@inproceedings{ramos-etal-2024-aligning,
title = "Aligning Neural Machine Translation Models: Human Feedback in Training and Inference",
author = "Ramos, Miguel and
Fernandes, Patrick and
Farinhas, Ant{\'o}nio and
Martins, Andre",
editor = "Scarton, Carolina and
Prescott, Charlotte and
Bayliss, Chris and
Oakley, Chris and
Wright, Joanna and
Wrigley, Stuart and
Song, Xingyi and
Gow-Smith, Edward and
Bawden, Rachel and
S{\'a}nchez-Cartagena, V{\'i}ctor M and
Cadwell, Patrick and
Lapshinova-Koltunski, Ekaterina and
Cabarr{\~a}o, Vera and
Chatzitheodorou, Konstantinos and
Nurminen, Mary and
Kanojia, Diptesh and
Moniz, Helena",
booktitle = "Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)",
month = jun,
year = "2024",
address = "Sheffield, UK",
publisher = "European Association for Machine Translation (EAMT)",
url = "https://aclanthology.org/2024.eamt-1.22/",
pages = "258--274",
abstract = "Reinforcement learning from human feedback (RLHF) is a recent technique to improve the quality of the text generated by a language model, making it closer to what humans would generate.A core ingredient in RLHF`s success in aligning and improving large language models (LLMs) is its $\textit{reward model}$, trained using human feedback on model outputs. In machine translation (MT), where metrics trained from human annotations can readily be used as reward models, recent methods using $\textit{minimum Bayes risk}$ decoding and reranking have succeeded in improving the final quality of translation.In this study, we comprehensively explore and compare techniques for integrating quality metrics as reward models into the MT pipeline. This includes using the reward model for data filtering, during the training phase through RL, and at inference time by employing reranking techniques, and we assess the effects of combining these in a unified approach.Our experimental results, conducted across multiple translation tasks, underscore the crucial role of effective data filtering, based on estimated quality, in harnessing the full potential of RL in enhancing MT quality.Furthermore, our findings demonstrate the effectiveness of combining RL training with reranking techniques, showcasing substantial improvements in translation quality."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ramos-etal-2024-aligning">
<titleInfo>
<title>Aligning Neural Machine Translation Models: Human Feedback in Training and Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Ramos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Fernandes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">António</namePart>
<namePart type="family">Farinhas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carolina</namePart>
<namePart type="family">Scarton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Charlotte</namePart>
<namePart type="family">Prescott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Bayliss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Oakley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joanna</namePart>
<namePart type="family">Wright</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stuart</namePart>
<namePart type="family">Wrigley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyi</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Gow-Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachel</namePart>
<namePart type="family">Bawden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Víctor</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Sánchez-Cartagena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Cadwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Lapshinova-Koltunski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Cabarrão</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantinos</namePart>
<namePart type="family">Chatzitheodorou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="family">Nurminen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diptesh</namePart>
<namePart type="family">Kanojia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation (EAMT)</publisher>
<place>
<placeTerm type="text">Sheffield, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Reinforcement learning from human feedback (RLHF) is a recent technique to improve the quality of the text generated by a language model, making it closer to what humans would generate.A core ingredient in RLHF‘s success in aligning and improving large language models (LLMs) is its reward model, trained using human feedback on model outputs. In machine translation (MT), where metrics trained from human annotations can readily be used as reward models, recent methods using minimum Bayes risk decoding and reranking have succeeded in improving the final quality of translation.In this study, we comprehensively explore and compare techniques for integrating quality metrics as reward models into the MT pipeline. This includes using the reward model for data filtering, during the training phase through RL, and at inference time by employing reranking techniques, and we assess the effects of combining these in a unified approach.Our experimental results, conducted across multiple translation tasks, underscore the crucial role of effective data filtering, based on estimated quality, in harnessing the full potential of RL in enhancing MT quality.Furthermore, our findings demonstrate the effectiveness of combining RL training with reranking techniques, showcasing substantial improvements in translation quality.</abstract>
<identifier type="citekey">ramos-etal-2024-aligning</identifier>
<location>
<url>https://aclanthology.org/2024.eamt-1.22/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>258</start>
<end>274</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Aligning Neural Machine Translation Models: Human Feedback in Training and Inference
%A Ramos, Miguel
%A Fernandes, Patrick
%A Farinhas, António
%A Martins, Andre
%Y Scarton, Carolina
%Y Prescott, Charlotte
%Y Bayliss, Chris
%Y Oakley, Chris
%Y Wright, Joanna
%Y Wrigley, Stuart
%Y Song, Xingyi
%Y Gow-Smith, Edward
%Y Bawden, Rachel
%Y Sánchez-Cartagena, Víctor M.
%Y Cadwell, Patrick
%Y Lapshinova-Koltunski, Ekaterina
%Y Cabarrão, Vera
%Y Chatzitheodorou, Konstantinos
%Y Nurminen, Mary
%Y Kanojia, Diptesh
%Y Moniz, Helena
%S Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)
%D 2024
%8 June
%I European Association for Machine Translation (EAMT)
%C Sheffield, UK
%F ramos-etal-2024-aligning
%X Reinforcement learning from human feedback (RLHF) is a recent technique to improve the quality of the text generated by a language model, making it closer to what humans would generate.A core ingredient in RLHF‘s success in aligning and improving large language models (LLMs) is its reward model, trained using human feedback on model outputs. In machine translation (MT), where metrics trained from human annotations can readily be used as reward models, recent methods using minimum Bayes risk decoding and reranking have succeeded in improving the final quality of translation.In this study, we comprehensively explore and compare techniques for integrating quality metrics as reward models into the MT pipeline. This includes using the reward model for data filtering, during the training phase through RL, and at inference time by employing reranking techniques, and we assess the effects of combining these in a unified approach.Our experimental results, conducted across multiple translation tasks, underscore the crucial role of effective data filtering, based on estimated quality, in harnessing the full potential of RL in enhancing MT quality.Furthermore, our findings demonstrate the effectiveness of combining RL training with reranking techniques, showcasing substantial improvements in translation quality.
%U https://aclanthology.org/2024.eamt-1.22/
%P 258-274
Markdown (Informal)
[Aligning Neural Machine Translation Models: Human Feedback in Training and Inference](https://aclanthology.org/2024.eamt-1.22/) (Ramos et al., EAMT 2024)
ACL