
 

 

 

 

Abstract—Creating weed maps directly by growers is 

becoming increasingly common. In this study, an unmanned 

aerial vehicle (UAV) imaged a field infested by field thistle 

(Cirsium arvense). This paper compares four detection methods 

that can be used concerning agricultural practice. Two 

algorithms are supervised classification methods - Maximum 

Likelihood (ML) and Supported Vector Machine (SVM). The 

Pix4Dfields (Magic Tool) classification algorithm and the 

thresholding method are other methods used. The Kappa 

coefficient and the overall accuracy determined the accuracy of 

the individual algorithms. The highest accuracy was achieved by 

the thresholding method, and the lowest by the Pix4Dfields 

algorithm. Among the supervised classification methods, SVM 

achieved higher accuracy than the ML algorithm. In terms of 

using the methods in practice, the thresholding method proved 

more effective than supervised classification methods. 

Index Terms— Precision agriculture, SSWM, Pix4D, Remote 

sensing 

I. INTRODUCTION 

OPTIMISING the use of herbicides is a primary goal and 

is crucial for maintaining the competitiveness of farms and 

decreasing the consumption of agrochemicals in crop man-

agement. Effective site-specific weed management (SSWM) 

requires knowledge of the spatial variability of the weed 

plants in the field. UAVs capable of capturing images with 

high spatial and spectral resolution have proven effective for 

this purpose [1], [2]. RTK modules, which accurately locate 

both the UAV and the photos taken, are now a standard fea-

ture. Some UAVs have the advantage of carrying multiple in-

terchangeable or integrated sensors simultaneously. Sensors 

that capture in the visible spectrum (RGB) and multispectral 

cameras that acquire data from red-edge (RE) or near-infrared 

(NIR) bands are commonly used for weed detection  [3], [4]. 

Confidence in accurate weed management is bolstered by 

modern application technology of sprayers that allows sec-

tion-by-section or individual nozzle control based on the pre-

scription map. This map typically consists of polygons outlin-

ing the application area [5], where nozzles are turned on. The 

accuracy of the application is ensured by the RTK guidance 

systems mounted on the machinery [6]. 

The technique for detecting weed plants from acquired im-

ages depends on the sensor type, the computing technology’s 

performance, and the spraying technique. The modern spray-

ers with individual nozzle control require higher accuracy of 

prescription maps than older sprayers with section application 

swath control [5]. Besides the section control, the sprayer ter-

minal’s computing technology is crucial to processing the 

large data sets of the detailed prescription map. Weed detec-

tion in realistic conditions uses images combined into a single 

orthorectified mosaic (orthomosaic) representing the entire 

area of interest. Commercial software like Pix4D fields, 

Agisoft Metashape, Drone Deploy, or open-source options 

like OpenDroneMap are commonly used for this purpose [7], 

[8]. 

In addition to site-specific applications using a prescription 

map derived from UAV imagery, real-time detection and ap-

plication techniques are also used. Techniques for detecting 

green vegetation on bare soil based on spectral features have 

existed since the last century [9]. Currently, sensor systems 

on application technology can detect weeds in broad-row 

crops like corn and soybeans. These systems save the cost of 

field surveys by UAV imaging but are usually more expensive 

than section control sprayers and can only be used in specific 

cases [10]. 

Application drones capable of applying solid and liquid 

products are increasingly becoming an alternative to tradi-

tional boom sprayers. The drone system automatically sug-

gests a flight path and the optimal flight level for the applica-

tion. This allows pesticide application in conditions where 

conventional machinery sprayers cannot enter the field, such 

as in unsuitable soil conditions, to avoid soil destruction and 

compaction [11]. Application drones are considerably 

cheaper than conventional sprayers, making them an attrac-

tive option for some growers. However, their weakest link is 
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the batteries, which allow flight times of around 10 minutes, 

with excessive heating during charging slowing down the pro-

cess [10], [12]. 

 

Identification of weed infestation based on the UAV data 

There are two main categories of weed detection from UAV 

image data: object-based image analysis (OBIA) and pixel-

based image analysis (PBIA). Supervised classification on 

high spatial resolution images taken by UAVs has promising 

results [13]. Supervised PBIA classifiers leverage prior 

knowledge to identify spectral similarities in raster data, as-

signing each pixel to the most appropriate class. In PBIA for 

supervised weed classification, each pixel may contain a mix 

of soil, plant leaves, residue, and shadow. This mixture can 

introduce variability in the target’s spectral reflectance, limit-

ing classification accuracy. In high-resolution PBIA, the het-

erogeneity of spectral values within a single class further re-

stricts its effectiveness [14]. Compared to these two ap-

proaches, OBIA usually achieves better results than PBIA. 

Each classifier has its limitations, and the choice of the clas-

sifier depends on many factors, such as the data’s spectral and 

spatial resolution, classification accuracy, algorithm perfor-

mance, and computational resources [13; 15]. 

The study aimed to validate weed detection techniques on 

images taken by UAVs and concerning agricultural practices. 

Four classifiers were chosen for verification: two basic clas-

sifiers based on machine learning: Maximum Likelihood 

(ML), which works best when class samples are normally dis-

tributed, and Supported Vector Machine (SVM), which is 

commonly used in the research community and can handle 

standard images as well as segmented images, with less sus-

ceptible to noise, correlated bands [16]. The other two classi-

fiers used in this study are a Pix4Dfields (Magic Tool) classi-

fication tool and a pixel extraction procedure based on vege-

tation index threshold setting. All classifiers were chosen for 

their versatility and simple hyperparameter adjustment, which 

are important elements in agronomic practice.  

 

II. MATERIAL AND METHODS 

A. Study area 

The study was realized in 2023 in the form of field trial 

with the area 15.85 located at Rataje site (Kromeriz, Czech 

Republic; 49.254° N, 17.332° E). The main investigation was 

focused on the detection of occurrence of weed “field thistle” 

(Cirsium arvense) in winter wheat in the early stage of crop 

growth (BBCH 10-13).  

 

 

Fig. 1 Position of the field of study in the Czech Republic. 

B. Data acquisition 

The UAV imagery was carried out on October 12, 2023, by 

the quadrocopter DJI Matrice 300 RTK. The drone was 

equipped with two sensors: RGB sensor DJI Zenmuse P1 and 

multispectral sensor MicaSense RedEdge-P. The flying 

altitude was 120 m above the ground, with GSD 13 mm (RGB 

camera) and 40 mm per pixel (RedEdge-P). Flying speed was 

set to 8.2 m/s. Both sensors were positioned in a nadir view 

of the canopy. The image overlap ratio was set at 70 % side 

and 80 % frontal. The RGB sensor exposure time was set at 

1/2000 s, and the ISO and aperture were set to auto with timed 

interval shot. On multispectral sensors, images were taken 

every 1.5 s. After the flight mission was completed, a 

calibration reflection panel was photographed. The final 

orthomosaic from UAV imagery was processed using 

Pix4Dfields software.  

 

 
 

Fig. 2 Stitched images and a sample of resolution. 

C. Classification approach 

Classification algorithms based on ML and SVM were 

triggered in the ESRI ArcGIS Pro software. The classification 

was performed on RGB imagery. Due to the crop’s early 

phenological stage and low spatial resolution of orthomosaic 

the detection of winter wheat plants was limited. Thus, only 

two classes were identified - bare soil (mixed with winter 

wheat plants) and weeds (as full vegetation cover). The OBIA 
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method was not used in this case, and the classification was 

made using PBIA techniques [17]. The PBIA classifications 

were performed on the original image. Algorithms ML and 

SVM were trained using samples created by an expert based 

on ground truth identification. The training dataset included 

50 samples for each category.   

The Pix4Dfields mapping software includes a "Magic tool" 

classification tool. It is a simple and user-friendly 

multipurpose classification tool based on machine learning, 

which can detect weed patches or plant damage. The 

algorithm uses a grid over the field and the user labels grids 

that should be treated and untreated. The recommended 

number of labelled grids per class is 20; the minimum is three. 

In our case, the size of the grid over the field was set to 1 m 

and rotated in the driving direction. Subsequently, 40 grids 

(20 per class) were selected as the training samples.  

 

 

Fig. 3 Example of grid labelling using Pix4Dfields classification tool. 

 

The significant difference in vegetation phases between the 

main crop and the detected weeds indicates a difference in 

spectral characteristics, which offers the possibility of using 

the thresholding method in the image. Thresholding is a 

technique to segment images by creating binary images based 

on threshold settings. The input raster was the vegetation 

index NDVI (1) of the studied field.  

 𝑁𝐷𝑉𝐼 = (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑)  
(1) 

 

The threshold value was set based on the histogram of the 

distribution of data values to value 0.385 as the cut-off 

between crops with soil and weeds. Reclassifying produced a 

binary image and left the pixels that matched the weeds. 

Pixels of the raster were converted to vector points, and a 

weed coverage map was created using a buffer tool with a 

buffer distance of 0.1 m. The final step was dissolving buffer 

zones to create a polygon map, which was unified by joining 

the overlapping polygons. 

 

 

Fig. 4 Example of thresholding NDVI.  

 

The Accuracy Assessment Tool was used with ArcGIS Pro 

software to estimate the accuracy of classification algorithms. 

In total,  500 randomly stratified samples. These points 

contain classified values of all algorithms and the ground truth 

value based on visual verification. Based on that, a Confusion 

Matrix was calculated to determine the accuracy of each 

algorithm. Algorithm accuracy was expressed based on the 

overall accuracy (OA) and the Kappa coefficient [18]. OA 

quantifies the level of agreement between two classes (weed 

and soil), and it is calculated from a number of True positive 

(TP) samples, which represents classification that matches 

with the truth and from True negative (TN) samples, which 

were misclassified. Using (1), the OA was calculated. The 

percentage ranges from 0-100 %; a higher number indicates a 

more accurate classification [19].   

 𝑂𝐴 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  × 100   

(2) 

 

Meanwhile, the Kappa coefficient represents the level of 

agreement between two classes corrected by chance. Kappa 

takes into account the number of samples that are assigned to 

each class. If the validation points are predominantly 

represented in one class, the OA will be higher regardless of 

the number of elements in the other. The level of the Kappa 

coefficient ranges from 0-1 and provides information if the 

classifier is better or worse than by random chance. A higher 

number indicates a more accurate classification. The Kappa 

coefficient is calculated using (3) from OA and Chance 

Agreement, which is calculated as the sum of the product of 

row and column totals for each class [19], [20]. 

 𝐾𝑎𝑝𝑝𝑎 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑂𝐴 + 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡   
(3) 

III. RESULT AND DISCUSSION 

The results of Accuracy Assessment Tool are presented in 

Table I. The accuracy of the Maximum Likelihood algorithm 
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was 97.8 %, and the Kappa coefficient was 0.633 with an area 

of 3,643 m2 as a weed detected. In contrast, the SVM 

algorithm performed better with an accuracy of 98.2 %, and 

the Kappa coefficient was 0.792, an area of weed coverage 

map increase of 5,233 m2. When comparing those two 

algorithms, SVM produced more accurate results than ML. In 

terms of OA, both models performed well. However, the 

higher Kappa coefficient by SVM indicates a more accurate 

one. This confirms that SVM performs better in small training 

sample sizes than other models [19].  

 

 

Fig. 5 Classified image by SVM algorithm on the left  

and ML on the right with the class of weed (green) and mixed bare soil 
and crop (winter wheat in early stage, brown color)  

 

The detection algorithm by Pix4Dfields software achieved 

the lowest accuracy; the evaluated accuracy was 96.2 %, but 

the Kappa index was 0.599. The weed coverage was 5.01 %, 

representing an area of 7,942 m2. However, we must 

remember that the algorithm runs in a square grid (1 m), 

leading to a higher misleading value. Even though the 

algorithm achieved the lowest accuracy, the software is 

applicable in practice and often used by farmers. If a detected 

weed is even partially in the square, it is marked as a detected 

weed. This leads to a larger detected area and a higher 

probability that the algorithm’s accuracy based on the point 

validation data will be lower. After automatic evaluation of 

the detection, cleaning up the map square by square is 

possible, which can lead to a good result. Due to the inability 

to save the training dataset, it is time-consuming to label the 

grids for each field and then manually clean up the map. 

The thresholding method achieved the highest accuracy, 

with an overall accuracy of 98.6% and a Kappa index of 

0.836; the detected area was 8,817 m2. The accuracy of the 

vegetation index thresholding method depends on the precise 

determination of the threshold value, which is determined 

subjectively based on the distribution of histogram values 

[21]. This method was the most accurate of the four used in 

this comparison. The detected area was the highest, and this 

size can be affected by setting the distance in the buffer tool. 

Using the buffer tool with dissolve result will simplify the 

map; the larger the buffer distance, the fewer the polygons and 

the smaller the map size. However, with a larger buffer 

distance, the savings from herbicide application are reduced.  

 

TABLE I. 

VALUES OF OVERALL ACCURACY, KAPPA COEFFICIENT AND WEED 

COVERAGE IN THE INVESTIGATED METHODS 

Method 
Overall  

accuracy 

Kappa  

coefficient 

Weed 

coverage 

ML 97.8 % 0.633 2.29 % 

SVM 98.2 % 0.792 3.30 % 

Pix4Dfields 96.2 % 0.599 5.01 % 

Thresholding 98.6 % 0.836 5.56 % 

 

Creating a weed coverage map for multiple parcels using 

Pix4Dfields software is time-consuming. Still, the 

classification tool is intuitive, and even if it does not achieve 

such accuracy, there is an option to clean up the map. The 

thresholding method requires basic knowledge of 

geoinformation software (GIS). It places higher demands on 

the user’s knowledge, but it presents a fast and accurate way 

of creating weed maps that can be automated to some extent. 

From the two machine learning-based methods, the SVM is 

more accurate than ML, but both have a lower detected area 

than the other methods tested in this paper. However, they 

require more advanced knowledge of GIS, model parameter 

settings, and sample collection training. From this 

perspective, thresholding methods and the Pix4Dfields 

classifier are more suitable for farmers. However, it also 

depends on other factors, such as the area of the detected 

plots, the knowledge of the detection procedures and the 

software used, and the time possibilities of the grower. 

IV. CONCLUSION 

The results indicate that the thresholding method achieved 

the highest accuracy based on the Kappa coefficient and over-

all accuracy, while Pix4Dfields had the lowest. Among the 

supervised methods, SVM outperformed ML.  

The identification of weed infestation by UAV imagery has 

shown that only a small part of the field area is covered by 

weeds (up to 5.56 %). Thus, site-specific spraying can signif-

icantly reduce the amount of herbicides. From the four veri-

fied weed detection algorithms, the thresholding achieved the 

highest accuracy (98.6%, Kappa index 0.836). However, the 

detected area of the weed occurrence was the highest 

(5.56 %). 
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Reference  [22] confirms that saving herbicides could be 

more than 90 % in specific scenarios. This offers the opportu-

nity to target herbicides in an environmentally friendly way, 

with less impact on crops and lower costs.

Further research will be necessary to optimize the parame-

ter settings of the algorithms and to verify their effectiveness 

under different conditions. This would allow more accurate 

identification and localization of weeds, thereby increasing 

the efficiency of herbicide application and minimizing their 

negative impact on the environment. Future work will also in-

corporate other different algorithms to further increase the ac-

curacy and reliability of weed detection.
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