

blocking by carriers remaining in the CB due to highly populated trap states. In this case the second 

decay is governed by the recombination time instead of the trapping time and is independent on the 

CB population which leads to a slow decay of the DT signal. This is further increased in the 1030 nm 

excitation case because of the increased absorption and thus higher carrier densities. However, the 

difference of τ2 for 1550 nm compared to 1030 nm excitation can’t be explained in this simple picture. 

For 1550 nm excitation and lower pump powers the signal decays to a negative value which is 



assumed to be induced absorption from trapped electrons. However the extremely long recovery time 

of this negative signal cannot be consistently explained assuming just one trap state, considering the 

signal decay of τ2 at higher pump fluence. The same behavior has been found in LT-GaAs samples 

[21]. Since the recovery of the induced absorption takes places on a time scale much longer than the 

one of interest, we follow the approach given in Ref. [21] and use the value of the decayed signal as a 

baseline for our fit. However, a more sophisticated model and a rate-equation-based fit-routine would 

be beneficial in order to get a better understanding of the behavior. 

In summary, we examined Be-doped MBE LT-grown InGaAs/InAlAs MNLS under 1030 nm 

femtosecond excitation. The differential transmission signals show an increased carrier trapping time 

compared to an excitation with 1550 nm. However, THz emission and detector sensitivity increased 

by more than an order of magnitude while maintaining broadband spectral characteristics. This might 

be interesting for THz applications where strong signals are necessary in order to obtain shorter 

measurement times, e.g. in-line production control. In conclusion, the material system poses another 

promising candidate for high power and high speed THz TDS systems that are based on Ytterbium-

doped fiber lasers. 
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Abstract—We investigate properties of MBE grown photoconductive terahertz (THz) antennas based on the 

InGaAs/InAlAs/InP material system aimed for an excitation wavelength of approx. 1060 nm. Therefore, we analyze 

several different approaches concerning growth parameters, layer and material compositions as well as doping. The 

carrier dynamics are probed via transient white-light pump-probe spectroscopy as well as THz Time Domain 

Spectroscopy (TDS) measurements. We find that the electron capture probability is reduced for higher electron 

energies. By adjusting the material band gap this can be resolved and lifetimes of 1.3 ps are obtained. These short 

lifetimes enable the detection of THz TDS spectra with a bandwidth exceeding 4 THz. 

Since the advent of the first THz TDS system [1], there have been many developments concerning new 

photoconductive materials [2]–[9] as well as other generation and detection techniques [10]–[12]. To a great part 

these developments were spurred by demands from basic research of THz-matter interactions in semiconductor 

physics [13]–[17] and chemistry [18]–[21]. However, apart from basic research, numerous promising out–of-lab 

applications for THz TDS have been identified such as industrial non-destructive inspection [22]–[24] and 

moisture mapping [25], [26]. Therefore, attempts have been made to build reliable and cost efficient THz TDS 

systems based on photoconductive THz emitters and detectors which can be excited at the telecom wavelength of 

1.5 µm [4]–[7], [9], [27]–[30]. This choice of wavelength is due to the availability of competitive laser sources and 

fiber optic components at 1550 nm. Nevertheless, Ytterbium-doped femtosecond fiber lasers operating at a center 

wavelength of approx. 1030-1060 nm can be built with much higher output powers compared to their 1550 nm 

counterparts. Thus, they offer another prospective choice for efficient and stable THz TDS systems with high 

power photoconductive terahertz generation and/or multi-channel arrays driven by one laser source, which allow 

for significant measurement time reduction in imaging and tomography applications [31]. However, concerning 

the development of photoconductive materials that are optimized for this wavelength, so far there has been only 

very little research. Amongst the investigated materials were GaAsBi [32], [33] and In0.3Ga0.7As grown on GaAs 

substrates [34]. More recently a proof-of-principle demonstration with Be-doped low temperature grown (LTG) 

InGaAs/InAlAs multi-layer heterostructures has been performed, which were originally designed for 1550 nm 

wavelength excitation [35]. The results of [35] indicated that the carrier capture time of conduction band (CB) 

electrons into gallium antisite (AsGa) defect states, is significantly increased for hot electrons, e.g. 1030 nm 

excitation, as compared to an excitation close to the band edge, e.g. 1550 nm wavelength, where carrier lifetimes 

of <200 fs have been achieved [29]. In this paper we further investigate the influence of the excess electron energy 

on the capture process as well as the potential of optimization of InP based photoconductors for 1060 nm 
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excitation wavelength. 

To investigate the carrier capture process in dependence of the electron excess energy, four samples with different 

band gap energies were grown lattice matched to an InP:Fe substrate via molecular beam epitaxy (MBE). Two 

samples are based on Be-doped LTG InGaAs/InAlAs heterostructures with different InGaAs layer thicknesses, i.e. 

sub-band energies. The other two samples are based on quaternary bulk InAlGaAs layers, with and without Be-

doping. The growth temperature of all samples was chosen to be approx. 130 °C, to obtain non-stoichiometric 

growth, i.e. incorporation of excess arsenic, which results in the formation of arsenic anti-site defects (AsGa) [36], 

[37]. After growth all samples were in-situ annealed at 500 °C for 60 min. 

The first sample (HHI33252) consisted of 100 periods of a 12 nm In0.53Ga0.47As layer followed by a 8 nm 

In0.52Al0.48As layer and serves as a reference sample, since its layer composition and growth parameters resemble 

that of the samples investigated in Ref. [35]. 

The second heterostructure sample (HHI33253) features a shifted band-gap with respect to sample HHI33252. 

This was achieved by reducing the In0.53Ga0.47As layer thicknesses from 12 nm to 3 nm and thus shifting the first 

sub-band energy to approx. 0.94 eV, i.e. 1300 nm wavelength. The overall InGaAs thickness of sample HHI33253 

was kept equal to HHI33252, i.e. 1.2 µm, by growing 400 periods. To limit the overall growth stack height, the 

In0.52Al0.48As layer thickness was also reduced from 8 nm to 4 nm. The InGaAs layer thickness of 3 nm is a trade-

off between sub-band energies shifted towards the higher energies and sufficiently high carrier mobility. The latter 

is important for the purpose of building photoconductive antennas (PCA) for THz detection with sufficient 

detector currents. The reduction of the mobility for thinner layers is due to the increasing influence of interface 

roughness scattering on the InAlAs layer boundaries, which becomes already evident in case of the 3 nm InGaAs 

layers of sample HHI33253 from the reduction of the Hall mobility by a factor of 2.5 as compared to sample 

HHI33252 (cf. Table 1). 

The two quaternary samples, HHI33251 and HHI33284, were grown with a composition of In0.52Al0.28Ga0.20As, 

which results in a band gap energy of approx. 1.1 eV, i.e. 1120 nm wavelength. 

Samples HHI33252, HHI33253 and HHI33284 were additionally Be-doped with a concentration of 4x10
18

 cm
-3

 to 

raise the amount of ionized AsGa defects, which increases the electron capture cross section as compared to neutral 

AsGa [29], [36]. As shown in Ref. [29], the holes are captured by Be-dopants and the subsequent electron-hole 

recombination then occurs between bound electrons in AsGa defects and holes bound to Be-dopants on the order of 

several tens of picoseconds. Furthermore, the amount of ionized AsGa defects can be assumed equal to the Be-

doping concentration. 

In case of LTG InGaAs/InAlAs heterostructures, the Be-doping also strongly reduces the residual carrier 

concentration. The energy levels of the AsGa defects in LTG InGaAs are close to the conduction band (CB) [36], 

[38]. In scanning tunneling microscopy measurements of AsGa defects in LTG-InGaAs, Grandidier et al. measured 

a band of mid-gap states at energies of around 150 meV below the CB. They attributed this to a combination the 

two ionization transitions of the AsGa defect, i.e. neutral to singly charged (0,+) and singly to doubly charged 

(+,++). The transfer to the singly charged state was associated with an activation energy of 32 meV, corresponding 

to a ionization energy of roughly 91 meV in uncompensated LTG InGaAs, which has previously been determined 

from temperature dependent Hall measurements by Künzel et al. [38]. The double charge state was assumed to 

have an energy of 230 meV. In the following we will for simplicity assume the defect energy of the AsGa defect in 

LTG In0.53Ga0.47As to be at its averaged value of 150 meV. Hence without counter Be-doping there would be a 

significant amount of thermally excited carriers in the CB. 



Considering that the electron Bohr radius for an electron bound to a singly charged state is approx. 15 nm, the 

energetic position of the AsGa defects with respect to the valence band (VB) is assumed to be shifted in the case of 

sample HHI33253 due to the confinement of the quantum wells. The fact that the residual carrier concentration of 

HHI33253 does not change significantly as compared to sample HHI33252 supports this assumption (cf. Table 1). 

Hence, the energy level of the AsGa defects in sample HHI33253 are also approx. 150 meV below the CB edge of 

the first sub-band. 

Concerning the energy levels of the AsGa defects in the quaternary samples the following inference can be applied: 

The energetic position of the AsGa defect with respect to the valance band (VB) maximum in InxGa1-xAs was found 

to be only very weakly dependent on the Indium content x of the samples [39], [40]. Hence, considering that the 

energy levels of the AsGa defect in In0.53Ga0.47As are approx. 0.76 eV–0.15 eV=0.61 eV above the VB, the energy 

level of the AsGa defects in In0.52Al0.28Ga0.20As can be estimated to be at approx. 0.5 eV below the CB edge. The 

validity of this assumption is supported by the residual carrier concentration of the two quaternary samples, which 

are found to be very low, even without Be-doping. This suggests that the defect energy is situated in a mid-gap 

position and thermal excitation is low. 

 

Sample Structure Periods 

Growth 

Temperature 

[°C] 

Be-

Doping 

[cm
-3

] 

Resistivity 

[Ωcm] 

Mobility 

[cm
2
/Vs] 

Residual Carrier 

conc. [cm
-3

] 

HHI33252 

12 nm In0.53Ga0.47As/ 

8 nm In0.52Al0.48As 
100 130 4x10

18 850 308 2.39x10
13

 

HHI33253 
3 nm In0.53Ga0.47As/ 

4 nm In0.52Al0.48As 
400 130 4x10

18
 7285 127 6.72x10

12
 

HHI33251 
1.2 µm 

In0.52Al0.28Ga0.20As 
bulk 130 - 8238 1130 6.7x10

11
 

HHI33284 
1.2 µm 

In0.52Al0.28Ga0.20As 
bulk 130 4x10

18
 29050 331 6.5x10

11
 

 

Table 1: Growth parameters and hall data of the four samples studied. 

 

To experimentally verify the band gap positions of the four samples, we performed linear absorption 

measurements [Fig. 1]. All four samples show a broadened band edge, with an Urbach-like absorption tail arising 

from disorder due to band tail states [41]. This is a typical feature of LTG semiconductors. The absorption edge of 

sample HHI33252 and HHI33253 are found to be at approx. 1600 nm and 1300 nm, respectively. The samples 

HHI33251 and HHI33284 both have an absorption edge at 1100 nm, which is in good agreement with the value 

calculated for this alloy composition. Additionally, sample HHI33284 shows a slightly increased absorption 

broadening at the band edge as compared to samples HHI33251, which we assumed to be due to additional band 

tail states that are induced by the Be-doping. 



 

Fig. 1: Linear absorption spectra of the samples given in Table 1. 

 

 

Transient white-light pump-probe spectroscopy: Results 

 

To investigate the ultrafast carrier dynamics of the material we used transient white-light pump-probe (TWPP) 

spectroscopy. The pump beam was generated by a tunable optical parametric amplifier (OPA) which provides a 

transform-limited 80 fs pump pulse. A white-light super-continuum, generated by self-phase modulation in a 

sapphire-crystal, was used as the probe pulse. The wavelength of the pump pulse can be continuously tuned by the 

OPA, while the broad white-light enabled the monitoring of the full spectral range of interest. Thus the experiment 

yields the differential transmission spectra revealing the pump-induced change in absorption as a function of 

energy and time. The light source for both pump- and probe-pulses was a 1 kHz regenerative Ti:Sapphire amplifier 

with 100 fs pulse width. The resulting temporal resolution of the setup was sub-50-fs. All measurements were 

performed at room temperature. Due to the optical elements used and the intrinsic chirp of the white-light, a chirp 

correction was performed by using coherent oscillations and the multi-photon absorption features in the signals. 

Thereby we can eliminate artifacts and study the ultrafast response of the system over a broad spectral range. A 

linear stage, combined with a beam-stabilization, was used to set the time delay between pump- and probe-pulse. 

The TWPP measurements for samples HHI33252 and HHI33253 were performed at pump wavelengths of 

1060 nm and 1250 nm, whereas samples HHI33251 and HHI33284 were measured only for 1060 nm pump due to 

their higher band gap energy. The average power of the pump beam was 15 µW for both pump wavelengths. The 

pump beam was focused on a 260µm spot, which results in photon densities of 1.5x10
14

 cm
-2

 and 1.77x10
14

 cm
-2 

for 1060 nm and 1250 nm wavelength, respectively. 

It should be noted that the induced carrier densities differ due to the different absorption coefficients of the 

samples as well as for the two different wavelengths [cf. Fig. 1]. This fact is especially significant for the 1060 nm 

excitation of samples HHI33252 and HHI33253, where the absorption lengths are only 415 nm and 330 nm, 



respectively. Since the time scales of interest are on the order of a few picoseconds, carrier diffusion is negligible 

and there is a persistent density gradient towards the depth of the samples. The densities in the top layers of the 

samples are approx. 4x10
18

 cm
-3

, i.e. not higher than the assumed concentration of ionized AsGa defects, and hence 

strong trap saturation should not occur. However, the influence of partial trap filling cannot be ruled out. The 

carrier densities in case of 1250 nm excitation of HHI33252 and HHI33253, as well as the 1060 nm excitation of 

samples HHI33284 are on the order of 1x10
18

 cm
-3

 and thus well below the density of available ionized AsGa 

defects. 

The TWPP results of all four samples are shown in Fig. 2 a)-f). The vertical axis shows the time delay between 

pump and probe pulses and the horizontal axis shows the spectral components of the white light probe pulse. The 

color map value indicates the normalized differential transmission signal, where a positive color map value 

corresponds to an induced transmission and a negative color map value corresponds to an induced absorption.  

Due to the high carrier densities of ≥10
18

 cm
-3

, all samples exhibit an ultra-fast thermalization of the optically 

induced carriers into a hot carrier population via carrier-carrier scattering on a time scale of approx. 50-100 fs. 

After this initial thermalization of the carriers with each other, the relaxation of the carrier population depends on 

the sample and the excitation wavelength. Since the density of states (DOS) in the CB is smaller than in the VB, 

the differential transmission signals are dominated by the electron population. We will therefore limit most of the 

discussion to the dynamics of the CB electrons. 

For an excitation wavelength of 1060 nm of sample HHI33252 [Fig. 2a)] and after the initial thermalization, the 

majority of the electron population relaxes towards the band edge via longitudinal optical (LO) phonon emission, 

on a time scale of approx. 1.6 ps. There appears to be a small delay of the electron relaxation at the intersubband 

transition from the second to the first subband, where the relaxation via phonon emission is inhibited by the k-

vector and energy conservation. The relaxation of the electrons towards the band edge results in a very strong 

transmission signal for probe wavelengths close to the band edge due to lower DOS and the resultant strong Pauli 

blocking. The electron population at the band edge then subsequently decays on a time scale of 1.8-2 ps via non-

radiative capture into defect states. 

For the excitation of sample HHI33252 with 1250 nm pump wavelength [Fig. 2b)], the change of the transmission 

signal is much less pronounced than for the 1060 nm excitation. This can be attributed to the lower absorption 

coefficient for 1250 nm light and hence a lower initial electron density, as elaborated above. After the excitation 

there is again an ultra-fast thermalization of the electrons into a hot electron population with a subsequent 

relaxation via electron-phonon (e-ph) scattering, i.e. LO-phonon emission. The maximum of the differential 

transmission appears at around 1375 nm probe wavelength. This can be in part assigned to the aforementioned 

delayed electron relaxation at the intersubband transition. However, a part of the electrons appears to be captured 

into defect states already before relaxing to the band-edge via LO-phonons emission. The non-radiative decay of 

the remaining electron population, which has relaxed to the band edge, has a time constant of 1.3 ps-1.6 ps. 

For sample HHI33253 at a pump wavelength of 1060 nm [Fig. 2c)] and after initial electron-electron 

thermalization, the majority of the electron population relaxes towards the band gap via LO-phonon emission on a 

time scale of 300 fs before being capture by a defect state.  

 



 

Fig. 2: TWPP spectra obtained for samples HHI33252 (a, b), HHI33253 (c, d), HHI33251 (e) and HHI33284 (f). The horizontal axis is the 

probe wavelength, the vertical axis is the time delay between pump and probe pulse and the color map gives the differential transmission 

signal, where a positive value corresponds to increased transmission. 

 



At 1250 nm pump wavelength [Fig. 2d)], i.e. for excitation at the band edge, the excited electron population forms 

a cold Fermi distribution due to the lack of excess energy. The cold electron population is subsequently broadened 

due to the redistribution of electrons via electron-electron (e-e) and e-ph scattering on a time scale of 300 fs, which 

results in a partial decrease of the transmission signal. This decrease due to electron redistribution is superimposed 

by the electron capture process into AsGa defects with a time constant of approx. 1.3 ps. For both excitation 

wavelengths there is a long lived transmission signal from band tail states around 1300 nm which will be discussed 

later. 

For sample HHI33251 [Fig. 2e)], we observe an initial short decay of the signal on a time scale of 300 fs, followed 

by a longer decay component on a time scale of 3 ps. The initial short signal decay is again due to a redistribution 

of the electrons via e-e and e-ph scattering. The second decay component of the TWPP signal is due to electron 

capture into AsGa defects. The AsGa defects in this sample are mostly neutral since the sample is not Be-doped, 

which explains the rather long decay time of 3 ps. However, the decay is much shorter than the one observed in 

undoped or moderately doped InGaAs/InAlAs heterostructures [29]. 

In case of sample HHI33284 excited at 1060 nm [Fig. 2f)], the carrier density is also redistributed via e-e and e-ph 

scattering, again on a time scale of approx. 300 fs. The transmission signal of this sample is much broader 

compared to sample HHI33251. This is attributed to the higher amount of band tail states, caused by the Be-

doping, which becomes occupied due to the e-e and e-ph scattering. The subsequent decay due to the carrier 

capture time into defect states in this sample is found to be approx. 1.3 ps. 

There is another prominent difference between samples HHI33251 and HHI33284. The latter shows an increased 

transmission in the band tail at approx. 1120 nm wavelength while the former does not. This feature is similar to 

the slow decay component of sample HHI33253 at a probe wavelength of 1300 nm. Considering that the Be-

dopants in the initial state are negatively ionized, some of the pump photons are absorbed by the electrons bound 

to Be-dopants leaving a hole at the Be-dopant. We assume that the observed change of the transmission signal is 

caused by the bleaching of this absorption. The bleaching is then persistent until an electron from an AsGa defect 

recombines with the hole bound to the Be-dopant, which has been found to take place on the order of several 

picoseconds [29]. 

The most interesting and consistent feature of the TWPP measurements, where the electrons exhibit a significant 

amount of excess energy, is the finding that the relaxation via phonon emission appears to have a higher 

probability than the capture process of hot electrons into defect states. The LO-phonon emission time for a room 

temperature phonon occupation number NPh≈0.4 is approx. 300 fs [42]. The electron capture process into AsGa 

defects for samples equal to HHI33252 and near band edge excitation, i.e. 1550 nm, has previously been found to 

take place on the same time scale, e.g. ≈200 fs [29]. To understand the findings of our measurements it is therefore 

mandatory to consider the dependence of the LO-phonon emission probability and the electron capture cross 

section on the electron energy. Since the exact description of both processes is highly involved and thus beyond 

the scope of this publication, we will discuss this in a merely qualitative way. 

Each electron hole-pair produces a number ,LO ,/ph c ph LOn E E of LO-phonons, where Ec is the excess carrier 

energy and Eph,LO is the LO-phonon energy. Assuming that the lifetime of a LO-phonon at room temperature is 

equal to values found for GaAs, i.e. 4 ps [43], the relaxation of the hot electron population via-LO-phonon 

emission produces a non-thermal phonon distribution with a large phonon occupation number NPh≫1 for small 

k-vector LO-phonons [42]. The elevated phonon occupation number increases the probability of re-absorption of 

phonons by electrons, which leads to an inhibition of the electron energy relaxation, i.e. the formation of a phonon 



bottleneck. Hence, higher electron energies should increase the energy relaxation time via phonon emission. 

However, we do not observe a significant increase of the carrier relaxation time within the first picosecond of the 

carrier energy relaxation. This is most probably due to k-vector and energy conservation as well as the non-

thermal characteristics of the phonon distribution. The quadratic dispersion relation of the CB electrons prevents 

electrons that are already relaxed to lower band states from re-absorbing a previously emitted phonon with a 

smaller k-vector [44]. An inhibited carrier relaxation is only visible in case of the 1060 nm excitation of sample 

HHI33252 [cf. Fig. 2a)], i.e. very high excess energies. As visible from the measurement, part of the electrons 

occupy high band states for times >2ps after the excitation by the pump pulse. Even though a significant part of 

carriers is already captured by defect states at this time, the influence of Pauli blocking is still not negligible. We 

therefore attribute this persistent high band state electron occupation to a combination of Pauli blocking and 

phonon re-absorption by electrons in higher band states. 

The energy dependence of the capture cross section, within the scope of non-radiative multi phonon emission 

(NMPE), has been worked out in detail by Pässler [45]. As shown in [45] the dependence of the capture cross 

section on the electron energy E is governed by the depth ED>0 and the charge of the defect state as well as on the 

lattice relaxation energy A, i.e. the energy difference between the initial and final state of the lattice in the NMPE 

process. In the cases of weak ( ln( / ( )) 0DA E E  ) or intermediate ( ln( / ( )) 0DA E E ) electron-lattice 

coupling and attractive defect potentials the capture cross section is a monotonically declining function of the 

electron energy E. In contrast, for a strong electron-lattice coupling ( ln( / ( )) 0DA E E  ) there is a maximum of 

the capture cross section for a certain value of E>0 in dependence of the exact coupling strength. The capture 

cross section is also dependent on the lattice temperature and hence the phonon occupation number. The exact 

dependence is complicated and also dependent on A, EC and E. Yet, in most cases the cross section is increased for 

higher phonon numbers, i.e. lattice temperature [46]. 

The TWPP measurements indicate that the electron capture probability is reduced at higher electron energies. This 

is the case for all samples and, hence, defect state energies. We therefore conclude that the electron-lattice 

coupling of AsGa defects in all our samples is situated in the weak or intermediate regime. 



Terahertz time domain spectroscopy measurements 

 

In order to investigate how carrier relaxation influences the behavior of the PCAs made from the four samples, the 

samples were structured with mesa-type dipole antennas [47] with a gap size of 10 µm and employed as PCA 

detectors in a TDS setup. For THz generation, strip-line antennas with 400 µm gap size made from sample 

HHI33253 were used. The antennas were excited with an ytterbium doped fiber laser with a center wavelength of 

approx. 1030 nm and 100 fs pulse width at a repetition rate of 20 MHz. The optical powers at the PCA antennas 

were chosen to be 3 mW and 75 mW for the detector and the emitter, respectively. The obtained THz TDS pulse 

traces and corresponding Fourier spectra are shown in Fig. 3 and Fig. 4, respectively. The pulse trace of sample 

HHI33252 is broadened as compared to the traces of the other samples and hence the bandwidth is limited to 3 

THz. As has been shown by several authors, the detectable bandwidth in THz-TDS is greatly influenced by the 

time-dependence of the conductivity in the receiver [30], [48], [49]. An ideal THz PCA detector for high 

bandwidth THz detection features an almost delta function like time dependency of the photo-conductivity. Since 

holes have a much bigger effective mass they can be neglected in the discussion, and the duration of the 

photoconductivity is defined by the electron lifetime. In case of sample HHI33252 excited at 1060 nm wavelength, 

there is a significant photoconductivity over a time duration of > 7 ps, i.e. from the point in time of the optical 

excitation over the phonon relaxation to the band edge and until the majority of the electrons (>99%) have left the 

CB due to non-radiative capture into AsGa defects. Therefore, the low THz bandwidth of sample HHI33252 can be 

attributed to the prolonged carrier relaxation time of the high excess energy electrons. The pulse trace of sample 

HHI33253 is significantly shorter than the pulse trace of sample HHI33252 and hence the bandwidth is increased 

up to 4 THz as expected from the shorter carrier lifetime. Interestingly, the quaternary samples do not exhibit 

equally high bandwidth as the sample HHI33253. The Be-doped sample HHI33284 shows a better frequency roll-

off behavior in the low frequency range as compared to the un-doped sample HHI33251, which can be attributed 

to the shorter carrier capture time of approx. 1.3 ps of sample HHI33284. as compared to the 3 ps of sample 

HHI33251. 

 

Fig. 3: THz-TDS pulse traces obtained for dipole PCA detectors made from the four samples and a 400 µm strip-line antenna as emitter. The 

optical power was 3 mW and 75 mW for the detectors and the emitter, respectively. The emitter was biased with 200 V. The lock-in integration 

time was 300 ms per time delay step of 30 fs. 



However, the amplitude of the frequency components above 2 THz of sample HHI33284 are reduced as compared 

to the spectra obtained with sample HHI33251, which is in contradiction with what would be expected from the 

shorter carrier lifetime. We assume that the spectral dip at 2.2 THz and the low signal amplitude at higher 

frequencies in part originate from a minor misalignment in the THz beam path. Nevertheless, we cannot rule out 

that there is an influence of more complex electron transport phenomena in the presence of the THz field which 

are not covered by the TWPP measurements. An indication for a more complex carrier relaxation behavior in the 

presence of electrical field is the elevated noise floor, i.e. the spectral amplitude above approx. 4 THz, of samples 

HHI33251 and HHI33284 as compared to the two heterostructure samples. This elevated noise floor can be 

attributed to Nyquist noise and is indicative of a high average conductivity in the sample [30]. However, a high 

average conductivity is in contradiction with the short carrier lifetimes obtained from the TWPP measurements 

and the high dark resistivity of the hall measurements. To resolve this matter and to determine the potential of 

LTG InAlGaAs as PCA material for 1060 nm excitation wavelength, further measurements have to be performed 

in the future to determine the time resolved conductivity, e.g. optical pump THz-probe measurements. Hence, at 

this point InGaAs/InAlAs heterostructure samples with thin InGaAs layers of approx. 3 nm, e.g. HHI33253, are 

the most promising choice for InP-based broadband THz PCA detector materials at an excitation wavelength of 

1060 nm. 

 

Fig. 4: THz TDS Fourier spectra obtained from the pulse traces shown in Fig. 3. 



In conclusion, we investigated a set of LTG bulk and heterostructure III-V samples to study the influence of excess 

carrier energy on the electron relaxation and capture process. Our data indicate that the capture process of 

electrons into AsGa defects for electrons with higher band energies is reduced compared to electrons with near-

band-gap energies. As a consequence, the energy relaxation towards the band gap via LO-phonon emission 

becomes more likely than direct electron capture. Therefore, hot electrons significantly prolong the conductivity of 

the samples, which reduces the detectable THz bandwidth when employed as a material for PCA detectors in 

THz-TDS. We have shown that this can be resolved by shifting the band gap towards higher energies. For lattice 

matched growth on InP, this was achieved either by employing a quaternary alloy composition, i.e. InAlGaAs, or 

by employing InGaAs/InAlAs heterostructures with thin InGaAs layer thicknesses, e.g. 3 nm. We demonstrated 

that with such a band gap optimized InGaAs/InAlAs heterostructure based PCA detector, THz bandwidths of up to 

4 THz can be achieved. 
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References 

[1] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., vol. 45, 

no. 3, p. 284, 1984. 

[2] F. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and 

T. Y. Hsiang, “Picosecond GaAs-based photoconductive optoelectronic detectors,” Appl. Phys. Lett., vol. 54, no. 10, p. 

890, 1989. 

[3] J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure 

investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett., 

vol. 87, no. 25, p. 252103, 2005. 

[4] J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J. F. Lampin, and P. Mounaix, “Emission 

characteristics of ion-irradiated In0.53Ga0.47As based photoconductive antennas excited at 1.55 µm.,” Opt. Express, vol. 

15, no. 14, pp. 8943–50, Jul. 2007. 

[5] M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. 

Lett., vol. 86, no. 5, p. 051104, 2005. 

[6] M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm 

femtosecond optical pulses,” Appl. Phys. Lett., vol. 86, no. 16, p. 163504, 2005. 

[7] A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz 

emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett., vol. 96, 

no. 14, p. 141108, 2010. 

[8] O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, 

“Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-

doped InGaAs,” Appl. Phys. Lett., vol. 98, no. 12, p. 121107, 2011. 

[9] B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz 

time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express, vol. 16, no. 13, pp. 9565–9570, 

2008. 

[10] L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic 

materials,” Appl. Phys. Lett., vol. 61, no. 15, p. 1784, 1992. 

[11] Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., vol. 67, no. 24, p. 

3523, 1995. 

[12] P. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase 

retardation in lithium tantalate,” Phys. Rev. E, vol. 53, no. 4, pp. 3052–3054, 1996. 

[13] R. H. M. Groeneveld and D. Grischkowsky, “Picosecond time-resolved far-infrared experiments on carriers and excitons 

in GaAs-AlGaAs multiple quantum wells,” J. Opt. Soc. Am. B, vol. 11, no. 12, p. 2502, Dec. 1994. 

[14] R. Kaindl, M. Carnahan, D. Hägele, R. Lövenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting 

and insulating phases in an electron–hole gas,” Nature, vol. 423, p. 734, 2003. 



[15] S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. Steiner, M. Kira, S. Koch, A. Leitenstorfer, and R. Huber, 

“Terahertz Coherent Control of Optically Dark Paraexcitons in Cu2O,” Phys. Rev. Lett., vol. 101, no. 24, p. 246401, 

Dec. 2008. 

[16] D. Golde, M. Wagner, D. Stehr, H. Schneider, M. Helm, A. M. Andrews, T. Roch, G. Strasser, M. Kira, and S. W. Koch, 

“Fano Signatures in the Intersubband Terahertz Response of Optically Excited Semiconductor Quantum Wells,” Phys. 

Rev. Lett., vol. 102, p. 127403, 2009. 

[17] B. Ewers, N. S. Köster, R. Woscholski, M. Koch, S. Chatterjee, G. Khitrova, H. M. Gibbs, a. C. Klettke, M. Kira, and S. 

W. Koch, “Ionization of coherent excitons by strong terahertz fields,” Phys. Rev. B, vol. 85, no. 7, p. 075307, Feb. 2012. 

[18] T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the 

far-infrared,” Chem. Phys. Lett., vol. 385, no. 1–2, pp. 45–51, Feb. 2004. 

[19] V. Křesálek and T. Gavenda, “Using Terahertz Spectroscopy for Observing the Kinetics of Recrystallisation of 

Polybutene-1,” J. Infrared, Millimeter, Terahertz Waves, vol. 34, no. 2, pp. 187–193, Jan. 2013. 

[20] W. Qiao, K. Yang, A. Thoma, and T. Dekorsy, “Dielectric Relaxation of HCl and NaCl Solutions Investigated by 

Terahertz Time-Domain Spectroscopy,” J. Infrared, Millimeter, Terahertz Waves, vol. 33, no. 10, pp. 1029–1038, Jun. 

2012. 

[21] H. Zhang, K. Siegrist, D. F. Plusquellic, and S. K. Gregurick, “Terahertz spectra and normal mode analysis of the 

crystalline VA class dipeptide nanotubes.,” J. Am. Chem. Soc., vol. 130, no. 52, pp. 17846–57, Dec. 2008. 

[22] C.-C. Chen, D.-J. Lee, T. Pollock, and J. F. Whitaker, “Pulsed-terahertz reflectometry for health monitoring of ceramic 

thermal barrier coatings.,” Opt. Express, vol. 18, no. 4, pp. 3477–86, Feb. 2010. 

[23] W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys., vol. 70, no. 8, pp. 

1325–1379, Aug. 2007. 

[24] C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. 

Koch, “Terahertz imaging: applications and perspectives.,” Appl. Opt., vol. 49, no. 19, pp. E48–57, Jul. 2010. 

[25] J. F. Federici, “Review of Moisture and Liquid Detection and Mapping using Terahertz Imaging,” J. Infrared, Millimeter, 

Terahertz Waves, vol. 33, no. 2, pp. 97–126, Jan. 2012. 

[26] D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, and H. G. Roskos, “Diagnosing water content in paper by 

terahertz radiation,” Opt. Express, vol. 16, no. 12, pp. 3003–3006, 2008. 

[27] R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 µm excitation : six-

fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express, vol. 19, 

no. 27, pp. 122–126, 2011. 

[28] R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, 

“64 μW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated 

photoconductive and trapping regions,” Appl. Phys. Lett., vol. 103, no. 6, p. 061103, 2013. 

[29] B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-

grown InGaAs/InAlAs,” Appl. Phys. Lett., vol. 104, no. 17, p. 172103, Apr. 2014. 

[30] R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes 

in InGaAs/InAlAs photoconductive pulsed terahertz detectors : 6 THz bandwidth and 90dB dynamic range,” Opt. 

Express, vol. 22, no. 16, pp. 615–623, 2014. 

[31] A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-

domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express, vol. 22, no. 11, p. 12982, May 2014. 

[32] A. Bic, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1 µm laser pulses 

and GaBiAs detector,” Electron. Lett., vol. 44, no. 19, 2008. 

[33] V. Pa ebutas, a. Bi i nas, S. Balakauskas, a. Krotkus, G. Andriukaitis, D. Lorenc, a. Pug lys, and a. Baltu ka, “Terahertz 

time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” 

Appl. Phys. Lett., vol. 97, no. 3, p. 031111, 2010. 

[34] I. Hinkov, G. Harzendorf, S. Kluska, B. Hinkov, K. Kamaruzaman, R. Beigang, J. Heinrich, S. Hoefling, and A. Forchel, 

“Generation of terahertz pulsed radiation from photoconductive emitters using 1060 nm laser excitation,” in 15th 

International Conference on Terahertz Electronics. IRMMW-THz. Joint 32nd International Conference on, 2007, pp. 1–2. 

[35] R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and 

M. Schell, “Low Temperature Grown Be-doped InGaAs/InAlAs Photoconductive Antennas Excited at 1030 nm,” J. 

Infrared, Millimeter, Terahertz Waves, vol. 34, no. 3–4, pp. 231–237, Mar. 2013. 

[36] B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling 

microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett., vol. 74, no. 10, p. 

1439, 1999. 

[37] H. Künzel, J. Böttcher, R. Gibis, H. Hoenow, and C. Heedt, “Low-temperature MBE of AlGaInAs lattice-matched to 

InP,” J. Cryst. Growth, vol. 127, no. 1–4, pp. 519–522, Feb. 1993. 

[38] H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53As grown on InP by low-temperature 

molecular beam epitaxy,” Appl. Phys. Lett., vol. 61, no. 11, p. 1347, 1992. 

[39] A. Mircea, A. Mitonneau, J. Hallais, and M. Jaros, “Study of the main electron trap in Ga1-xInxAs alloys,” Phys. Rev. B, 

vol. 16, no. 8, pp. 3665–3675, Oct. 1977. 



[40] A. Irvine and D. Palmer, “First observation of the EL2 lattice defect in indium gallium arsenide grown by molecular-

beam epitaxy,” Phys. Rev. Lett., vol. 68, no. 14, pp. 2168–2171, 1992. 

[41] F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev., 

vol. 92, p. 1324, 1953. 

[42] S. E. Esipov and Y. B. Levinson, “The temperature and energy distribution of photoexcited hot electrons,” Adv. Phys., 

vol. 36, no. 3, pp. 331–383, Jan. 1987. 

[43] J. Kash, J. Tsang, and J. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs,” Phys. Rev. 

Lett., vol. 54, no. 19, pp. 2151–2154, 1985. 

[44] W. Pötz and P. Kocevar, Hot Carriers in Semiconductor Nanostructures. Elsevier, 1992, pp. 87–120. 

[45] R. Pässler, “Nonradiative multiphonon capture of thermal and hot carriers by deep traps in semiconductors for the 

alternative regimes of small and large lattice relaxation,” Czechoslov. J. Phys., vol. 34, pp. 377–401, 1984. 

[46] H. Goto, Y. Adachi, and T. Ikoma, “Carrier capture by multiphonon emission at extrinsic deep centers induced by self-

trapping in GaAs,” J. Appl. Phys., vol. 54, no. 4, p. 1909, 1983. 

[47] H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 

1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers.,” Opt. Express, vol. 18, no. 3, pp. 

2296–301, Feb. 2010. 

[48] L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain 

spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 4, pp. 

615–623, 2001. 

[49] E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response 

correction for detectors of terahertz radiation,” J. Appl. Phys., vol. 104, no. 5, p. 053113, 2008.  



 



 

 

 

Paper XI: 

Optics Express, vol. 22, no. 11, p. 12982, 2014 

  



 



Multichannel Terahertz Time-Domain 
Spectroscopy System at 1030 nm 

Anika Brahm,
1,2*

 Annika Wilms,
1
 Roman J. B. Dietz

3
, Torsten Göbel

3
, Martin Schell

3
, 

Gunther Notni
1
, and Andreas Tünnermann

1,2 

1 Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Albert-Einstein-Straße 7, 07745 Jena, 
Germany 

 2 Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 
07743 Jena, Germany 

3 Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut, Einsteinufer 37,10587Berlin Germany 
*Anika.Brahm@iof.fraunhofer.de  

Abstract:  We present Terahertz (THz) imaging with a 1D multichannel 
Time-domain spectroscopy (TDS) system which operates with femtosecond 
fiber laser system at 1030 nm. The emitter and detector are photoconductive 
antennas made of InGaAs/InAlAs based on multi layer heterostructures 
(MLHS). We characterized the THz optics and the resolution of the system. 
The performance is demonstrated by the multichannel imaging of two 
samples. A simultaneous measurement of 15 THz pulses with a pixel pitch 
of 1 mm increases the measurement speed of the TDS system by factor 15.  

2014 Optical Society of America  

OCIS codes: (110.6795) Terahertz Imaging;(040.1240) Arrays; (040.2235) Far infrared or 
terahertz; (300.6495) Spectroscopy, terahertz.  

References and links 

1. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. 
Hochrein, and M. Koch, "Terahertz imaging: applications and perspectives", Appl. Opt. 49, E48-E57 
(2010). 

2. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, "Recent advances in 
terahertz imaging", Appl. Phys. B 68, 1085-1094 (1999). 

3. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-Ray Imaging", IEEE J. Sel. Top. Quantum Electron. 
2, 679 - 692 (1996). 

4. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, "All-
fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths", Opt. Express 16, 
9565-9570 (2008). 

5. R. Wilk, S. Kocur, T. Hochrein, M. Mei, and R. Holzwarth, "Imaging with THz OSCAT spectrometer", in 
36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2011. 

6. M. Haaser, Y. Karrout, C. Velghe, Y. Cuppok, K. C. Gordon, M. Pepper, J. Siepmann, T. Rades, P. F. 
Taday, and C. J. Strachan, "Application of terahertz pulsed imaging to analyse film coating characteristics 
of sustained-release coated pellets", Int. J. Pharm. 457, 521 - 526 (2013). 

7. A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, "Review of Terahertz Technology Readiness 
Assessment and Applications", J. Infrared Millimeter Waves 34, 500-518 (2013). 

8. X. C. Zhang, "Terahertz wave imaging: horizons and hurdles", Phys. Med. Biol. 47, 3667-3677 (2002). 

9. M. Tonouchi, "Cutting-edge terahertz technology", Nat. Photonics. 1, 97-105 (2007). 

10. M. Herrmann, M. Tani, K. Sakai, and M. Watanabe, "Towards multi-channel time-domain terahertz 
imaging with photoconductive antennas", in International Topical Meeting on Microwave Photonics, 2002. 

11. B. Pradarutti, R. Müller, W. Freese, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, 
"Terahertz line detection by a microlens array coupled photoconductive antenna array", Opt. Expr. 16, 
18443-50 (2008). 

12. S. Wohnsiedler, M. Kolano, J. Klier, M. Herrmann, J. Jonuscheit, R. Beigang, E. Peytavit, and J. - Lampin, 
"Multichannel THz imaging using arrays of photoconductive antennas", in 35th International Conference 
on Infrared Millimeter and Terahertz Waves (IRMMW-THz), 2010. 

13. A. Brahm, S. Scharnowski, B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, S. Nolte, G. Notni, and 
A. Tünnermann, "128 channel THz ultrashort pulse system", in the European Quantum Electronics 
Conference in Lasers and Electro-Optics Conference on, 2009. 



14. C. Gerth, R. J. B. Dietz, T. Göbel, M. Schell, A. Brahm, G. Notni, and A. Tünnermann, "Highly Efficient 
Terahertz Photoconductive Switch at 1060nm Excitation Wavelength", in 38th International Conference on 
Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013. 

15. R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. 
Sartorius, and M. Schell, "Low Temperature Grown Be-doped InGaAs/InAlAs Photoconductive Antennas 
Excited at 1030 nm", J. Infrared Millimeter Waves 34, 231-237 (2013). 

16. R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, "THz generation at 1.55 µm 
excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping 
regions", Opt. Express 19, 25911-25917 (2011). 

17. R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and 
M. Schell, "64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with 
separated photoconductive and trapping regions", Appl. Phys. Lett. 103, 061103-061103 (2013). 

18. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, 
"Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers", 
Opt. Express 18, 2296-2301 (2010). 

19. C. Brückner, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, "Design of a THz optics for a 128 
channel THz imaging system", in 34th International Conference on Infrared, Millimeter, and Terahertz 
Waves (IRMMW-THz), 2009. 

20. A. Brahm, M. Müller, C. Gerth, and G. Notni, "Development of a multichannel lock-in amplifier for 
Terahertz time-domain systems", in 37th International Conference on Infrared, Millimeter, and Terahertz 
Waves (IRMMW-THz), 2012. 

21. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, "Terahertz time-domain spectroscopy characterization of 
the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon", J. Opt. Soc. Am. B 
21, 1379-1386 (2004). 

22. J. M. Khosrofian, and B. A. Garetz, "Measurement of a Gaussian laser beam diameter through the direct 
inversion of knife-edge data", Appl. Opt. 22, 3406-3410 (1983). 

23. J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, "Quantitative and Qualitative 
Study of Gaussian Beam Visualization Techniques", arXiv:physics/0605102 v1  (2006). 

24. B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, "Plasmonic response in a one-dimensional 
periodic structure of metallic rods", Appl. Phys. Lett. 87, 204105  (2005). 

25. B. Dörband, H. Müller, and H. Gross, Handbook of Optical Systems, Metrology of Optical Components and 
Systems, 5 (John Wiley Sons, 2012). 

 

1. Introduction  

Terahertz (THz) radiation gives an opportunity to perform non-destructive spectroscopy, 
imaging or tomography measurements in a large variety of the applications fields such as 
quality control, security technologies, biosensor, medical imaging or communication 
technologies [1,2]. The advantages of THz time-domain spectroscopy (TDS) systems have led 
to a rapid proliferation of researchers studying properties and phenomena in the frequency 
range between far-infrared and microwave radiation [3]. The increased industrial interest in 
THz imaging or tomography measurements has pushed the development of imaging systems 
based on the principle of THz TDS [4-6]. Today several companies such as Toptica 
(Germany), TeraView (U.K.) Picometrix (U.S.), Zomega (U.S.), Menlo Systems (Germany) 
or Advantest (Japan) provide commercial TDS systems with several of specifications and 
application purposes [7]. Nevertheless, these systems are limited to a single pixel detection, 
e.g. with a photoconductive antenna. Thus, THz TDS imaging measurements often imply 
sample scanning in the focus of a THz beam path and a measurement requires form several 
minutes till hours. The measurement time also depends on the sample size, scan parameters 
and data acquisition techniques [8,9]. Therefore, the development of multichannel systems to 
speed up the measurement in THz TDS systems provides an opportunity for significant 
improvement.  

Herrmann et al. presented an electronic circuit for the simultaneous readout of 8 
photoconductive antenna signals (low temperature grown (LT)-GaAs). They performed a 
multichannel measurement after placing the detector array in the expanded THz beam behind 
the THz optics [10] which was rather configured for a one channel system. Pradarutti et al. 
presented the functionality of a 16 channel detector antenna made of LT-GaAs operating at 
530 nm wavelength excited with the frequency doubled radiation of an ultrashort pulse fiber 
laser [11]. The antenna was also placed in an expanded THz beam behind the THz optics, but 



additionally illuminated with the use of a micro lens array. The development of a 
multichannel emitter array with horn-type photoconductive switches was shown in [12]. 

In [13] we presented a first bigger concept of a multichannel TDS system based on fs 
fiber laser (1060 nm) and specially designed THz optics which generates and images a THz 
line focus to overcome optical aberrations in the THz beam path. The efficiency of LT-
InGaAs in combination with 1060 nm excitation wavelength was too weak to overcome the 
absorption and reflection losses in the optical system. Therefore, it was necessary to carry on 
the investigation of broadband, sensitive and efficient THz emitter and detector material for 
1030/1060 nm central wavelengths [14-15]. The combination of high power ultrashort pulse 
fiber lasers and efficient scalable detector and emitter antennas are the basis for future 
developments of fast compact multichannel TDS systems.  

In this paper we present the first 1D multichannel THz TDS system with 15 detection 
channels operating at 1030 nm laser wavelength. The experimental setup of the THz system 
and single components of the THz and infrared optics are described in section 2. In section 3 
we show the characterization of the beam profile in the THz line focus and 15 THz pulses, 
which were measured simultaneously with the detector array. Furthermore, we determined the 
resolution and the beam quality of the detector channels with a knife edge method along the 
optical axis in the THz focus and a second measurement of a metallic sample with different 
gaps up to 100 µm. In section 4 we demonstrate the results of the first THz multichannel 
imaging measurements where we used a metallic Siemens star and a plastic pump wheel as 
samples. The conclusion is presented in section 5. 

2. Experimental setup 

The experimental setup of the multichannel THz system is shown in Fig. 1. It consists of an 
ytterbium (Yb)-doped ultrashort pulses fiber laser system with a passively mode locked 
oscillator from Active Fiber Systems GmbH. The oscillator operates at a wavelength of 
1030 nm with an average output power of 100 mW, a pulse repetition rate of 20 MHz and 
pulse duration of 250 fs. The amplifier is an Yb-doped rod-type fiber with a length of 80 cm 
and a mode field diameter of 50 µm. The wavelength of the pump laser is 976 nm. The pulse 
compression is realized after the amplification. Thus, the fiber laser system receives an 
average output power of about 4.5 W and generates laser pulses with 94 fs width, 20 MHz 
repetition rate and energies of about 223 nJ.  

 

Fig. 1. Experimental setup of the multichannel THz TDS system: (1) Beam splitter (90:10), (2) 
Optical delay stage, (3) Aspheric lens, (4) THz emitter, (5) THz optics, (6) Telescope, (7) 
Cylinder lens, (8) THz detector. 

The laser radiation is split into a pump beam which leads to the THz emitter and a probe 
beam for the THz detection beam path. A beam splitter and filters are used to reduce the laser 
power of 4.5 W and to avoid the destruction of the emitter and detector material. A motorized 
stage creates an optical delay for the time resolved measurement of the THz pulses. The 
photoconductive emitter based on a molecular beam epitaxy grown high mobility 
InGaAs/InAlAs multi layer heterostructures (MLHS). The MLHS consists of 100 periods of a 



8 nm thick InAlAs layer followed by a 12 nm InGaAs layer grown lattice matched on an InP 
substrate at a growth temperature of approximately 400°C [16,17]. The antenna structure is a 
400 µm gap mesa-structured stripline antenna [18]. The emitter is illuminated with 80 mW 
focused by an aspheric lens (f=15.29 mm), and biased with ±125 V at 1100 Hz. The silicon 
lens on the THz emitter is a hyper hemispherical lens made of high-resistive float zone 
(HRFZ) silicon with a diameter of 6 mm, radius of 3 mm and thickness of 3.45 mm. The THz 
optics consists of a 90° off-axis parabolic mirror with an effective focal length of 127 mm and 
a 76.2 mm free aperture, which collimates the radiation of the THz emitter. A cylindrical 
mirror, which was made by ultra-precision turning, with an effective focal length (EFL) of 
127 mm and an aperture of 76.2 mm generates a line focus (LF) in the THz beam path. Two 
aspheric Zeonex480R® lenses with diameters of 76.2 mm and thicknesses of about 20 mm 
image the THz line focus to the detector.  

A cylindrical HRFZ silicon lens was placed in front of the THz detector antenna to focus 
the THz radiation on the photoconductive antenna. The lens has a radius of 6.3 mm and a 
thickness of 6 mm. The imaging part of the THz optics has been designed to be diffraction 
limited up to the wavelength of 600 µm for a field of 31.75 mm. The imaging scale is -1 in 
horizontal direction. Detailed description of the imaging part of the THz optics was presented 
in [19]. The arrangement of the optical components is shown in Fig. 2. 

 

Fig. 2. Setup of the THz optics: SL Em – THz emitter with silicon lens, PM – parabolic mirror, 
CM – cylinder mirror, LF –  THz line focus, ZL – Zeonex® lenses, CL Det – THz detector and 
silicon cylinder lens. 

A telescope in the detector beam path, which consists of two cylinder lenses with focal 
lengths of f1= 12.7 mm and f2= 100 mm, forms about 350 mW of the laser power into a line 
focus. A third cylinder lens (f3= 12.7 mm) focuses the laser radiation on the detector gaps. 

 

 

Fig. 3. Photoconductive detector array with 15 dipole antennas. 

The THz detector material is made of Be-doped LT-grown (130°C) InGaAs/InAlAs 
MLHS [18]. The detector consists of 15 dipole antennas with a total length of 15 mm (see Fig. 
3). The distance between each channel is 1 mm and the gap size of each structure is 7.5 µm. 



The detector output is connected transimpedance amplifiers. A scalable multichannel lock-in 
amplifier (LIA), which was presented in [20], is used for the measurements. Several channels 
can be readout almost simultaneously due to the multiplexing technology, triggering and data 
acquisition program.  

THz imaging and tomography measurements can be performed by placing a sample on 
motorized stages into the line focus of the THz optics. 

3. Characterization of the THz system 

3.1 THz line focus 

In order to characterize the beam profile of the THz line focus we used a fiber coupled 
detector unit to analyze the optical design of the THz beam path. The detector is a 
photoconductive antenna made of Be-doped LT-grown InGaAs/InAlAs based MNLS with a 
gap distance of 5 µm. The detector unit consists of a hyper hemispherical lens with a diameter 
of 10 mm, a thickness of 6.12 mm and a radius of 5 mm to focus the THz radiation on the gap. 
The maximum THz pulse amplitude values and the position of the THz pulses were extracted 
to characterize the full width at half maximum (FWHM) of the line focus and the optical 
delay of the pulses. Fig. 4 shows the results of the measurements at a distance of 106 mm 
from the cylindrical mirror. The distance was chosen to be shorter than the effective focal 
length (127 mm) of the cylinder mirror due to the silicon lens placed in front of the fiber 
coupled detector. The lens shortens the focal length and therefore, we calculated the optimal 
position with optical design software (Zemax). Furthermore, the values of the measured THz 
focus must be understood as an approximation, since the silicon lens on the detector averages 
the THz radiation over a defined solid angle. 

 
 (a) (b) 

Fig. 4. Beam profile of the THz line focus: (a) Values of the maximum THz pulse amplitude; 
(b) Time delay of the THz pulses. 

The FWHM of the THz focus was measured to be about 37 mm in the x direction 
(horizontal) and 10 mm in y direction (vertical) relatively to the optical axis of the THz beam 
path. Fig. 4b shows the temporal deviations of the THz pulses with the range in the whole 
measurement area of about ±0.39 ps (±0.117 mm) and in the middle horizontal direction of 
about ±0.13 ps (±0.039 mm). The time shift is introduced by the optical aberrations of the 
parabolic and cylindrical mirror as well as the position errors of the emitter in front of the 90° 
off-axis parabolic mirror. 

3.2 THz pulse measurement 

Fig. 5 shows a THz measurement over the time window of 40 ps, performed with 15 detection 
channels. The scan was executed with an optical delay of 1 ps/s and LIA averaging time of 
10 ms. The pulses are shifted by 2 ps for a better overview and normalized to the measured 
currents. Due to the imaging optics each THz pulse represents a point at the horizontal THz 
line focus with a lateral shift of 1 mm. The maximum amplitude values and positions of the 
THz pulses vary between the THz detector channels, which was expected after the optical 
design and system characterization in 3.1 (compare Fig. 4).  The signal to noise ratio of the 
maximum THz pulse amplitude in the middle of the detector (channel 8 and 9), measured with 



an LIA averaging time of 30 ms, was estimated to be about 39 dB. In the edge regions of the 
detector array we measured a signal to noise ratio of about 35 dB at 30 ms LIA average time. 

 

Fig. 5. THz measurement with 15 detector channels: The pulses are shifted by 2 ps for a better 
overview. 

Fig. 6 demonstrates the amplitude maxima and its positions (time) of 15 measured THz 
pulses compared to simulation data, which was obtained with the optical design software 
(Zemax). First, we simulated the intensity profile behind the cylindrical silicon lens in 
horizontal direction (Fig. 6a). The simulation was normalized to the maximum amplitudes of 
the pulses for a better comparison. The measurement and simulation match well together and 
exhibit their maximum values in the middle of the detector antenna. The amplitude values 
decrease to the edge region by about 34%, which depends on the irradiation pattern of the 
emitter. Further, we compared the position of the maximum pulse amplitudes with the 
simulation of field of curvature. Channel 1 and 15 are delayed by about 1.5 ps relative to 
channel 8 in the middle. The simulated curve agrees quite well to the measured values and the 
delay between channel 1 and 15 compared to channel 8 is only about 0.93 ps. Possible reasons 
for the discrepancy could be optical aberrations introduced by the THz optics, the IR telescope 
optics or adjustment errors of the THz system. 

 
 (a) (b) 

Fig. 6. Extracted values of the THz pulses: (a) Maximum THz amplitude values, (b) Position of 
the maximum THz amplitude. 

Fig. 7 presents the THz signal measured with channel 8 (black line) in more detail. It was 
scanned with a time window of 40 ps, an optical delay velocity of 1 ps/s and LIA averaging 
time of 10 ms. The main pulse at 9 ps is followed by a second pulse at 36 ps, which must be 
introduced by the THz optics of the system (Fig. 7a). We compared the THz signal of channel 



8 to an earlier measurement (red line) with a standard one channel TDS system at 1030 nm, 
which was presented in [14]. The emitter and detector in the one channel TDS system were 
made of the same material. The THz optics consisted of two 90° off-axis parabolic mirrors 
(EFL = 101.6 mm), as well as hyper hemispherical silicon lenses that are placed in front of the 
emitter and detector antennas. According to the graph, the multichannel signal is 500 times 
lower compared to the one channel TDS system. Fig. 7b shows the normed spectra of both 
pulse measurements, where the TDS reference is shown 500 times greater. The spectrum of 
channel 8 was calculated with the Fourier transform of the time window from 0 to 30 ps to 
avoid oscillations caused by the second pulse. The spectral bandwidth reaches up to 0.8 THz 
instead of almost 3 THz of the one channel TDS system.  

There are various reasons for the relative low THz signals and the spectral bandwidth 
limitations in the multichannel TDS system. For example, the emitter generates a THz line 
focus with a FWHM diameter of about 37 mm (compare section 3.1), but each detector 
channel can only capture a small part of it (compare section 3.3). Furthermore, the two 
Zeonex480R

®
 lenses absorb the THz radiation (e.g. 0.15 cm

-1
, @1 THz) and the refractive 

index of about 1.52 generates reflection losses at the surfaces. The cylindrical silicon lens, 
which is placed in front of the detector array, limits the focusing of the THz radiation to the 
vertical direction (see Fig. 2) and parts of the THz radiation are reflected because of the high 
refractive index step between air and HRFZ silicon (3.417) [21]. 

 
 (a) (b) 

Fig. 7. THz signals of channel 8 and a one channel TDS system (TDS reference): (a) The THz 
pulse of channel 8 is shown 500 times larger for a better comparison to the TDS reference, (b) 
Normed spectra of channel 8 and the one channel TDS system. 

3.3 Resolution of the multichannel TDS system 

The THz optics image only a part of the THz line focus on each detector channel. We 
characterized the THz beam path with the knife edge method [22] to define the local full 
width at half maximum (FWHM) beam waists and depth of focus for each detector channel. 
Fig. 8 shows maxima of the THz pulse amplitude in the line focus of the THz optics. During 
the measurement a metal blade was shifted vertical and horizontal with a step width of 
0.3 mm. The amplitudes of the pulses decrease, if the metal blade hits the focus. With the 
adaptation of the integration of the Gaussian beam function [23] it is possible to calculate the 
beam waists at the measured focus positions to the measured curvatures. As expected, the 
vertical knife edge measurement shows equal curvatures for the detector channels. The 
amplitude differences are caused by the THz beam profile (see Fig. 4). In contrast, the 
horizontal measurements show the curvatures shifted by 1mm in horizontal direction, which 
corresponds to the geometrical distances of 1 mm between the detector channels. Again the 
maximum amplitude values are varying because of the THz beam profile. 



 
 (a) (b)    

Fig. 8. Knife edge measurement in the line focus of the THz optics: (a) Maximum pulse 
amplitudes in vertical direction, (b) maximum pulse amplitudes in horizontal direction. 

The value of the FWHM beam diameter in vertical direction is about 3.3 mm for the 
maximum THz pulse amplitude in the focus of the THz optics and in uniform for all detector 
channels.  The vertical depth of focus is about 27 mm. In the horizontal direction the part of 
the THz line focus, which is detected by each detector channel, has a FWHM beam diameter 
of about 2.7 mm and is also uniform for each detector. The horizontal depth of focus is about 
25 mm. Fig. 9 shows the beam profiles recorded by the channel 8 representative for the 
multichannel detector array along the optical axis of the THz beam path. The negative axis is 
in the emitter and the positive axis in the detector direction. The focus between vertical and 
horizontal beam profile is shifted by about 5 mm, which is caused by the astigmatism of the 
THz optics. 

 

Fig. 9. Measured beam profiles (dotted) of channel 8 and fit functions of a Gaussian beam 
waist (line). 

Despite the FWHM beam diameters greater than 2 mm, the time resolved measurement of 
THz pulses enables the detection with remarkable resolutions. To provide a proof, we 
measured a metallic sample with gaps of different distances from 5 mm to 100 µm (see Fig. 
10a). The sample was placed in the focus of the THz beam path and scanned with a step width 
of 100 µm in the horizontal and vertical direction. The results of the maximum amplitudes are 
shown in Fig. 10b recorded with channel 8, which is representative for the multichannel 
detector. It can be shown, that the resolution in the horizontal scan direction is much better 
than in the vertical direction, because the 100 µm gap is still resolvable, whereas the vertical 
direction only resolves a gap up to 500 µm. This can be caused by the smaller focus diameter 
in horizontal direction, the astigmatism, as well as effects of sub-wavelengths phenomena on 
small structures in combination with the polarization of the electromagnetic field [24]. 



 
 (a)  (b) 

Fig. 10. Resolution measurement: (a) Metallic sample with different gap sizes from 5 mm to 
100 µm; (b) Measurement results of channel 8 and 13 for a horizontal scan direction with step 
width of 0.1 mm. 

4. THz Multichannel Imaging 

 
 (a) (b) 

Fig. 11. THz imaging of a metallic Siemens star: (a) THz absorption image with a scan 
resolution of 1 mm in x and y direction; (b) THz absorption image with a scan resolution of 
250 µm in x and y direction. 

Fig. 11 shows the measurement results of a metallic Siemens star. The images were 
generated with a normalization of the pulse amplitudes to the reference values of each 
detector. That overcomes inconsistencies of the changing beam profile (Fig. 6a), which would 
disturb the image quality. The reference values were achieved from a measurement without a 
sample. Firstly, we scanned an image area of 60 x 50 mm

2
 with a pixel resolution of 1 mm.  In 

x direction 4 measurement steps with a step width of 15 mm were used because of the 15 
detection channels. The THz pulses with a time window of 8 ps were scanned with an optical 
delay of 3.3 ps/s and LIA averaging time of 10 ms. Further, the net measurement time, which 
depends only on the measurement of the time window with a certain velocity and on no 
processing time, was reduced to 13 minutes instead of almost 2 hours with conventional one 
channel detection (Fig. 11a). Secondly, we performed a measurement over the same area of 
60 x 50 mm

2
 with a higher pixel resolution of 250 µm in x and y direction, which amounts to 

48000 measurement points. A time window of 7 ps was scanned with 3.3 ps/s and LIA 
averaging time of 10 ms. The net measurement time took about 1.8 hours instead of 28 hours 
and the image was used to determine the resolution of the THz imaging system. The Siemens 
star has an outer diameter of about 50 mm and consists of a pattern of 32 metallic spokes 
which become wider as they get further from the center of the star. The structures can be 
resolved to the inner diameter of about 24 mm in x direction and 26 mm in y direction. Thus, 
the spatial resolution of the multichannel system is about 1.05 mm in horizontal (x) and 
1.13 mm in vertical (y) measurement direction, which corresponds to a spatial frequency of 
about 0.47 LP/mm (x) and 0.44 LP/mm (y). The vertical orientated sectors have a higher 
transmission area (70-80%), whereas the horizontal sectors show an absorption behavior. This 



effect is based upon the polarization dependency of the transmission at sub-wavelength 
structures [25], which has already been observed at the resolution sample of Fig. 10a. 

 

Fig. 12. Picture of a pump wheel made of plastic. 

A pump wheel made of plastics was the second sample measured with the multichannel 
THz TDS system (Fig. 12). An image area of 60 x 45 mm

2
 was scanned with a pixel 

resolution of 1 mm. The x axis was scanned in 4 steps with a width of 15 mm provided by the 
15 detection channels. We measured each THz pulse with a time window of 40 ps, optical 
delay of 3.3 ps/s and LIA averaging time of 10 ms. Overall the net measurement time took 
about 36 minutes instead of about 9 hours due to a one channel detector with identical 
measurement parameters. 

 
 (a) (b) 

Fig. 13. Pump wheel made of plastic: (a) Extraction of the maximum THz pulse amplitude, (b) 
Extraction of the time information of the maximum THz pulse amplitude. 

Fig. 13 shows the normalized THz absorption image obtained from the maximum THz 
pulse amplitudes (Fig. 13a) and the image of the time values extracted from their positions in 
the time domain (Fig. 13b). The time positions were also normalized to a reference 
measurement to overcome time shifts in the THz image caused by the field curvature which 
was shown in Fig. 6b. In the middle of the pump wheel there is a metallic ring part, where no 
transmission takes place. Therefore, the absorption is zero and the time image shows noise 
values. More importantly, the parts of the blades and their cavity can be resolved and thus, 
provide us information about the sample and production process. For example, on the left side 
the blades have a higher absorption, which could be determined from the greater time shift at 
those positions. Whereas, the absorption in the space between the blades on the left side is 
lower than the blades on the right side. 

5. Conclusion 

We presented the first multichannel THz TDS system which operates at 1030 nm with an Yb-
doped ultrashort pulse fiber laser and a photoconductive antenna array. The THz optics 
consists of parabolic and cylindrical mirrors and creates a THz line focus with a FWHM 
diameter of 37 mm in horizontal and 10 mm in vertical direction. Aspheric lenses made of 
Zeonex480R

®
 image the pulses onto a 15 mm long detector array with a cylindrical HRFZ 

silicon lens for the focusing. We measured 15 channels simultaneously with a lateral 



resolution of 1 mm and a signal to noise ratio of about 39 dB in the middle and 35 dB at the 
edge of the detector array with multichannel lock-in technology. Compared to a one pixel 
TDS system the measurement time has been decreased by a factor of 15. The spectrum of the 
THz pulses ranges from 0.1 to 0.8 THz, which offers the potential for further improvements, 
e.g. by applying antireflection structures on THz optics, as well as the development of more 
efficient THz emitter and detector material at 1030 nm. It is also possible to adapt the THz 
optics to only one aspheric Zeonex

®
 lens in combination with the development of a spherical 

silicon lens array. Thus the bandwidth and THz signals could be increased similar to one 
channel TDS systems. 

The spatial resolution of the multichannel TDS system was determined with the 
multichannel measurement of a Siemens star and is about 1.05 mm in horizontal and 1.13 mm 
in vertical direction, which corresponds to the spatial frequencies of about 0.47 LP/mm (x) 
and 0.44 LP/mm (y).  

The combination of a high-power fiber laser at 1030 nm and photoconductive detector 
arrays made of InGaAs/InAlAs based on MLHS offers the potential for faster and powerful 
multichannel TDS systems. Currently, the system works with almost 10% of the laser power, 
which provides the opportunity to use more than 15 detector channels, e.g. in two dimensions 
or to exite an array of emitter structures. Thus, the measurement time for THz imaging or 
tomography could be shortened even more drastically.    
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