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Abstract

The difficulty of anonymizing text data hin-
ders the development and deployment of NLP
in high-stakes domains that involve private
data, such as healthcare and social services.
Poorly anonymized sensitive data cannot be
easily shared with annotators or external re-
searchers, nor can it be used to train public
models. In this work, we explore the feasibility
of using synthetic data generated from differen-
tially private language models in place of real
data to facilitate the development of NLP in
these domains without compromising privacy.
In contrast to prior work, we generate synthetic
data for real high-stakes domains, and we pro-
pose and conduct use-inspired evaluations to
assess data quality. Our results show that prior
simplistic evaluations have failed to highlight
utility, privacy, and fairness issues in the syn-
thetic data. Overall, our work underscores the
need for further improvements to synthetic data
generation for it to be a viable way to enable
privacy-preserving data sharing.

1 Introduction

The widespread availability of public digitized text
has greatly facilitated the advancement of natu-
ral language processing (NLP). Text processing
could also be extremely valuable for processing
high-stakes private data, like healthcare records
(Panchbhai and Pathak, 2022), social workers’
notes (Gandhi et al., 2023), or legal documents
(Zhong et al., 2020). However, the need to maintain
data privacy hinders the responsible development
and deployment of models in these domains.

Building NLP tools often requires sharing data
externally with contractors or researchers, as agen-
cies like child protective services typically do not
have in-house AI expertise. While data sharing has
been accomplished through data use agreements
with individual teams or laboriously redacting iden-
tifiable information from text (e.g., Johnson et al.

(2016a)), these approaches have limitations. Lim-
ited sharing still requires increasing the number of
people who have access to sensitive data, and it
precludes the development of public benchmarks,
which have proved crucial for standardizing model
development. Redaction fails to fully prevent re-
identification, as even lower dimensional data is of-
ten possible to re-identify with just small amounts
of auxiliary data (Narayanan and Shmatikov, 2008;
Sweeney, 2000). Furthermore, redacted data is
not useful for tasks requiring sensitive information,
such as developing a model to identify contact in-
formation for potential caretakers of a child (Field
et al., 2023).

In our work, we propose and conduct use-
inspired evaluations of the feasibility of using syn-
thetic data to address these limitations. Recent
work has proposed sharing synthetic text gener-
ated from differentially private language models in
place of real data (Yue et al., 2023; Kurakin et al.,
2023; Mattern et al., 2022a; Putta et al., 2023). Dif-
ferential privacy (DP) offers an appealing solution,
as it provides a theoretical guarantee of privacy
preservation that is controllable through a specified
privacy budget. Although the bulk of work in de-
veloping DP approaches has been centered around
models trained on tabular and image-related data,
there has been increasing interest in applying DP to
unstructured text data (Shi et al., 2022; Yue et al.,
2021; Feyisetan et al., 2020a).

While initial results of synthetic data are promis-
ing, prior work has lacked grounding in realistic ap-
plications, for example, running experiments with
public internet data that language models may al-
ready have been exposed to during pre-training.

In contrast, we conduct experiments on text data
from two high stakes domains: healthcare and child
protective services, and we rigorously evaluate the
synthesized text for its utility, privacy, and potential
fairness implications. For utility and privacy, we
introduce novel well-motivated evaluation criteria
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(“silver” coreference modeling and entity-centric
metrics). To the best of our knowledge, no prior
work has investigated fairness considerations in
this domain.

We evaluate several approaches for privacy-
preserving synthetic data generation, including fine-
tuned models and an in-context-learning approach.
While these evaluations reveal some promising op-
portunities for synthetic text, they further expose
utility degradation, privacy leakage (even when us-
ing DP), and issues with group fairness. These re-
sults indicate that prior simplistic evaluations have
overestimated current viability of synthetic data.

Our primary contributions include a rigorous and
reproducible evaluation framework that exposes
limitations underestimated in prior work, and em-
pirical results over real high-stakes data. Overall,
our work demonstrates that contrived metrics do
not necessarily translate to more realistic scenar-
ios, emphasizing the need for thorough in-domain
evaluation to understand potential strengths and
limitations of synthetic data.

2 Methodology

2.1 Text Generation
The primary goal of privacy-preserving synthetic
text generation is to generate realistic, but entirely
synthesized text for a high stakes domain, such as
doctors’ notes from a healthcare institution. We
assume we have a data set of real text from that
domain, which we can use to guide the generation.
In addition to being realistic, it needs to be ensured
that the synthetic data does not reveal uniquely
identifiable information about any individuals from
the original data.

Fine-tuning We adapt the dominant approach
from prior work (Yue et al., 2023): starting with
a pre-trained autoregressive language model, fine-
tune it using the real in-domain data, and then gen-
erate new data from it. We compare fine-tuning the
model with and without DP, where we use DP-SGD
for differentially private fine-tuning. For reference,
we provide background on DP and DP-SGD in
Appendix A. After fine-tuning, we utilize top-k
sampling (Fan et al., 2018) and nucleus sampling
(Holtzman et al., 2020) to generate diverse syn-
thetic notes.

We condition the text generation on control
codes (Keskar et al., 2019). During training, we
prepend one or more labels associated with the
text to the model input. We similarly prepend

control codes during inference, where we sample
the provided codes from their distribution in the
training data. Thus, during training and inference,
the probability distribution of the subsequent text
x = {x1, x2...xn} is conditioned on the control
code information c, which is described by the fol-
lowing equation:

P (x|c) =
n∏

i=1

P (xi|x1...xi−1, c) (1)

Controllable generation approaches enable the
generation of notes with specific properties. We
primarily use them to enable classification-based
utility evaluations (described in §2.2).

ICL In order to explore the potential capabilities
of much larger models and investigate if fine-tuning
is actually needed, we also generate notes using
in-context learning (ICL). We provide as context
examples of training data text with prepended con-
trol codes, followed by an additional set of codes to
prompt the model to generate content in accordance
with the final set of codes. The number of exam-
ples provided varies, as we require that each control
code for the note to be generated is associated with
at least one in-context example. This approach is
most directly comparable to the fine-tuned models
without DP.

2.2 Utility Evaluation

Given the goal of developing synthetic data that
could be shared externally with researchers or third-
party contractors, we evaluate the data’s utility
based on the performance of NLP models trained
over this data. More specifically, we train NLP
models on the synthetic data and evaluate their per-
formance over real data.

Classification Similar to prior work (Yue et al.,
2023; Kurakin et al., 2023), we evaluate model per-
formance over classification tasks, where we use
the control codes provided during text generation
as class labels. We focus on multiclass and/or mul-
tilabel classification tasks, and we compare model
performance as task difficulty increases.

Coreference Resolution Classification tasks can
be highly dependent on keywords and phrases, and
they do not necessarily require training data to be
coherent and consistent across a full paragraph or
document. Consistency of entity properties across
a document, however, is a necessary condition for

15255



coreference training data. Coreference and the re-
lated task of mention detection also offer a realistic
use case in processing expert-written notes (Gandhi
et al., 2023). Thus, we measure the utility of the
synthetic data for training coreference models.

Unlike classification labels, coreference annota-
tions cannot be easily generated through control
codes. In a practical setting, annotations of corefer-
ence clusters would likely be conducted over syn-
thesized data manually by hired annotators or re-
searchers, but this process does not scale for eval-
uating of multiple iterations of synthetic data gen-
erators. Instead, we use a fine-tuned coreference
model to simulate “silver” annotations over the
synthesized data.

More specifically, given a subset of the original
dataset D annotated with gold coreference clus-
ters, we first fine-tune a pretrained coreference
model (Kirstain et al., 2021) on this data. Using
this model, we infer coreference clusters over syn-
thetic data from the same domain which we con-
sider silver annotations. We fine-tune a separate
coreference model that has not been task-finetuned
with the silver coreference clusters to approximate
the utility of the synthetic data for coreference res-
olution.

We run all experiments with a neural coreference
model (Kirstain et al., 2021). We report results after
fine-tuning the model for 40 epochs, where scores
are averaged over standard coreference metrics:
MUC,B3,CEAFϕ4 .

2.3 Privacy Evaluation
Canary Attacks Consistent with prior work, to
assess the potential leakage of sensitive informa-
tion in our training data and the extent to which
the model memorizes personally identifiable infor-
mation (PII), we use the canary evaluation method
proposed by (Carlini et al., 2019). This approach
involves injecting artificial canary sequences con-
taining PII into the training data and analyzing the
likelihood of the frequency of appearance of this
PII in the generated outputs.

We create artificial canary samples that are con-
textually relevant to both domains and include PII
such as names, emails, addresses, and numeric
identifiers (details in the appendix in Table 10 and
Table 9). Following the methodology outlined in
(Yue et al., 2023), we vary the number of injections
of these canary samples into our training data for
1, 10, and 100 repetitions. For each canary, we
generate 10,000 candidate sequences and rank the

canaries based on their perplexity score.

Entity-focused metrics As canary evaluations
are only a proxy for assessing potential privacy
risks and may not be comprehensive, we directly
leverage entity markers in our datasets to evalu-
ate privacy concerns (we provide details on data-
specific entity definitions in §3).

We compare the frequency of identified entities
in the original vs. synthetic data. Further, while
an isolated entity poses some privacy risk, the risk
is magnified if the context surrounding the entity
is also leaked. Thus we examine the frequency of
entities with variable-length surrounding context
in the synthetic data and compare them with the
training data to estimate the number of memorized
patterns that reappear in the synthetic data.

2.4 Fairness Evaluation

We compute fairness metrics over the same control-
code classification tasks as the utility evaluation
(§2.2). In data with available demographic informa-
tion, we compare fairness classification for race and
gender subgroups using equality difference (ED)
and equalized odds (EO) metrics. For ED, for in-
stance, False Positive Equality Difference (FPED)
is the sum of the differences between the over-
all false positive rate (FPR) for the entire dataset
and the FPR for each subgroup. EO constitutes
a stricter notion of fairness by evaluating whether
both the FPR and TPR rates are the same across all
groups. In both cases, values closer to zero indicate
that the model performs more uniformly across sub-
groups, with zero indicating perfect parity across
subgroups. For reference, we formally define these
metrics in Appendix C.

3 Experimental Setup

3.1 Data

Healthcare Our primary source of healthcare
data is the MIMIC-III Clinical Database (Johnson
et al., 2016b,a; Goldberger et al., 2000), which
contains > 2M deidentified notes associated with
> 40K patients admitted to the Beth Israel Dea-
coness Medical Center in Boston, Massachusetts.

As control codes we use ICD-9 codes, which are
a standardized format for medical conditions that
have been human-annotated in MIMIC. Each note
can contain multiple possible codes, making our
evaluation task multiclass and multilabel. There are
> 5000 unique ICD-9 codes. Thus, we restrict data
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Training
Data

Dataset
F1

Micro
F1

Macro
Subset

Accuracy

Dreal ICD-9n=3 0.89 ± 0.0 0.90 ± 0.0 0.76 ± 0.002
Dϵ=∞ ICD-9n=3 0.87 ± 0.003 ↓-0.02 0.87 ± 0.005 ↓-0.03 0.74 ± 0.004 ↓-0.02

Dϵ=8 ICD-9n=3 0.85 ± 0.002 ↓-0.04 0.85 ± 0.003 ↓-0.05 0.71 ± 0.003 ↓-0.05

Dreal ICD-9n=5 0.77 ± 0.008 0.75 ± 0.016 0.56 ± 0.007
Dϵ=∞ ICD-9n=5 0.75 ± 0.003 ↓-0.02 0.73 ± 0.003 ↓-0.02 0.55 ± 0.004 ↓-0.01

Dϵ=8 ICD-9n=5 0.68 ± 0.004 ↓-0.09 0.60 ± 0.008 ↓-0.15 0.48 ± 0.003 ↓-0.08

Dreal ICD-9n=10 0.70 ± 0.010 0.67 ± 0.012 0.32 ± 0.016
Dϵ=∞ ICD-9n=10 0.66 ± 0.001 ↓-0.04 0.61 ± 0.003 ↓-0.06 0.26 ± 0.004 ↓-0.06

Dϵ=8 ICD-9n=10 0.54 ± 0.007 ↓-0.16 0.40 ± 0.004 ↓-0.27 0.18 ± 0.005 ↓-0.14

DICL ICD-9n=10 0.57 ± 0.011 ↓-0.13 0.47 ± 0.014 ↓-0.20 0.21 ± 0.008 ↓-0.11

Table 1: Difference in performance between models trained on the synthetic data generated with (Dϵ=8) and without
(Dϵ=∞) DP and the models trained on real data (Dreal) for multilabel ICD code classification with the top 3, 5, and
10 most frequent labels. Performance degradation greatly increases for more complex tasks.

to notes containing any of the n most frequent ICD-
9 codes, where we typically set n = 10 and report
n ∈ 3, 5 for some comparisons, similar to Al Aziz
et al. (2021); Huang et al. (2019). As a result, the
fine-tuning data size for the generative models can
vary depending on the value of n. The dataset
splits for the classification tasks are provided in
Appendix D. To ensure synthetic data is balanced
comparably to real data when evaluating fairness,
we additionally provide the patient’s ethnicity and
biological sex as control codes.

For coreference resolution, we use notes from
the MIMIC-II Database annotated for coreference
as a part of the i2b2/VA Shared-Task and Work-
shop in 2011 (Uzuner et al., 2012). This data in-
cludes 251 train documents, 51 of which we have
randomly selected for development, and 173 test
documents.

As the MIMIC data is already deidentified, we
directly leverage the strings used for deidentifica-
tion, e.g. [**Hospital1 18**], [**First Name3
(LF) 2704**], in order to conduct entity-centric
privacy evaluations. Finally, we note that although
the MIMIC-III diagnoses notes are not permissi-
ble to be used for training publicly available lan-
guage models, there remains a possibility that some
MIMIC notes may have been indirectly included
in the training data through various other sources.

Child Protective Services (CPS) We addition-
ally report results over a data set of contact notes
from a county-level Department of Human Ser-

vices (DHS). These notes log contact with families
involved in child protective services, and they are
written by caseworkers and other service providers.
Unlike MIMIC-III, this data set is not deidentified,
which makes it a more realistic test data set, but
also prevents the data from being publicly acces-
sible. Throughout our work, this data was stored
on a secure server with restricted access, in ac-
cordance with IRB-approved protocol and a data
sharing agreement established with the county.

The full data set contains 3.1M notes, from ap-
proximately 2010 to November 23, 2020. As con-
trol codes, we use existing metadata, specifically,
the “Contact Source Description” field, which spec-
ifies one of five possible labels for each note (Case,
Investigation, Transportation Contact, Provider
and Call Screen). For coreference resolution, we
use a set of 200 notes annotated for coreference
by prior work and shared with us by the county
(Gandhi et al., 2023). This data has train/dev/test
sets of sizes 100/10/90 notes. Finally, for entity-
centric evaluations, we use a spaCy NER model
to identify spans of entities in the text, and we fo-
cus on entities likely to contain private identifying
information (e.g., names and organizations).

As CPS cases are complex and involve multiple
people, the notion of race or gender for a note is
less clear than in the MIMIC data. Thus, we do not
report fairness results for this data. We also do not
report ICL results, as our single secure server did
not have sufficient resources for the larger model.
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3.2 Models
Our primary text generation model is Sheared-
LLaMA-1.3B (Xia et al., 2024).1 We fine-tune us-
ing Low-Rank Adaption (LoRA) (Hu et al., 2022),
and we use Opacus (Yousefpour et al., 2022) for
DP fine-tuning. We generally set a privacy bud-
get of ϵ = 8, and δ = 1e-5 (considering our rel-
atively small dataset size), and we report some
results with ϵ = 4 for comparison. For ICL, we
used the instruction-tuned BioMistral-7B2 model.
As the inference for the BioMistral 7B model is
compute-intensive, we report results over experi-
ments conducted only on the ICD-9n=10 subset of
the MIMIC-III healthcare dataset, and we generate
a smaller number of notes (0.6 as many) as com-
pared to data generated from the smaller fine-tuned
models. We have specified the hyperarameters for
each of the models used, dataset distributions and
additional detail regarding the experimental setup
in Appendix B and Appendix D.

F1 Score Accuracy

Dreal 0.86 ± 0.003 0.86 ± 0.003
Dϵ=∞ 0.80 ± 0.006 ↓-0.06 0.80 ± 0.006 ↓-0.06

Dϵ=8 0.69 ± 0.002 ↓-0.17 0.68 ± 0.002 ↓-0.18

Dϵ=4 0.65 ± 0.002 ↓-0.21 0.65 ± 0.002 ↓-0.21

Table 2: Difference in performance between models
trained on data generated with differential privacy and
models trained on real data, evaluated over CPS classifi-
cation, for varying privacy budgets.

4 Results

4.1 Utility
Overall Classification Tables 1 and 2 report re-
sults for classification tasks for all models, for the
healthcare and CPS data respectively. Unsurpris-
ingly, models trained on data generated from DP
fine-tuned models generally under-perform models
trained on real data or data generated without DP.
Table 1 reports performance for varying task com-
plexity by increasing number of labels n for our
multilabel ICD-9 code classification task. For sim-
pler tasks, e.g. ICD-9n=3, there is a much smaller
performance degradation and the Dϵ=∞ (F1≈ 0.87)
and Dϵ=8 (F1≈ 0.85) models are nearly compara-
ble. In contrast, there is much larger performance

1https://huggingface.co/princeton-nlp/Sheared-LLaMA-
1.3B

2https://huggingface.co/BioMistral/BioMistral-7B

degration for the more difficult ICD-9n=10 task,
where F1≈ 0.61 for Dϵ=∞ and F1≈ 0.40 for Dϵ=8.

In the classification task with the CPS data (Ta-
ble 2), however, we notice a significant drop in per-
formance for models trained over data generated
with DP for both more generous (Dϵ=8) and more
restricted (Dϵ=4) privacy budgets. From examining
the data, this task is generally more difficult and
the associations between the administrative label
and the text in the real data can be quite subtle. It is
likely that the generative model often fails to pick
up on these associations, and noise introduced by
DP further masks these subtleties.

Overall Coreference Table 3 reports coreference
results. For comparison, we report Dreal(gold),
model performance when trained over gold in-
domain data, which represents the best possible
performance we can obtain with human annota-
tions and Dreal(silver), model performance when
trained over silver annotated real data. The 15
point performance difference in F1 between these
two setups represents the performance degradation
we should expect to see as a result of inevitable
cascading errors from the silver annotations.

There notable performance degradation in syn-
thetic data generated both with and without DP
as compared to real data, which is much more no-
ticeable in coreference metrics than mention de-
tection metrics. For example, for the healthcare
data from Dreal(silver) to Dϵ=8 mention detection
F1 declines by 0.044 (0.659 to 0.615), whereas
coreference F1 declines by 0.109 (0.552 to 0.443).
Models trained on data generated with and without
DP perform similarly, likely performance decline
is dominated by general quality of synthetic data
more so than the application of privacy preserva-
tion. While both data sets show similar trends,
the performance degradation between real and syn-
thetic data is generally worse for MIMIC-III than
CPS.

Data generated by the ICL model resulted in
higher-performing coreference systems than data
generated by the fine-tuned models. It is likely that
the larger model outputted generally more coherent
data, through the lack of fine-tuning reduces con-
trollability of generation, e.g., as evidence by the
lower performance of the ICL model in Table 1.

4.2 Privacy

Canary Attacks Table 4 reports results for ca-
nary attacks. The DP fine-tuned models exhibit
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Training Data
Healthcare CPS

Mention Detection Coreference Mention Detection Coreference

Dreal(gold) 0.799 ± 0.013 0.703 ± 0.011 0.877 ± 0.004 0.789 ± .005
Dreal(silver) 0.659 ± 0.121 0.552 ± 0.126 0.805 ± 0.007 0.642 ± 0.008

Dϵ=∞ 0.615 ± 0.051 0.443 ± 0.062 0.753 ± 0.030 0.570 ± 0.035
Dϵ=8 0.599 ± 0.043 0.438 ± 0.025 0.776 ± 0.007 0.589 ± 0.009
DICL 0.712 ± 0.010 0.588 ± 0.022 - -

Table 3: F1 scores for coreference and mention detection over entities from human-annotated test splits of the
CPS and i2b2/VA datasets. All synthetic datasets are annotated with silver labels. There is general performance
degradation for synthetic data generated with (ϵ = 8) and without DP (ϵ = ∞) as compared to real data. The
performance degradation is more noticeable in coreference metrics than mention detection metrics.

Rank Perplexity

H
ea

lth
ca

re Name 5986 / 3378 49.72 / 54.10
Address 2276 / 4075 43.59 / 62.66
Number 902 / 841 9.43 / 14.61
Email 711 / 1452 37.81 / 72.08

C
PS

Name 3168 / 2306 10.62 / 10.33
Address 9618 / 9523 21.63 / 27.23
Number 474 / 1347 16.81 / 23.24
Email 387 / 5838 49.91 / 81.61

Table 4: Rank and perplexity metrics for 10-insertion
canary attacks over MIMIC and CPS data (0, 1 and 100
insertions, reported in Appendix E, are similar). Each
column is formatted as ϵ = ∞/ϵ = 8 . Higher rank
and lower perplexity typically indicate decreased risk
of leakage. DP reduces but does not eliminate privacy
risks for all canaries, and metrics are generally unstable.

higher perplexity scores for all the canaries, demon-
strating that models trained with DP are less likely
to output phrases from training data. There is also
a relatively sharper drop in perplexity for models
fine-tuned without DP as the number of canary
insertions increase (Appendix E). However, our
entity-centric evaluation demonstrates that canary
evaluations may not be effective in assessing a
model’s potential for privacy leakage. It should
also be noted that while DP improves (increases)
rank for some canaries, it decreases rank for oth-
ers. The canary’s rank is also highly dependent on
the choice of candidate comparisons, making these
metrics easy to skew.

We perform analysis of actual leakage (e.g.,
appearance in generated text) using PII already
present in the training data rather than inserted ca-
naries. These entity-centric metrics (Figure 2) show

Figure 1: Frequency of the same name (PII-1...PII-8) in
real and synthetic CPS data for 8 hand-identified names.
The frequency of each name generally, but not always,
decreases in synthetic data generated with differential
privacy.

that while DP-generated data does contain fewer
instances of potentially sensitive information, these
entities are not removed from the data entirely, and
there is still risk of leakage.

Figure 3 shows the reduction in private entity
leakage in data generated from DP fine-tuned mod-
els compared to non-DP fine-tuned models. While
notably reduced, some leakage still persists when
using DP, even on decreasing the privacy budget
further. While Figure 2 compares rates of leakage
of aggregated across all entities, it does not pro-
vide insight into how leakage for individual entities
may occur. In Figure 1 we conduct this analysis by
manually selecting 8 names that occur in the real
and synthetic CPS data and plotting the frequency
of each name in each data type. For most names,
frequency in the DP-generated synthetic data is less
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Percentage of real entities leaked in the synthetic data

Ty
pe

s 
of

 Id
en

tif
ie

rs

Name

Location

Hospital

Date/Time

Numeric Identifiers 
(Phone Number, 

Other Identifiers

0.00% 2.50% 5.00% 7.50%

ϵ = ∞ ϵ = 8 ϵ = 4 ICL

Percentage of real entities leaked in the synthetic data

Ty
pe

s 
of

 Id
en

tif
ie

rs

Organization

Person

Location

0.00% 5.00% 10.00%

ϵ = ∞ ϵ = 8 ϵ = 4

Figure 2: Entity-centric privacy evaluation for MIMIC-III (left) and CPS (right). We report the percent of entities in
the real data that are present in the synthetic data. While DP reduces leakage, it does not eliminate it entirely for all
entities, even with a more restrictive privacy budget.

than in the original data, but this reduction does not
always hold, even with a lower privacy budget (e.g.,
PII-7, PII-5 for ϵ = 4). In data generated without
differential privacy, the frequency of names some-
times exceeds their frequency in the original data
(e.g., PII-5, PII-6).

Leaked identifiers are potentially more harm-
ful if additional information about an individual is
leaked alongside their identity. We assess this risk
in Table 5, where we gauge how often sequences of
length 1-4 containing these leaked entities appear
in the generated outputs, rather than examining
entities in isolation.

The results provide further evidence that, while
training models with differential privacy may de-
crease the risk of information memorization, it does
not provide a failsafe. There is a notable dispar-
ity in the frequency of phrases from the training
data reproduced in these datasets: Dϵ=∞ contains
nearly 1.6 times as many phrases as the Dϵ=8, but
the phrase leakage from Dϵ=8 is still non-zero. On
the other hand, while DICL is 0.6 times the size of
the other datasets, it seems to regurgitate contextual
information about these entities from the in-context
samples less frequently. However, results from Fig-
ure 2 indicate that it still poses privacy risks, as the
ICL tends to reproduce these entities, even if not
the contexts in which they appear.

4.3 Fairness

We report the FNED and Equalized Odds (EO) met-
rics for the results from the ICD-9n=10 multilabel
classification tasks in Table 6. The metrics reflect
the difference in model performance for the gender
and race/ethnicity subgroups with more than 100
samples in the test set, with a larger value indicating

Healthcare CPS
Count Count

Dϵ=∞ 16271 4970
DICL 3761 -
Dϵ=8 10312 1555
Dϵ=4 8934 1434

Table 5: Unique contexts in which entities in the real
data appear in the synthetic data. Surrounding context
word lengths vary from 1 to 4.

more disparate performance across the subgroups.
While the gender metrics indicate minimal perfor-
mance differences, the race/ethnicity metrics show
significant disparities. The disparate performance
increases for models trained over the data gener-
ated from the DP model (Dϵ=8) as compared to
the model without DP (Dϵ=∞). The model trained
with DP (Dϵ=8) exhibits the most disparate per-
formance across these subgroups, followed by the
DICL, although the latter provides better utility for
the classification and coreference tasks.

5 Discussion

Overall, our results are consistent with prior work
in that we find only small performance degradation
when training a model on DP-generated synthetic
text as compared to real data for relatively less
fine-grained (e.g. ICD-9n=3, in Table 1) classifica-
tion tasks. Similarly, we do find evidence that DP
reduces potential privacy leakage in that artificial
canaries (Table 4) and real entities (Figure 2) are
generated less frequently by DP-fine-tuned models.

However, our evaluations also expose previously
unexplored weaknesses to this approach. Model
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Figure 3: MIMIC-III ICD-9n=10 data: Graph depicts the frequency of overlapping entities between the training
data Dtrain for the generative model and synthetic data. The top row presents the top 500 most frequent entities
from each dataset, limited to entities with a frequency count below 500 in Dtrain.

FNED Equalized Odds

R
ac

e

Dreal 0.35 ± 0.0 0.20 ± 0.0
Dϵ=∞ 0.39 ± 0.005 0.23 ± 0.001
Dϵ=8 0.53 ± 0.014 0.30 ± 0.003
DICL 0.49 ± 0.03 0.29 ± 0.012

G
en

de
r

Dreal 0.04 ± 0.0 0.04 ± 0.0
Dϵ=∞ 0.02 ± 0.007 0.02 ± 0.007
Dϵ=8 0.04 ± 0.005 0.04 ± 0.005
DICL 0.04 ± 0.006 0.04 ± 0.006

Table 6: Fairness evaluation for the MIMIC-III
ICD-9n=10 task, for the gender and race categories.
Higher values indicate poorer group fairness perfor-
mance. We report additional fairness metrics in Ap-
pendix C in Table 7 that show similar trends.

performance degrades much more sharply as task
complexity increases (e.g. ICD-9n=10 classifica-
tion in Table 1, mention vs. coreference perfor-
mance in Table 3). These results suggest that DP-
generated synthetic data may be of sufficient qual-
ity for certain NLP tasks and domains, but the qual-
ity degradation from DP is a limitation on broader
use.

Post-hoc data filtering and re-ranking may offer
a way to improve quality. For example, NLI-based
approaches have previously been used to rank or
evaluate the quality of the generated text (Dušek
and Kasner, 2020; Garneau and Lamontagne, 2021;
Chen and Eger, 2023) and have been incorporated
into the generation pipeline to enhance the consis-
tency of outputs produced by LMs (Mersinias and
Mahowald, 2023), though our initial results with
this approach were inconsistent accross data sets.

Furthermore, despite claims that differentially
private training of language models can effectively

eliminate the risk of privacy leakage (Yue et al.,
2023; Mattern et al., 2022a), our experiments in-
dicate that there is also a substantial risk of data
leakage (Tables 4-5, Figure 2), especially for some
types of PII. These results are consistent with risks
of leakage identified in sentence-level applications
of differential privacy (Lukas et al., 2023).

On investigating the privacy leakage further, we
identify several possible causes. Even for sensitive
spans that appear infrequently in the training data,
their sub-tokens can recur throughout the same
document and across multiple documents more
frequently. For instance, in the MIMIC dataset,
a token like [**Hospital1 18**] might have its
"hospital" component repeat multiple times in the
data, while the numerical identifier may appear
frequently in other contexts, allowing the model
to learn all components of the full sensitive span,
despite DP-fine-tuning. This pattern can similarly
occur for real identifiers, such as when individu-
als share the same first name or last name in the
CPS data. Additionally, the presence of sensitive
tokens in the pretraining data and the contextual
dependencies in text generation may contribute to
the model’s memorization of sequences in the fine-
tuning data. Finally, correctly defining the unit of
privacy presents a significant obstacle in text set-
tings (Chua et al., 2024). Ensuring privacy at the
user-level is naturally greater than that for a sin-
gle record, potentially requiring additional utility
loss or greater computational costs (Charles et al.,
2024). Combining privacy-preserving techniques
may be a more promising approach than relying on
DP.

We further find substantial variance not only in
the task difficulty, but also across data sets. Co-
reference performance degradation from real to
synthetic data is markedly worse for MIMIC than
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CPS (Table 3). These differences could be due to a
number of factors, such as the similarity between
each private data set and the model pre-training
data. Regardless, these results emphasize the im-
portance of evaluating on in-domain data, as results
may not generalize.

6 Related Work

The majority of research on enabling shareable sen-
sitive data has focused on text anonymization, re-
placing or redacting private information like names
and addresses from text. While some approaches
redact and replace sensitive information using de-
terministic rule-based systems (Mamede et al.,
2016; Yermilov et al., 2023; Ben Cheikh Larbi
et al., 2023; Sotolář et al., 2021; Volodina et al.,
2020), others employ masked language models
(Yermilov et al., 2023). Differentially private mech-
anisms have also been integrated into text sani-
tization processes, such as differentially private
perturbation of text embeddings (Feyisetan et al.,
2020b) or sampling of replacement tokens (Yue
et al., 2021; Chen et al., 2023) building on the
principle of Metric-Local DP (Alvim et al., 2018).
Although these methods are computationally in-
expensive and domain-agnostic, they have weak
privacy guarantees and limited capacity to modify
text (Mattern et al., 2022b; Domingo-Ferrer et al.,
2021; Brown et al., 2022).

Recently, datasets comprised entirely of syn-
thetic data have become potentially viable (Guan
et al., 2018; Yale et al., 2020). Our work differs
from similar approaches to synthetic data gener-
ation in its focus on actual high stakes data and
thorough grounded evaluation (Yue et al., 2023;
Kurakin et al., 2023; Mattern et al., 2022a; Putta
et al., 2023). Notably, Al Aziz et al. (2021) do
similarly investigate healthcare data, but they do
not evaluate potential privacy leakage, and their
utility measures do not adequately capture errors
in text fluency and consistency which is crucial for
finer-grained applications.

A separate but overlapping line of work has
focused on improving privacy in NLP models &
protection against membership inference, rather
than in the generated data. This work has simi-
larly trained NLP models with differential privacy
but has evaluated direct performance of these mod-
els on downstream tasks (Li et al., 2021; Wu et al.,
2022). Nevertheless, this line of work is not directly
comparable to ours, as it focuses on training models

directly on private data, while our approach pro-
motes the shareability of data and imposes fewer
restrictions on sharing models trained using private
synthetic data.

7 Conclusions

Although synthetic data generated with differential
privacy is an appealing way to improve respon-
sible AI development, off-the-shelf DP does not
achieve sufficient privacy, utility, or fairness over
real high-stakes data. These failings suggest nu-
merous opportunities for future work on improving
the coherence of synthetic data and the application
of privacy preservation to this task. Our evalua-
tion methods offer a way to foster this research,
with grounding in real applications, rather than
contrived settings, where performance is liable to
being over-estimated.
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8 Limitations

The primary limitation of our work is the impos-
sibility of considering all possible model and pa-
rameter configurations. While we selected high-
performing models that we were able to fine-tune
and evaluate on our compute resources, results may
differ for different pre-trained language models.
Similarly, while we select hyper-parameters based
on prior work and conduct some ablation studies,
text-generation is extremely compute-intensive and
a fully exhaustive hyper-parameter sweep is not
feasible. Overall our results emphasize the need
to thoroughly evaluate models on target data and
cannot necessarily be assumed to generalize to
untested data.

There are also additional approaches we do
not explore that could reduce privacy risk or im-
prove the quality of synthetic data generated dur-
ing training. Examples include combining text-
anonymization with DP fine-tuning or selective
constraints applied to the training data to reduce
the frequency of entity mentions. However, this
is difficult in practice, as real-world data is com-
plex with, for example, the same people mentioned
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across multiple CPS cases.

9 Ethical Considerations

Our work involves the use of private sensitive data,
particularly the CPS data, which is not de-identified.
To minimize risk, throughout this project we main-
tained a high level of data security, in compliance
with IRB-approved protocol. The CPS data was ex-
clusively stored on a secure restricted-access server
with HIPPA-standard of security. All CPS exper-
iments were conduct on this server, which also
limited the models we could investigate. Our paper
does not include any examples from either data
set, in compliance with their respective data use
agreements.
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A Background: Differential Privacy

Differential privacy offers a formal privacy guaran-
tee that ensures that any individual’s data cannot be
inferred from a query applied to a dataset (Dwork
et al., 2006, 2014). In other words, the result of
such a query is nearly indistinguishable from the
result of the same query applied to a dataset that
either includes a modified version of the individ-
ual’s data or excludes the record entirely, thereby
preserving the individual’s privacy. In this case,
the notion of adjacency is defined as a difference
of a single record in the original dataset D and the
modified dataset D’.

Formally, differential privacy is defined as fol-
lows:

Definition: Given a dataset D and an adjacent
dataset D′, which is produced by removing or mod-
ifying a single record from D, a randomized algo-
rithm F : D → Y is (ϵ, δ)-private if for any two
neighboring datasets D,D′, with the constraints
ϵ > 0 and δ ∈ [0, 1], the following holds true for
all sets y ⊆ Y :

Pr[F (D) ∈ y] ≤ eϵ Pr[F (D′) ∈ y] + δ
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The value of ϵ denotes the privacy budget, while
δ specifies the likelihood that the privacy guaran-
tee may fail. If δ is set to 0, this implies a purely
differentially private setting with no probability of
the guarantee being broken. The value of ϵ con-
strains how similar the outputs of both distributions
are; a higher ϵ value indicates a greater privacy
budget, meaning the algorithm is less private. DP
guarantees that even if an adversary has access to
any side-knowledge, the privacy leakage of (ϵ, δ)-
DP algorithms will not increase. Additionally, an-
other property of DP is that it ensures that any post-
processing on the outputs of (ϵ, δ)-differentially
private algorithms will remain (ϵ, δ)-differentially
private.

We use DP-SGD (Abadi et al., 2016), a modi-
fication to the stochastic gradient descent (SGD)
algorithm, which is typically used to train neural
networks. DP-SGD clips the gradients to limit the
contribution of individual samples from the train-
ing data and subsequently adds noise from a pre-
defined type of distribution (such as a Gaussian or
Laplacian distribution) to the sum of the clipped
gradients across all samples. DP-SGD thus pro-
vides a differentially private guarantee to obfuscate
the gradient update, thereby ensuring that the con-
tribution of any given sample in the training data is
indistinguishable due to the aforementioned post-
processing property. This process ensures (ϵ, δ)-
differential privacy for each model update. Given a
privacy budget, number of epochs, and other train-
ing parameters, we can estimate the privacy pa-
rameters using estimation algorithms (Gopi et al.,
2021).

B Hyperparameters

For training the autoregressive model, we used
an effective batch size of 32 for training the non-
differentially private model for both the CPS and
the MIMIC-III data. For the differentially pri-
vate fine-tuning, we used an effective batch size
of 1024. We set the maximum sequence length to
1024 tokens and and our training was conducted
over 3 epochs, and training was optimized using
the AdamW optimizer with its default hyperparam-
eters. For the MIMIC-III data, our learning rate
was set to 3e-4 (for the non-DP finetuned models)
and to 1e-3 (for the DP-finetuned models). For the
CPS data, we found a learning rate of 3e-4 in both
cases was optimal. For the LoRA hyperparameters,
we used a dimension of 4 and an alpha value of

32, specifically targeting the query (q_proj) and
value (v_proj) projection layers of the transformer.
To ensure training stability, we applied gradient
clipping with a maximum gradient norm of 1.0.
For the DP fine-tuning of the autoregressive model,
we train with a privacy budget of epsilon = 8 for
most of our experiments, and considering our rela-
tively small dataset size we set delta to 1e-5 for our
experiments.

For training the downstream classifier, we con-
ducted training over 3 epochs with a batch size of 8
and a maximum sequence length of 512 tokens. We
utilized the AdamW optimizer with a learning rate
of 5e-5. We also conducted these downstream ex-
periments with RoBERTa and found that the differ-
ences were minimal, with no impact on the overall
trends, so we decided not to include these results.

During inference, we set the top-k sampling pa-
rameter to k = 50 and the nucleus sampling parame-
ter to p = 0.95. We generate approximately 30k and
31k samples for the child welfare data and diag-
nosis notes for the 10 most frequent ICD-9 codes,
respectively, which are then used to train the down-
stream classifiers. We use similar inference hyper-
parameters for the instruction-tuned BioMistral-7B
model for ICL, we set the top-k value to 50, top-p
to 0.9 and the penalty-alpha parameter to 0.6.

Our experiments for all the aforementioned ex-
perimental setups used an A100 GPU for the
MIMIC data and A6000 GPUs on a single secure
server for the CPS data.

C Fairness

The False Positive Equality Difference (FPED) met-
ric is the sum of the differences between the overall
false positive rate (FPR) for the entire dataset and
the FPR for each subgroup d ∈ D, where D is a
set consisting of all subgroups corresponding to a
demographic attribute within the dataset.

FPED =

D∑

d=1

|FPRoverall − FPRd| (2)

TNED =

D∑

d=1

|TNRoverall − TNRd| (3)

Similarly, these ED metrics can be estimated
for the true positive, true negative and false nega-
tive rates to estimate the TPED, TNED and FNED
respectively. Lower values of these ED scores indi-
cate that the model’s performance is more consis-
tent across different subgroups.
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FNED FPED TPED TNED Equalized Odds
Race
Dbase

real 0.35 ± 0.0 0.01 ± 0.0 0.35 ± 0.0 0.01 ± 0.0 0.20 ± 0.0
Dϵ=∞ 0.39 ± 0.005 0.02 ± 0.003 0.39 ± 0.005 0.02 ± 0.003 0.23 ± 0.001
Dϵ=8 0.53 ± 0.014 0.01 ± 0.003 0.53 ± 0.014 0.01 ± 0.003 0.30 ± 0.003
DICL 0.49 ± 0.03 0.03 ± 0.006 0.49 ± 0.03 0.03 ± 0.006 0.29 ± 0.012

Gender
Dbase

real 0.04 ± 0.0 0.0 ± 0.0 0.04 ± 0.0 0.0 ± 0.0 0.042 ± 0.0
Dϵ=∞ 0.02 ± 0.007 0.0 ± 0.0 0.02 ± 0.007 0.0 ± 0.0 0.02 ± 0.007
Dϵ=8 0.04 ± 0.005 0.0 ± 0.001 0.04 ± 0.005 0.0 ± 0.001 0.04 ± 0.005
DICL 0.04 ± 0.006 0.0 ± 0.002 0.04 ± 0.006 0.0 ± 0.002 0.04 ± 0.006

Table 7: Fairness evaluation for the MIMIC-III ICD-9n=10 task, for the gender and race categories.

The Equalized Odds ratio is calculated as fol-
lows:

EOD = max

(
max
i∈D

(TPRi)−min
i∈D

(TPRi),

max
i∈D

(FPRi)−min
i∈D

(FPRi)

)

We have two categories of subgroups that are
present in the MIMIC-III dataset over which we
perform fairness evaluations with the downstream
classifier trained over synthetic data with demo-
graphic control codes. The following categorical
variables assigned to each within the dataset:

• Gender: Female, Male

• Race/Ethnicity: American Indian/Alaska Na-
tive, Asian, Black, Hispanic/Latino, Middle
Eastern, Multi Race/Ethnicity, Other, Por-
tuguese, South American, White

The format of the control code for the MIMIC-
III data is as follows: Long_Title: <diagnoses>,
ICD9_CODE: <codes>, Gender: <gender>, Eth-
nicity: <ethnicity>, where the <diagnoses> vari-
able represents the long title form of the ICD-9
codes, information that is already provided with
the MIMIC-III dataset.

D Data Statistics

Our train/dev splits for the CPS, ICD-9n=10,
ICD-9n=5 and ICD-9n=3 datasets the generative
model was trained on are 89327/4701, 44215/2327,
37245/1960, 31317/1648 respectively.

The size of the train/dev sets for the models
trained for downstream classification on the real
(Dreal) and synthetic (Dϵ=∞, 8, 4) CPS data is
25385/2821, and the test set for this task consists
of 4949 records.

For the ICD-9n=10 multilabelling task, the real
(Dreal) and synthetic (Dϵ=∞, 8, 4) train/dev split
was the same, with ≃ 27920/3100 for all models,
and the test set size was ≃ 7500 samples. For the
ICD-9n=5 task, the train/dev split was the same
for all models ≃ 23520/2615, and the test set size
was ≃ 6315 samples. Similarly, for the ICD-9n=3

task, the train/dev split was ≃ 19780 / 2200, and
the test set size was ≃ 5310 samples. Each of
these experiments for the downstream tasks (coref-
erence/mention detection & classification) was av-
eraged over 3 runs.

E Extended Privacy Evaluation results

In Table 4 we report the full set of canary results
(for 1, 10, and 100 insertions, for each canary type).
Results are generally similar across different num-
bers of insertions, in that DP generally reduces rank
and perplexity, thus improving privacy, but does
not eliminate all risk of leakage.
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MIMIC CPS
Rank Perplexity Rank Perplexity

100 Insertions
Name 4628 / 3356 35.80 / 53.19 3025/2265 7.08/10.22
Address 5 / 3967 16.52 / 61.37 57/9401 13.01/26.49
Number 1 / 818 5.77 / 14.46 4/1285 9.25/22.88
Email 1 / 1410 10.50 / 70.26 1/5301 7.64/78.42

10 Insertions
Name 5986 / 3378 49.72 / 54.10 3168 / 2306 10.62 / 10.33
Address 2276 / 4075 43.59 / 62.66 9618 / 9523 21.63 / 27.23
Number 902 / 841 9.43 / 14.61 474 / 1347 16.81 / 23.24
Email 711 / 1452 37.81 / 72.08 387 / 5838 49.91 / 81.61

1 Insertion
Name 6037 / 3383 52.06 / 54.20 3164 / 2320 11.27 / 10.34
Address 3348 / 4081 54.50 / 62.79 9715 / 9529 24.65 / 27.29
Number 1084 / 838 9.82 / 14.63 1016 / 1357 20.78 / 23.27
Email 1941 / 1457 43.90 / 72.28 1771 / 5881 62.44 / 81.88

0 Insertions
Name 6086 / 5265 44.81 / 57.54 3690 / 2321 11.89 / 10.34
Address 4565 / 3869 75.79 / 61.68 9890 / 9529 23.15 / 27.29
Number 1217 / 1522 11.80 / 13.33 1176 / 1357 21.27 / 23.28
Email 1003 / 3174 43.80 / 55.19 5893 / 5881 79.05 / 81.88

Table 8: Rank and perplexity metrics for canary attacks over MIMIC and CPS data. Each column is formatted
as ϵ = ∞/ϵ = 8 . Perplexity scores suggest that DP reduces privacy metrics for all canaries, and generally show
similar privacy improvements.

Type Canary Sequence

Name
Pt Robin Kramer is has been admitted to
the hospital and the patient’s medical records were
updated yesterday.

Address
The patient has been admitted to the hospital at 789
Elmford St, Maplegreen.

Number
The patient’s contact number for emergencies is
(541) 545-6789.

E-mail
In case of any inquiries, the patient can be contacted at
ptcareastps456@email.com.

Table 9: The canaries inserted into the training data for
the models fine-tuned to generate synthetic MIMIC-III
data.

Type Canary Sequence

Name
Robin Kramer has been placed in temporary foster
care and there is an ongoing investigation into the
child’s welfare.

Address
The CW visited the foster family’s address at
456 W Oak Avenue, Springfield, IL.

Number
The case number CW-2023-56893 has been
assigned for tracking purposes.

E-mail
The CW can contact the foster family at
randuser789@xyzreportnews.com in
case of any emergencies.

Table 10: The canaries inserted into the training data for
the models fine-tuned to generate synthetic CPS data.
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Model Data Size
Phrase Overlap

Ratio
Total #

of Phrase Overlap
Total #

of Phrases
Total # of Deidentified

Phrases Generated
D(real, ICD-9 n=10) 44215 1 2935955 2935955 3845112
D(ϵ=∞, ICD-9n=10) 31020 0.00504 16271 3229278 369390
D(ϵ=8, ICD-9n=10) 31020 0.0314 10312 3281866 390956
D(ICL, ICD-9n=10) 19640 0.00117 3761 3205098 316905

D(real, ICD-9n=5) 37245 1 2565699 2565699 3352588
D(ϵ=∞, ICD-9n=5) 26136 0.00478 13537 2831658 323963
D(ϵ=8, ICD-9n=5) 26136 0.00263 7447 2831627 295290

Table 11: Analysis for the MIMIC-III dataset of all the unique contexts in which entities of from all categories from
the training data appear in the synthetic data, considering surrounding context word lengths varying from 1 to 4.
Dreal corresponds to the training data the generative models were trained on.

Model
Data
Size

Phrase Overlap
Ratio

Total
of Phrase Overlap #

Total # of Phrases in Dreal

+ Dsynth−data

Total # of Phrases in
Dsynth−data

Dϵ=∞ 28206 0.01517 6307 415685 104153
Dϵ=8 28206 0.00619 2448 395303 65990
Dϵ=4 28206 0.00567 2218 391313 59286

Table 12: Analysis for the CPS data of all the unique contexts in which entities of from all categories from the
training data appear in the synthetic data, considering surrounding context word lengths varying from 1 to 4. Dreal

corresponds to the training data the generative models were trained on.
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