
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 9243–9258
November 12-16, 2024 ©2024 Association for Computational Linguistics

CODEIP: A Grammar-Guided Multi-Bit Watermark for Large Language
Models of Code

Batu Guan1 Yao Wan1* Zhangqian Bi1 Zheng Wang2 Hongyu Zhang3

Pan Zhou1 Lichao Sun4

1Huazhong University of Science and Technology 2University of Leeds
3Chongqing University 4Lehigh University

{batuguan,wanyao,zqbi,panzhou}@hust.edu.cn, z.wang5@leeds.ac.uk
hyzhang@cqu.edu.cn, lis221@lehigh.edu

Abstract

Large Language Models (LLMs) have achieved
remarkable progress in code generation. It now
becomes crucial to identify whether the code
is AI-generated and to determine the specific
model used, particularly for purposes such as
protecting Intellectual Property (IP) in indus-
try and preventing cheating in programming
exercises. To this end, several attempts have
been made to insert watermarks into machine-
generated code. However, existing approaches
are limited to inserting only a single bit of in-
formation. In this paper, we introduce CODEIP,
a novel multi-bit watermarking technique that
inserts additional information to preserve cru-
cial provenance details, such as the vendor ID
of an LLM, thereby safeguarding the IPs of
LLMs in code generation. Furthermore, to en-
sure the syntactical correctness of the generated
code, we propose constraining the sampling
process for predicting the next token by train-
ing a type predictor. Experiments conducted
on a real-world dataset across five program-
ming languages demonstrate the effectiveness
of CODEIP in watermarking LLMs for code
generation while maintaining the syntactical
correctness of code.

1 Introduction

Large Language Models (LLMs), particularly those
pre-trained on code, such as CodeGen (Nijkamp
et al., 2022), Code Llama (Roziere et al., 2023),
and StarCoder (Li et al., 2023a), have demonstrated
great potential in automating software development.
Notably, tools leveraging these LLMs, such as
GitHub Copilot (Friedman, 2021), Amazon’s Code-
Whisperer (Amazon, 2023), and ChatGPT (Ope-
nAI, 2023), are transforming how developers ap-
proach programming by automatically generating
code based on natural language instructions and
the context provided by existing code.

*Corresponding Author.

Although LLMs have shown significant potential
in code generation, they also present challenges re-
garding the protection of Intellectual Property (IP)
related to model architectures, weights, and train-
ing data, given the substantial costs associated with
training a successful LLM (Li, 2024). Furthermore,
there are also increasing concerns about the use of
generative AI in programming courses (Bozkurt
et al., 2023). A crucial method for safeguarding
the IPs of LLMs and detecting programming mis-
conduct is to determine if a specific piece of code
is generated by a particular LLM.

Watermarking (Kirchenbauer et al., 2023) of-
fers a potential solution to determine the origin
of machine-generated content. This technique is
shown to be effective in Computer Vision (CV)
and Natural Language Processing (NLP) domains.
It works by inserting information into multime-
dia formats (e.g., images and videos) without per-
ceptibly diminishing the utility of content. By in-
corporating fingerprints such as owner/user ID, it
supports leakage tracing, ownership identification,
meta-data binding, and fortifying against tamper-
ing (Mohanty, 1999).

Existing watermarking techniques for LMs can
be categorized into two groups: hard and soft wa-
termarks. A hard watermark is typically inserted by
utilizing a masked language model like BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019) to
replace tokens in generated content with synonyms.
However, a hard watermark exhibits consistent pat-
terns for different model inputs, compromising the
protection strength. In contrast, soft watermarks
are inserted during content generation, typically
via manipulating the sampling probability distri-
bution over the vocabulary during the decoding
process of LLMs (Kirchenbauer et al., 2023). As
soft watermarks can adapt to the generated content,
they change across model outputs, improving the
diversity and strength of watermarks.

Recently, several attempts have been made to-
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Figure 1: CODEIP can seamlessly embed multi-bit mes-
sages into LLMs while preserving the utility of the un-
derlying code. “718084” is the ASCII value for “GPT”.

wards watermarking LLMs for code generation,
predominantly centered on two distinct approaches:
generating a one-bit watermark to discern the
machine-generated nature of the code (Lee et al.,
2023) or embedding a hard watermark through a
semantic-equivalent transformation of the gener-
ated code (Li et al., 2023b; Sun et al., 2023). We
argue that a single-bit watermark carries little in-
formation and is inadequate to preserve enough
provenance information like the vendor ID of an
LLM. Moreover, the implementation of a hard wa-
termark does not offer robust protection (Wang
et al., 2024), as the easily detectable nature of the
hard-coded watermarking patterns undermines its
effectiveness.

To address the aforementioned limitations, this
paper presents CODEIP, a grammar-guided multi-
bit soft watermarking method for LLM-based code
generation. CODEIP inserts a watermark message
based on the probability logits of LLMs during
the code generation process, thereby embedding a
multi-bit message in the generated code. Moreover,
CODEIP incorporates grammar information into
the process of generating watermarked code, max-
imizing the likelihood of generating semantically
correct code. This is achieved by training a type
predictor to predict the subsequent grammar type
of the next token, thereby enhancing the semantic
correctness of the generated code.

Figure 1 illustrates the advantages of type pre-
dictor introduced in CODEIP. In this example,
our objective is to insert the multi-bit message
(i.e., model name) “718084” (corresponding to
the ASCII value of “GPT”) into its generated code.
Without grammar guidance, the LLM inaccurately
predicts the next token as “:”. However, the gram-
mar analysis indicates that the succeeding token
is expected to be a keyword. Our CODEIP, which
incorporates grammar constraints into the logit of

LLMs, consistently tends to predict the correct to-
ken “in”. This capability preserves the semantic
correctness of the code during the insertion of wa-
termarks into LLMs.

We assess the performance of CODEIP by insert-
ing watermarks into code generated by three LLMs
across five programming languages, namely Java,
Python, Go, JavaScript, and PHP. Experimental
results validate the efficacy of CODEIP, demon-
strating an average watermark extraction rate of
0.95. Importantly, our method preserves the utility
of the generated code, achieving 50% less Code-
BLEU degradation compared to a baseline model
without grammar constraints.

This paper makes the following contributions.

• It is the first to study the problem of embedding
the soft multi-bit watermarks into code LLMs
during the code generation process.

• It presents a new method that utilizes the gram-
matical constraints of programming languages
to guide the manipulation of probability logits
in LLMs, thereby preserving the utility of water-
marked code.

Data Availability. All experimental data and
source code used in this paper are available at
https://github.com/CGCL-codes/naturalcc/
tree/main/examples/codeip (Wan et al., 2022).

2 Preliminary

2.1 Code Generation
LLM-based code generation produces source code
from high-level specifications or prompts. Typi-
cally, these specifications (prompts) are conveyed
through natural language descriptions, supple-
mented by partial code elements such as func-
tion annotations and declarations, which are pro-
vided by users. Formally, let ρ denote a prompt,
which can be tokenized into a sequence of tokens
{w0, w1, . . . , w|ρ|}, where | · | denotes the length
of a sequence. Let V denote the vocabulary used
for mapping each token to corresponding indexes.

pLM(wi) = softmax (LLM(wi|ρ, w0:i−1)) . (1)

Here, pLM(wi) denotes the probability distribution
over the entire vocabulary V , generated by the LM.
We call the unnormalized score for each token in
V produced by the LM as model logit. In this
paper, the LM will always be an autoregressive
Transformer (Vaswani et al., 2017) pre-trained on
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Figure 2: An overview of the watermark insertion process of CODEIP. The last token of the generated code and
the message are used to compute watermark logits (WM Logits) by a hash function. The prompt and the whole
generated code are firstly used by LLM to compute LLM logits and consequently input into a lexer and a type
predictor to compute type predictor logits (TP Logits). The three are added together to compute the final logits,
which are used for decoding in the next token generation stage.

source code, akin to the models in the GPT fam-
ily, including Code Llama (Roziere et al., 2023)
and StarCoder (Li et al., 2023a). Following this,
the subsequent token wi is sampled from pLM(wi)
using specific sampling strategies, such as greedy
sampling (Berger et al., 1996) or multinomial sam-
pling (Bengio et al., 2000). In this paper, we adopt
the greedy sampling strategy (cf. Appendix E).
Therefore, the next token will be sampled based on
the following equation: wi = argmax

w∈V
pLM(w).

2.2 The Problem: Watermarking the Code

In this paper, our goal is to insert a multi-bit wa-
termark message into a code snippet during the
generation process of LLMs. Typically, the wa-
termarking algorithm comprises two stages: the
insertion stage and the extraction stage.

During the process of inserting a watermark into
the generated code, the initial consideration in-
volves determining the specific message m to be
inserted as the watermark. In practice, the model
provider of an LLM can formulate a message, e.g.
owner ID, to safeguard its model copyright. It is
noteworthy that while the initial content of message
m may encompass any characters, it undergoes
conversion into a unique number before insertion.
Specifically, given the prompt ρ and a watermark
message m as inputs, the INSERT module pro-
duces a watermarked code C = INSERT(ρ,m).

During the extraction stage, given an input
snippet of code C, we expect that the module
EXTRACT will produce its predicted watermark
message m′ = EXTRACT(C).

In the context of this formulation, the primary
objectives of our watermarking for LLMs of code
are twofold: 1) to accurately insert the intent mes-

sage as a watermark, and 2) to preserve the utility
of the code without loss of semantics.

3 CODEIP

This section provides a detailed description of
CODEIP. The CODEIP comprises two distinct
stages, namely insertion and extraction. Initially,
leveraging the decoding mechanism of existing
LLMs, we use LLM to denote the likelihood of
each token in the vocabulary V to be inferred by
the LLM. Subsequently, during the watermark in-
sertion stage (cf. Sec. 3.1), we incorporate the wa-
termark message by calculating a logit value LWM
to influence the prediction choice of tokens. More-
over, we present a novel application of context-free
grammar and introduce another logit at the inser-
tion stage (denoted as LTP), which signifies the
probability associated with the grammatical type
of the subsequent token, to guide token generation
from the perspective of grammar (cf. Sec. 3.2).
Finally, we integrate all the logits together (cf.
Sec. 3.3) and explain the watermark extraction tech-
niques (cf. Sec. 3.4).

3.1 Watermark Insertion

The watermark insertion architecture is depicted
in Figure 2. Following Kirchenbauer et al. (2023),
we insert the watermark into the generated code
by modifying the probability distribution over the
entire vocabulary V when LLM generates the next
token. We first select a set of tokens from the vocab-
ulary using a hash function. Based on the selected
tokens, we compute the watermark logits, repre-
senting the likelihood of embedding the watermark
message within each respective token.
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Vocabulary Selection. The insight of inserting
watermarks into code lies in selecting a set of to-
kens in the vocabulary under the control of the wa-
termark message and enhancing their possibility of
being generated during LLM decoding. We employ
a hash function H to select tokens from the vocab-
ulary V . Specifically, assuming that LLM is gen-
erating the i-th token and the previous generation
is denoted as [w0, w1, · · · , wi−1], with watermark
message represented by m. For any given token
w in V , the hash function will take (w,m,wi−1)
as input and map it to either 0 or 1. We consider
tokens w that satisfy H(w,m,wi−1) = 1 as se-
lected tokens, and our objective is to enhance their
likelihood of being chosen by the LLM.

Watermark Logit. To augment the likelihood of
generation, we calculate an additional logit referred
to as the watermark logit LWM and incorporate it
into the existing model logit LLM. The implemen-
tation of the watermark logit LWM relies on the
outcomes of vocabulary partitioning. Assuming
that the current LLM generates the i-th token wi,
preceded by the last token wi−1, and denoting the
watermark information as m, the watermark logit
is computed as follows:

LWM = I (H(w,m,wi−1) = 1) . (2)

Here, I denotes the indicator function. By assign-
ing a value of 1 to LWM for those selected tokens
whose resultant computation via the hash function
equals 1, we can effectively enhance the likelihood
of such tokens being preferentially chosen during
the decoding stage of LLM.

3.2 Grammar-Guided Watermarking
Conventional watermarking methods, which ran-
domly insert a message by perturbing the gener-
ation process for each token, often result in the
disruption of the semantics within the generated
code. We posit that the generated code ought to ad-
here to the grammatical rules of the programming
language. Consequently, we propose the integra-
tion of grammar constraints as a guiding principle
in the code generation process. This inclusion is
envisioned to maintain the utility of watermarked
generated code.

Context-Free Grammar (CFG). A CFG serves
as a formal system for describing the syntax of
programming languages, and possesses sufficient
expressiveness to represent the syntax of most pro-
gramming languages (Hoe et al., 1986). Typically,

==2if i %

PUNC.NUMBERKEYWORD NAME PUNC.

Lexer
① if_stmt: KEYWORD('if') expr comp_op expr KEYWORD(':')
②comp_op: PUNC.('<'|'>'|'=='|'>='|'<='|'<>'|'!=')
③expr: atom PUNC.('*'|'@'|'/'|'%'|'//') atom
④atom: NAME | NUM 

NAME|NUM

Rule
③④

KEYWORD('if') comp_opexpr
Apply

Figure 3: An example to highlight the role of CFG in
ensuring the semantic correctness of generated code.

for a code snippet, a lexer, e.g. ANTLR (Parr and
Quong, 1995), can transform it into a sequence of
lexical tokens. Subsequently, under the constraints
of CFG rules, we can infer the potential type of
the subsequent lexical token. For instance, as illus-
trated in Figure 3, after transforming the original
code “if i % 2 ==” into the sequence of lexical
tokens, we can use CFG to infer the potential type
of the subsequent lexical token as either “NAME” or
“NUM”, which could be helpful in the scenario of
code generation.

Nonetheless, despite the constraints that CFG
imposes on code, its direct application to the field
of code generation still presents certain challenges.
As demonstrated in the example of Figure 3, a CFG
is capable of analyzing potential types for the sub-
sequent lexical token. However, when multiple
token types are considered valid next tokens, the
utility of CFG in aiding code generation tasks be-
comes significantly limited, as it cannot calculate
the probability distribution among these possible
token types. Therefore, we train a lexical token-
type predictor and intend to use it as a substitute
for the CFG.

Lexical Token Type Predictor. We train a neural
network to predict the lexical type of the next token.
In particular, given the prompt and previously gen-
erated tokens, we initially employ a lexer to trans-
form the given data into a sequence of lexical token
types. Subsequently, this sequence is inputted into
the predictor. The predictor then predicts a token
type that will be outputted as the most probable
lexical token type for the subsequent token.

In the context of LLM-based code generation, let
ρ denote the prompt and G represent the generated
code, assuming the LLM is currently generating
the i-th token. For any given code snippet denoted
as S = [ρ;G0:i−1], where [·; ·] denotes the concate-
nation of two elements, it is feasible to extract its
token sequence T = Lexer(S) = [τ0, τ1, . . . , τl−1]
via lexical analysis, where τ ∈ T denotes the lex-
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ical token type and l denotes the length of lexical
token sequence.

Subsequently, an LSTM (Hochreiter and
Schmidhuber, 1997) is adopted to serve as the type
predictor and to predict the token type of the subse-
quent token by inputting the token sequence T , as
follows:

τl = TP(T ) = LSTM(τ0, τ1, . . . , τl−1) . (3)

Other neural networks, such as the Trans-
former (Vaswani et al., 2017) can also be applied
and we leave the exploration of other neural net-
works as our future work.

Type Predictor Logit. In order to mitigate the
negative impact of watermarking on code utility, it
is imperative to leverage our type predictor during
the watermark insertion process, which is also the
LLM decoding period. This necessitates transform-
ing the predictive outcomes of the type predictor
into a form of logit that can be added onto model
logits. We name the new logit as type predictor
logit, which can also be represented as LTP.

The type predictor logits are scores of tokens
within V . Consequently, it becomes imperative
to construct a dictionary in advance that asso-
ciates each type of lexical token with potential
LLM tokens corresponding to that particular type.
For instance, the KEYWORD lexical token type en-
compasses LLM tokens such as “def”, “if”, and
“else”, while the Punctuation lexical token type
incorporates LLM tokens including “(”, “)”, “;”,
“*”, and so forth. We denote this dictionary by
Φ : T 7→ V . Thus, LTP can be calculated as:

LTP = I(wi ∈ Φ(τl+1)) . (4)

Finally, we can get into the process of generating
the i-th token wi.

3.3 Putting it All Together
Finally, the i-th token generated by the LLM can
be formulated as follows:

wi = argmax
w∈V

{softmax(LLM +βLWM +γLTP)} .
(5)

Herein, β and γ represent hyperparameters for wa-
termark logit LWM and type predictor logit LTP.

3.4 Watermark Extraction
In the watermark insertion stage, we employ LWM
to insert a watermark w into the output G. Our strat-
egy for watermark extraction involves enumerating

all possible instances of the message (denoted as
m′), recreating the process of watermark insertion,
and identifying the instance of w that maximizes
LWM, as follows:

mext = argmax
m′

{
L∑

i=1

LWM
(
wi | m′, wi−1

)
}

,

(6)
where mext denotes the message extracted using
Eq. 6 and L denotes the length of token sequence
in G. The insight of the extraction stage is that we
determine that the most likely message causing the
appearance of this generated code is the watermark
inserted within this text.

4 Experimental Setup

4.1 LLMs and Dataset

To validate the effectiveness of our CODEIP,
we choose three prominent LLMs: Code Llama
(Roziere et al., 2023), StarCoder (Li et al., 2023a),
and DeepSeek Coder (Bi et al., 2024a) as our target
models. We insert the watermark into the code gen-
erated by these selected models. Note that, these
models exist in different versions, each character-
ized by varying model sizes. In our experiments,
we choose to employ the 7B model size, limited by
the computation resources. We select Java, Python,
Go, JavaScript, and PHP from CodeSearchNet (Hu-
sain et al., 2019) dataset and use the docstrings and
function declarations as prompts. For each prompt,
the LLMs generate the next 200 tokens. Note that
here we do not adopt HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) datasets as
our evaluation datasets. This is because their code
length is generally too short (cf. Appendix D) and
not suitable for inserting watermarks. The relation-
ship between the length of generated code and the
extraction rate is studied in Sec. 5.3.

4.2 Implementation Details

For all three LLMs, we implement a temperature
of 0.75, a repetition penalty of 1.2, and no re-
peat n-gram size of 10. Given the distinct train-
ing processes of various LLMs, we establish the
parameters (β, γ) as (5, 3) for Code Llama and
StarCoder, (6, 4) for DeepSeek Coder. We set the
watermark message to be 2024 in our experiment
and the whole possible watermark message set is
[0, 220], which means we can insert a 20-bit mes-
sage at most. The type predictor is an LSTM model,
which encompasses an embedding layer character-
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LLM Strategy Java Python Go JavaScript PHP

Code Llama w/ WM + w/o TP 0.90 0.93 0.87 0.98 0.97
w/ WM + w/ TP 0.92 0.93 0.86 1.00 0.97

StarCoder w/ WM + w/o TP 0.88 0.98 0.90 0.97 0.96
w/ WM + w/ TP 0.86 0.97 0.87 0.96 0.96

Deepseek Coder w/ WM + w/o TP 0.99 0.95 0.87 1.00 1.00
w/ WM + w/ TP 0.99 1.00 0.91 1.00 1.00

Table 1: The results of watermark extraction rate for different models with different strategies, where “WM” denotes
Watermark and “TP” denotes Type Predictor.

ized by an embedding dimensionality of 64. The
hidden state dimensionality of the LSTM is 128. In
our experiment, we train a type predictor for each
language involved, given the distinct grammatical
structures inherent to each language. We also com-
pare the ability of CODEIP to preserve code quality
with other methods, particularly the vanilla meth-
ods from Wang et al. (2024) and Yoo et al. (2024).
These methods have similar time consumption for
inserting a watermark into a code snippet, making
them suitable for comparison with our approach.
The parameters for these comparative experiments
have been adjusted to align with the code genera-
tion scenario. All experiments are conducted on a
Linux server with 128GB memory, with a single
32GB Tesla V100 GPU.

4.3 Evaluation Metrics

To evaluate the effectiveness of watermarking, one
objective is to assess whether the watermark can be
extracted from the generated code. Specifically, we
select 100 functions from the dataset for each pro-
gramming language and extract the docstrings and
declarations of each function to serve as prompts
for LLMs generation. We employ the extraction
rate of watermarks as a metric to measure the effi-
cacy of watermarking, reflecting the percentage of
watermarks successfully extracted from the embed-
ded code. Assuming there are N prompts in the
dataset, these N prompts, when input to the LLM
with CODEIP, will generate N segments of code
with watermarks. By using CODEIP, watermarks
in M segments of code are successfully extracted.
The extraction rate will be calculated as follows.

Extraction Rate =
M

N
. (7)

To validate the utility of watermarked code, we
adopt the CodeBLEU (Ren et al., 2020) metric,
which has been widely adopted in the evaluation
of code generation. The CodeBLEU metric can be

depicted as follows.

CodeBLEU = η · BLEU + λ · BLEUweight

+ µ · Matchast + ξ · Matchdf .
(8)

Here, BLEU is computed utilizing the conventional
BLEU method as delineated by (Papineni et al.,
2002). The term BLEUweight refers to a weighted
n-gram match that is derived from juxtaposing hy-
pothesis code and reference code tokens with vary-
ing weights. Furthermore, Matchast signifies a syn-
tactic AST match which delves into the syntactic
information inherent in the code. Lastly, Matchdf
denotes a semantic dataflow match that takes into
account the semantic congruity between the hy-
pothesis and its corresponding reference.

In our experiments, we adopt the parameters rec-
ommended by Ren et al. (2020) in their original pa-
per, namely (η, λ, µ, ξ) = (0.10, 0.10, 0.40, 0.40).
Note that, here we do not adopt the Pass@k met-
ric (Chen et al., 2021), which has been widely
adopted to evaluate the LLMs for code generation.
This is because the test cases are missing in our
used CodeSearchNet dataset. A detailed explana-
tion of metrics is in Appendix C.

5 Results and Analysis

5.1 Extraction Rate of Watermarks
Table 1 shows a comparison among different kinds
of watermarking strategies. Generally, under both
watermarking strategies, the extraction rates con-
sistently surpass 0.90 in most programming lan-
guages, indicating the efficacy of our watermarking
techniques in the context of LLMs for code genera-
tion. Taking DeepSeek Coder as an example, our
watermarking strategy, both with and without the
type predictor (“w/ WM + w/o TP” and “w/ WM +
w/ TP”), demonstrates an impressive extraction rate
of 0.99 for Java and 1.00 for PHP. Moreover, the
fact that the presence or absence of a type predictor
has no obvious effect on the outcome is consistent
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Figure 4: Impact of parameter β on the extraction rate
of generated Java code.

with our initial expectations, as the type predictor is
designed to prioritize the preservation of the utility
of the generated code.

5.2 Watermark vs Code Quality
We further explore the impact of watermarking
strategies on the utility of generated code. Ta-
ble 2 illustrates the overall performance of different
LLMs when paired with different logits, measured
by CodeBLEU. From this table, it is evident that
the use of watermark logit leads to a decrease in
CodeBLEU scores for code generation across vari-
ous models and languages, and with the subsequent
incorporation of the type predictor logit, a distinct
resurgence in CodeBLEU scores is observed across
most settings. It should also be noticed that the per-
formance of the logit predictor is superior to other
similar works (Wang et al., 2024; Yoo et al., 2024).
This emphasizes the significant efficacy of the type
predictor in preserving the quality of code.

5.3 Parameter Analysis
The Impact of Parameter β. We conduct exper-
iments on the variation in extraction rates when
adjusting parameter β under three LLMs. We only
show the result of Java as an example in this sec-
tion and more results can be seen in Appendix F.1.
In Figure 4, it can be seen that as β continues to
increase, the extraction rate of watermarks is also
constantly increasing. When β exceeds 5, an ex-
traction rate of approximately 0.9 can essentially be
achieved, which is relatively ideal. It indicates that
watermark logit has a positive effect on whether
watermarks can be extracted.

The Impact of Parameter γ. We conduct experi-
ments on three LLMs by varying parameter γ, aim-
ing to investigate the impact of γ on the CodeBLEU
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Figure 5: Impact of parameter γ on CodeBLEU score
and extraction rate of generated Java code. Lines are for
CodeBLEU and bars are for extraction rate.

score and extraction rate of generated code. The ex-
perimental results of Java, as depicted in Figure 5,
reveal a noteworthy trend. The initial augmentation
of γ visibly improves the quality of the generated
code. Nevertheless, as augmentation progresses
beyond a certain threshold, a discernible decline
in CodeBLEU becomes evident. One plausible ex-
planation for this inconsistency may stem from the
inherent contradiction in tokenization, namely, the
disparity between prevalent tokenization methods
utilized by LLMs (e.g., WordPiece (Schuster and
Nakajima, 2012) and BPE (Sennrich et al., 2015)),
and those employed by lexers.

For example, the LLM subtokens “ran” and
“ge”, when combined, can constitute the lexical
token “range” which can be recognized during lex-
ical analysis. Assuming the generated code to be
“for i in ran”, the subsequent LLM subtoken to
be generated is most likely to be “ge”, thereby ren-
dering the generated code as “for i in range”.
However, from the perspective of a lexer, the to-
ken “ran” could potentially be classified as type
“NAME”, leading to the lexical token type being cal-
culated as “PUNCTUATION”, and thereby selecting
“:”. Hence, the generation of code will be trans-
formed into “for i in ran:”. This contradiction
caused by different segmentation methods between
LLM tokenizer and lexical analysis can also lead
to performance degradation when γ is high.

Moreover, we measure the extraction rate under
various γ settings and observe that changes in γ
result in only minor fluctuations in the extraction
rate. Thus, we conclude that the parameter γ pri-
marily affects the utility of the generated code, with
minimal impact on the extraction rate.
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LLM Strategy Java Python Go JavaScript PHP

Unwatermarked 28.99 22.56 31.73 23.01 44.56
Wang et al. (2024) 23.76 (-5.23) 10.04 (-12.52) 21.52 (-10.21) 16.32 (-6.69) 32.85 (-11.71)

Code Llama Yoo et al. (2024) 26.87 (-2.12) 8.91 (-13.65) 28.29 (-3.44) 12.79 (-10.22) 20.74 (-23.82)
w/ WM + w/o TP 23.35 (-5.64) 12.04 (-10.52) 22.44 (-9.29) 16.47 (-6.54) 40.47 (-4.09)
w/ WM + w/ TP 27.14 (-1.85) 12.25 (-10.31) 26.49 (-5.24) 20.83 (-2.18) 40.61 (-3.95)

Unwatermarked 39.16 17.74 27.61 24.06 42.60
Wang et al. (2024) 27.29 (-11.87) 17.20 (-0.54) 14.84 (-12.77) 16.81 (-7.25) 36.44 (-6.16)

StarCoder Yoo et al. (2024) 22.34 (-16.82) 10.93 (-6.81) 22.54 (-5.07) 15.08 (-8.98) 17.36 (-25.24)
w/ WM + w/o TP 25.70 (-13.46) 17.60 (-0.14) 13.39 (-14.22) 15.25 (-8.81) 40.11 (-2.49)
w/ WM + w/ TP 32.11 (-7.05) 18.16 (+0.42) 17.55 (-10.06) 19.18 (-4.88) 40.14 (-2.46)

Unwatermarked 32.10 19.68 33.10 23.97 42.29
Wang et al. (2024) 24.84 (-7.26) 15.95 (-3.73) 26.38 (-6.72) 19.61 (-4.36) 36.84 (-5.45)

DeepSeek Coder Yoo et al. (2024) 21.78 (-10.32) 17.62 (-2.06) 26.56 (-6.54) 17.18 (-6.79) 18.09 (-24.20)
w/ WM + w/o TP 25.55 (-6.55) 18.35 (-1.33) 26.93 (-6.17) 17.88 (-6.09) 43.40 (+1.11)
w/ WM + w/ TP 31.22 (-0.88) 13.57 (-6.11) 29.32 (-3.78) 19.65 (-4.32) 43.40 (+1.11)

Table 2: CodeBLEU scores for different models with different strategies. The value in () represents the disparity in
quality (CodeBLEU) between watermarked and unwatermarked code.

The Impact of Generated Code Length. We
also investigate the influence of generated code
length, measured in terms of the number of tokens
produced, on the effectiveness of watermark in-
sertion. Our findings reveal a positive correlation
between code length and the successful extraction
rate, as depicted in Figure 6. This observation
underscores that the successful extraction rate of
our watermark remains contingent on the length of
the generated code. Specifically, shorter lengths
of generated code lead to diminished distinctions
between watermarked and unwatermarked code,
consequently presenting a heightened challenge in
extracting watermarks within such code.

5.4 Resistance to Crop Attack
To underscore the robustness of our watermark-
ing strategies, we consider a hypothetical scenario
where developers use only a portion, rather than
the entire generated code, to undermine the water-
mark—a situation termed a “Crop Attack”. This
involves subjecting the generated code to crop rates
of 0.25 and 0.5, representing the removal of 25%
and 50% of the code, respectively. The results are
presented in Table 3. Examination of the table
reveals that, in most cases, our watermark’s effec-
tiveness only experiences a slight reduction under
such rigorous attacks. These findings strongly indi-
cate that our watermark exhibits notable resistance
to crop attacks, demonstrating its robustness.

6 Related Work

LLM-based Code Generation. The roots of
code generation can be traced back several
decades (Backus et al., 1957; Waldinger and Lee,

10 50 100 150 200
Generate Code Length
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Code Llama StarCoder Deepseek Coder

Figure 6: Impact of generated code length on the extrac-
tion rate of Java code.

LLM Rate Java Python Go JS PHP

0 0.92 0.93 0.86 1.00 0.97
Code Llama 0.25 0.89 0.95 0.75 0.96 0.94

0.50 0.71 0.85 0.51 0.87 0.87

0 0.86 0.97 0.87 0.96 0.96
StarCoder 0.25 0.81 0.95 0.85 0.93 0.95

0.50 0.63 0.96 0.79 0.85 0.92

0 0.99 1.00 0.91 1.00 1.00
DeepSeek Coder 0.25 0.98 0.99 0.77 0.94 0.95

0.50 0.91 0.90 0.56 0.90 0.87

Table 3: The performance of CODEIP in code water-
marking against crop attack.

1969). Recently, many works focus on the intersec-
tion of deep learning and tasks of code (Wan et al.),
such as code summarization (Wan et al., 2018;
Alon et al., 2018), code search (Wan et al., 2020),
code completion (Li et al., 2024; Sun et al., 2024b)
and code generation (Bi et al., 2024b; Sun et al.,
2024a). Currently, LLMs especially those pre-
trained on code, such as DeepSeek Coder (Bi et al.,
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2024a), Code Llama (Roziere et al., 2023), Code-
Gen (Nijkamp et al., 2022), StarCoder (Li et al.,
2023a), and CodeGeeX2 (Zheng et al., 2023), have
emerged as dominant forces in code generation.
Leveraging the capabilities of these LLMs, several
commercial tools are reshaping the programming
landscape for developers, including GPT-3.5 (Ope-
nAI, 2023), Gemini (Google, 2024), and GitHub
Copilot (Microsoft, 2024).

Software Watermarking. The software water-
marking problem has been studied since 1996 by
Davidson and Myhrvold (1996), who altered code
blocks or operand order to insert watermarks. Qu
and Potkonjak (1998) proposed a software water-
mark method based on graph coloring problem and
graph structure of the code, which was further de-
veloped by Myles and Collberg (2004), Zhu and
Thomborson (2006). These rule-based early meth-
ods are often constrained by the usage scenarios
and various attack techniques.

Recently, several works (Yang et al., 2024; Li
et al., 2023b) have been focusing on watermark-
ing the code generated by LLMs. They utilized
a post-processing approach, whereby watermarks
are inserted through transformations applied to the
code subsequent to its generation by the model.
However, these techniques have several limitations,
including their specificity to a single language and
their vulnerability to counterfeiting once the water-
marking method is disclosed, which restricts their
applicability. Additionally, some multi-bit water-
marking techniques (Wang et al., 2024; Yoo et al.,
2024) have been proposed, but these approaches
tend to reduce the utility of the generated text.

Machine Generated Text Identification. The
task of identifying machine-generated text has al-
ways been of paramount importance. Early re-
search focused on adding watermarks to arbitrary
texts, while in recent years, studies on text water-
marking have started their attempts to distinguish
between machine-generated and human-generated
texts. An intuitive approach is to treat it as a bi-
nary classification task, accomplished by training a
model (Solaiman et al., 2019; Bakhtin et al., 2019).
Another approach is to identify model-generated
text by detecting features of the generated text. Tay
et al. (2020) distinguished texts by detecting de-
tectable artifacts in the generated text, such as sam-
pling methods, top-k probabilities, etc. There is
also a dataset created for testing models ability to
distinguish machine-generated text from human-

written text (Zhang et al., 2024). In 2023, Kirchen-
bauer et al. (2023) introduced a novel method for
embedding watermarks into text during model in-
ference by altering the selection probabilities of
certain tokens. Lee et al. (2023) extended this
method to code generation, incorporating threshold-
controlled watermark inclusion.

7 Conclusion

In this paper, we propose CODEIP to watermark
the LLMs for code generation, with the goal of
safeguarding the IPs of LLMs. We insert water-
marks into code generated by the model, and intro-
duce grammatical information into the watermark
generation process by designing a type predictor
module to safeguard the utility of generated code.
Comprehensive experimental findings affirm that
CODEIP exhibits a notable extraction rate, excels
in safeguarding code semantics, and demonstrates
a degree of resilience against attacks. In our fu-
ture work, we plan to persistently advance toward
more secure LLM-powered software engineering
through the continuation of our research.

8 Limitations

In our experiments, we adopt CodeBLEU for eval-
uation, which is a commonly used metric in assess-
ing the quality of code generation. In our future
work, we will employ additional evaluation metrics
to assess the experimental results. We also strive
to find datasets suitable for our work that can be
evaluated using other metrics, such as Pass@k. Fur-
thermore, the experiments have substantiated that
our watermark exhibits a certain degree of robust-
ness under crop attacks, as this is the most easily
implemented attack method in model copyright
scenarios. Other forms of attacks such as variable
name obfuscation could potentially degrade the
readability of generated code, thus making them
less likely to be employed in attacks aimed at in-
fringing model copyrights, which is an assault we
aim to prevent. We will persistently investigate and
enhance the robustness of our watermark to make
it applicable for more protection scenarios.
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A Lexical Token Type

Despite the diversity in syntax among various pro-
gramming languages, consistency remains at the
lexical analysis level. That is, the types of tokens
parsed out by lexical analysis are fundamentally
similar. The text box below presents potential token
types that may be parsed following lexical analysis.

‘Token’, ‘Comment’, ‘Error’,
‘Escape’, ‘Generic’, ‘Keyword’,
‘Literal’, ‘Name’, ‘Operator’,
‘Other’, ‘Punctuation’, ‘Text’

B Learning the Type Predictor

Formally, the type predictor accomplishes the task
of the next lexical token prediction. We adhere to
conventional training methodologies for this partic-
ular task to train it. For a given programming lan-
guage, we postulate that the collected code dataset
of this particular language is denoted as D, and
each segment of code within this dataset as d ∈ D.
To facilitate the acquisition of pertinent language
grammar by the type predictor, we initially employ
a lexer specific to that language to transform each
instance of d into a corresponding lexer token se-
quence. Taking into account that the possible token
type of the subsequent word is typically associated
with the types of nearby tokens, for predicting the
type of the i-th token, we extract n preceding to-
ken types from the sequence to predict this i-th
token type. Hence, for the dataset D, our learning
objective can be formulated as follows:

J (D) =
∑

d∈D

|Td|∑

i=n

log pLSTM(li|l(i−n):i) , (9)

where J is the loss function utilized during the
training of type predictor, and |Td| denotes the
length of lexical token type sequence of original
code d.

After training, each type predictor can achieve
an accuracy rate of over 70% on the test set.

C Detailed Explanation of Metrics

In our experiments, we opt to assess the effective-
ness of our watermarking system by detecting the
extraction rate, rather than employing metrics such
as FPR and AUROC. This is because, while one-bit
watermark technology can only distinguish whether
an article is generated by a machine, multi-bit wa-
termarks can embed more information. Therefore,
the ability to extract the information within is a
more critical evaluation criterion.

In fact, based on the experimental results, we
find that the false positive rate is 0, i.e., there is no
record of successfully extracting watermarks from
codes written by natural programmers. Theoreti-
cally, it is also not difficult to see that extracting the
correct watermark from non-machine-generated
text is very challenging. Assuming there are N
possible watermark extraction results, for naturally
generated text that is not machine-made, the re-
sults of watermark extraction can be considered
to be uniformly distributed, hence the probability
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Figure 7: The length distribution of code in CodeSearch-
Net, MBPP, and HumanEval datasets. For better read-
ability, code in CodeSearchNet exceeding 1000 char-
acters has been truncated. The length is measured in
characters.
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Figure 8: The average code length for CodeSearchNet,
MBPP, and HumanEval, measured in characters. On
the x axis, “M” represents MBPP, “H” represents Hu-
manEval, and “C” represents CodeSearchNet.

of extracting the correct watermark is 1/N . In
experiments, the total number of possible extrac-
tion results is set to 220, under such circumstances,
the probability of extracting the correct watermark
is less than one in a million. Therefore, metrics
such as FPR and AUROC are not suitable in our
experiments.

D Dataset Analysis

In Figure 7, we examine the code lengths across
three datasets: MBPP (Austin et al., 2021), Hu-
manEval (Chen et al., 2021), and CodeSearch-
Net (Husain et al., 2019). Analysis of both length
distribution and average length reveals a notable
distinction: the CodeSearchNet dataset exhibits
significantly longer code lengths compared to the
other two datasets.

E Sampling Strategy Selection

In our experiment we use greedy sampling as our
decoding strategy. Other decoding strategies like

beam search, top-p sampling, etc. can also be used.
The selection of the decoding strategy will not af-
fect our evaluation of CODEIP. Due to the conve-
nience of greedy sampling, we opt for this strategy.

F More Results on Parameters

F.1 Results of Parameter β

We present additional results (Figure 9) demonstrat-
ing variations in extraction rate as β varies.

F.2 Results of Parameter γ

We present additional results regarding the vari-
ation of γ with the change in CodeBLEU score
and extraction rate as shown in Figure 10 and Fig-
ure 11.

F.3 Results of Generated Code Length
In Figure 12, we present additional results illus-
trating how the extraction rate varies with different
values of generated code length.

G Case Study

In Figure 13, we demonstrate examples of the gen-
eration code of LLM under three different strate-
gies(w/o WM + w/o TP, w/ WM + w/o TP, and w/
WM + w/ TP), and the watermark message is the
number “1012”. The prompt contains the docstring
and declaration of the function.

From Figure 13(a), we can see that when water-
mark logit and type predictor logit are not applied
during the decoding stage of LLM, it generates
some normal Python code, and in this scenario, no
watermark is inserted in the code because water-
mark logit is not applied. When only the watermark
logit is added to the model logit, the LLM starts
to generate large sections of comments, which is
meaningless to the implementation of the function.
The reason is supposed to be that the watermark
logits enhance the generation probability of com-
ment symbols like “#” and “'''”, who then affect
the LLM to generate comments rather than codes,
which do harmness to code utility. Subsequently,
when type predictor logits are also added to the
model logits, the generation code of LLM resumes
to normal and generates complete code to imple-
ment the function shown in the prompt.

As illustrated in Figure 13(b), the LLM gener-
ated nearly identical outputs under the three strate-
gies. In this particular instance, no conspicuous
grammatical errors were detected, and the outputs
of both strategies - w/ WM + w/o TP and w/ WM +
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Figure 9: Impact of parameter β on extraction rate of generated code.

1 2 3 4 5
16
18
20
22
24
26
28
30

Co
de

BL
EU

Code Llama StarCoder Deepseek Coder

(a) Go

1 2 3 4 5
8

10
12
14
16
18
20

Co
de

BL
EU

Code Llama StarCoder Deepseek Coder

(b) Python

1 2 3 4 5
15
16
17
18
19
20
21

Co
de

BL
EU

Code Llama StarCoder Deepseek Coder

(c) JavaScript

1 2 3 4 5
37
38
39
40
41
42
43

Co
de

BL
EU

Code Llama StarCoder Deepseek Coder

(d) PHP

Figure 10: Impact of parameter γ on CodeBLEU score of generated code.
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Figure 11: Impact of parameter γ on extraction rate of generated code.
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Figure 12: Impact of generated code length on the extraction rate of generated code.
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w/ TP - bear a striking resemblance to the output of
w/o WM + w/o TP strategy. This case demonstrates
that the watermarks we incorporated exert minimal
influence on the output of LLM.

As depicted in Figure 13(c), w/ WM + w/o TP
leads to meaningless generations due to the absence
of grammar guidance, when w/ WM + w/ TP gen-
erates something similar to w/o WM + w/o TP, and
also insert watermark “1012” into it. We posit that
the observed outcome can be attributed to the fact
that watermark logits have potentially increased the
probability of erroneous type tokens being selected
by LLM. Furthermore, it is discernible that once
an incorrect type of token is chosen, the model’s
output will continually be misguided. For instance,
upon the model’s erroneous output of the token
“public” due to the influence of watermark logits,
it is anticipated that a complete function declara-
tion will be subsequently generated by the model,
thereby leading to a sustained impact on code se-
mantics, and the generation of symbol “'''” will
lead to the generation of comments, which also
shows the misleading effect watermark logit have
on code generation task. As shown in the Figure,
when type predictor logit is applied, such circum-
stances are unlikely to occur.
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ret = {}

hosts = 

__utils__["elasticsearch.check_cluster"]

(hosts)['master']

for host in hosts:

  try:

    url = "https://" + host + 

"/_cat/snapshots/"+repository+" "+ 

snapshot

    headers = 

{"accept":"application/json" }

[...continued]
   

if not hosts:

  hosts = 

__salt__['elasticsearch.get_hosts'](profi

le)

  return 

__salt__['elasticsearch.snapshot_get'](re

pository, snapshot, ignore_unavailable, 

hosts, profile)

  try:

    response = 

es.snapshot.get(repository=repository, 

snapshot=snapshot, 

ignore_unavailable=ignore_unavailable)

[...continued]

# def snapshot_get(*, repository, 

snapshot, ignore_unavailable=False)

  '''

  .. versionchanged:

  - In Elasticsearch 5.0 and later, 

``ignoreUnavailable`` can be passed as a 

URL parameter. If not provided, then it 

defaults to ``True`` (which was 

previously hard-coded in the client).

   .. versionchanged:

  - In Elasticsearch 6.0 and later, 

``masterTimeout`` can be passed as a URL 

parameter or as the value of 

[...continued]

w. WM+w/o TPw/o WM+w/o TP w. WM+w. TP

# Create an alias for a specific index/indices

def alias_create(indices, alias, hosts=None, body=None, profile=None, source=None):

Prompt

(a) An example of Python code.

[Truncated...]
var r1 error

if rf, ok := ret.Get(1).(func([]byte) 

error); ok {

  if ret == reflect.Value{Zero}-

rf(args[0]) { //nolint: staticcheck

  }

  if ret == reflect.Value{Nil}-rf(args[0]) 

{ // nolint: staticcheck

  }

  r1 = ret.Error(1)

  return r1

}

[Truncated...]
var r1 error

if rf, ok := 

retMock.Results[1].(func([]byte) error); 

ok {

  r1 = rf(serializedIdentity)

  retMock.Results[1] = r1

} else {

    r1 = ret.Error(1)

  }

return r0, r1

}

[Truncated...]
var r1 error

if rf, ok := 

ret_mock.call.Result.(func([]byte) error); 

ok {

  r1 = rf(serializedIdentity)

  if r1 != nil || len(ret.Error(_i+0)) > 

0 { // If there is an error, then it's 

not nil

   return r0, errors.Wrap(err, 

ret.Error(_i+0), 2, serialized)

}

w. WM+w/o TPw/o WM+w/o TP w. WM+w. TP

// DeserializeIdentity provides a mock function with given fields: serializedIdentity

func (_m *IdentityDeserializer) DeserializeIdentity(serializedIdentity []byte)(msp.Identity, error) {

Prompt

(b) An example of Go code.

Request.Builder builder = 

Request.newBuilder();

builder.setMethod(getProtoMethod(requestT

ype));

builder.putAllHeaders(getProtoMap(getHead

ers()));

builder.putAllPathParamValues(getProtoMap

(getQueryParams()));

ByteString body = ByteString.EMPTY;

[continued...]

return Request.newBuilder()

  .setServiceName(serviceName)

  .setMethodName(methodName)

  .setPayload(ByteString.copyFrom(payloa

d))

  .build();

}

[continued...]

public static final Request create(final 

MethodDescriptor<?, ?> method, final 

CallOptions callOptions);

```

### 3、`createResponse()`

```

public static final <RequestTypeT, 

ResponseTypeT> 

ServerCallListener.Listener<

[continued...]

w. WM+w/o TPw/o WM+w/o TP w. WM+w. TP

// Creates the request protobuf. This method is considered an internal implementation detail and not meant to be used by applications.

public ReadRowsRequesttoProto(RequestContext requestContext) {

Prompt

(c) An example of Java code.

Figure 13: Case study.
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