@inproceedings{khondaker-etal-2024-detoxllm,
title = "{D}etox{LLM}: A Framework for Detoxification with Explanations",
author = "Khondaker, Md Tawkat Islam and
Abdul-Mageed, Muhammad and
Lakshmanan, Laks V. S.",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1066/",
doi = "10.18653/v1/2024.emnlp-main.1066",
pages = "19112--19139",
abstract = "Prior works on detoxification are scattered in the sense that they do not cover all aspects of detoxification needed in a real-world scenario. Notably, prior works restrict the task of developing detoxification models to only a seen subset of platforms, leaving the question of how the models would perform on unseen platforms unexplored. Additionally, these works do not address non-detoxifiability, a phenomenon whereby the toxic text cannot be detoxified without altering the meaning. We propose DetoxLLM, the first comprehensive end-to-end detoxification framework, which attempts to alleviate the aforementioned limitations. We first introduce a cross-platform pseudo-parallel corpus applying multi-step data processing and generation strategies leveraging ChatGPT. We then train a suite of detoxification models with our cross-platform corpus. We show that our detoxification models outperform the SoTA model trained with human-annotated parallel corpus. We further introduce explanation to promote transparency and trustworthiness. DetoxLLM additionally offers a unique paraphrase detector especially dedicated for the detoxification task to tackle the non-detoxifiable cases. Through experimental analysis, we demonstrate the effectiveness of our cross-platform corpus and the robustness of DetoxLLM against adversarial toxicity."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khondaker-etal-2024-detoxllm">
<titleInfo>
<title>DetoxLLM: A Framework for Detoxification with Explanations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Tawkat</namePart>
<namePart type="given">Islam</namePart>
<namePart type="family">Khondaker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="family">Abdul-Mageed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laks</namePart>
<namePart type="given">V</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Lakshmanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Prior works on detoxification are scattered in the sense that they do not cover all aspects of detoxification needed in a real-world scenario. Notably, prior works restrict the task of developing detoxification models to only a seen subset of platforms, leaving the question of how the models would perform on unseen platforms unexplored. Additionally, these works do not address non-detoxifiability, a phenomenon whereby the toxic text cannot be detoxified without altering the meaning. We propose DetoxLLM, the first comprehensive end-to-end detoxification framework, which attempts to alleviate the aforementioned limitations. We first introduce a cross-platform pseudo-parallel corpus applying multi-step data processing and generation strategies leveraging ChatGPT. We then train a suite of detoxification models with our cross-platform corpus. We show that our detoxification models outperform the SoTA model trained with human-annotated parallel corpus. We further introduce explanation to promote transparency and trustworthiness. DetoxLLM additionally offers a unique paraphrase detector especially dedicated for the detoxification task to tackle the non-detoxifiable cases. Through experimental analysis, we demonstrate the effectiveness of our cross-platform corpus and the robustness of DetoxLLM against adversarial toxicity.</abstract>
<identifier type="citekey">khondaker-etal-2024-detoxllm</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.1066</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1066/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>19112</start>
<end>19139</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DetoxLLM: A Framework for Detoxification with Explanations
%A Khondaker, Md Tawkat Islam
%A Abdul-Mageed, Muhammad
%A Lakshmanan, Laks V. S.
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F khondaker-etal-2024-detoxllm
%X Prior works on detoxification are scattered in the sense that they do not cover all aspects of detoxification needed in a real-world scenario. Notably, prior works restrict the task of developing detoxification models to only a seen subset of platforms, leaving the question of how the models would perform on unseen platforms unexplored. Additionally, these works do not address non-detoxifiability, a phenomenon whereby the toxic text cannot be detoxified without altering the meaning. We propose DetoxLLM, the first comprehensive end-to-end detoxification framework, which attempts to alleviate the aforementioned limitations. We first introduce a cross-platform pseudo-parallel corpus applying multi-step data processing and generation strategies leveraging ChatGPT. We then train a suite of detoxification models with our cross-platform corpus. We show that our detoxification models outperform the SoTA model trained with human-annotated parallel corpus. We further introduce explanation to promote transparency and trustworthiness. DetoxLLM additionally offers a unique paraphrase detector especially dedicated for the detoxification task to tackle the non-detoxifiable cases. Through experimental analysis, we demonstrate the effectiveness of our cross-platform corpus and the robustness of DetoxLLM against adversarial toxicity.
%R 10.18653/v1/2024.emnlp-main.1066
%U https://aclanthology.org/2024.emnlp-main.1066/
%U https://doi.org/10.18653/v1/2024.emnlp-main.1066
%P 19112-19139
Markdown (Informal)
[DetoxLLM: A Framework for Detoxification with Explanations](https://aclanthology.org/2024.emnlp-main.1066/) (Khondaker et al., EMNLP 2024)
ACL
- Md Tawkat Islam Khondaker, Muhammad Abdul-Mageed, and Laks V. S. Lakshmanan. 2024. DetoxLLM: A Framework for Detoxification with Explanations. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 19112–19139, Miami, Florida, USA. Association for Computational Linguistics.