@inproceedings{cho-ismkim99-skku-edu-2024-pragmatic,
title = "Pragmatic inference of scalar implicature by {LLM}s",
author = "Cho, Ye-eun and
Kim, Seong mook",
editor = "Fu, Xiyan and
Fleisig, Eve",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-srw.2/",
doi = "10.18653/v1/2024.acl-srw.2",
pages = "10--20",
abstract = "This study investigates how Large Language Models (LLMs), particularly BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2019), engage in pragmatic inference of scalar implicature, such as some. Two sets of experiments were conducted using cosine similarity and next sentence/token prediction as experimental methods. The results in experiment 1 showed that, both models interpret some as pragmatic implicature not all in the absence of context, aligning with human language processing. In experiment 2, in which Question Under Discussion (QUD) was presented as a contextual cue, BERT showed consistent performance regardless of types of QUDs, while GPT-2 encountered processing difficulties since a certain type of QUD required pragmatic inference for implicature. The findings revealed that, in terms of theoretical approaches, BERT inherently incorporates pragmatic implicature not all within the term some, adhering to Default model (Levinson, 2000). In contrast, GPT-2 seems to encounter processing difficulties in inferring pragmatic implicature within context, consistent with Context-driven model (Sperber and Wilson, 2002)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cho-ismkim99-skku-edu-2024-pragmatic">
<titleInfo>
<title>Pragmatic inference of scalar implicature by LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ye-eun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seong</namePart>
<namePart type="given">mook</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiyan</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eve</namePart>
<namePart type="family">Fleisig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study investigates how Large Language Models (LLMs), particularly BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2019), engage in pragmatic inference of scalar implicature, such as some. Two sets of experiments were conducted using cosine similarity and next sentence/token prediction as experimental methods. The results in experiment 1 showed that, both models interpret some as pragmatic implicature not all in the absence of context, aligning with human language processing. In experiment 2, in which Question Under Discussion (QUD) was presented as a contextual cue, BERT showed consistent performance regardless of types of QUDs, while GPT-2 encountered processing difficulties since a certain type of QUD required pragmatic inference for implicature. The findings revealed that, in terms of theoretical approaches, BERT inherently incorporates pragmatic implicature not all within the term some, adhering to Default model (Levinson, 2000). In contrast, GPT-2 seems to encounter processing difficulties in inferring pragmatic implicature within context, consistent with Context-driven model (Sperber and Wilson, 2002).</abstract>
<identifier type="citekey">cho-ismkim99-skku-edu-2024-pragmatic</identifier>
<identifier type="doi">10.18653/v1/2024.acl-srw.2</identifier>
<location>
<url>https://aclanthology.org/2024.acl-srw.2/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>10</start>
<end>20</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pragmatic inference of scalar implicature by LLMs
%A Cho, Ye-eun
%A Kim, Seong mook
%Y Fu, Xiyan
%Y Fleisig, Eve
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F cho-ismkim99-skku-edu-2024-pragmatic
%X This study investigates how Large Language Models (LLMs), particularly BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2019), engage in pragmatic inference of scalar implicature, such as some. Two sets of experiments were conducted using cosine similarity and next sentence/token prediction as experimental methods. The results in experiment 1 showed that, both models interpret some as pragmatic implicature not all in the absence of context, aligning with human language processing. In experiment 2, in which Question Under Discussion (QUD) was presented as a contextual cue, BERT showed consistent performance regardless of types of QUDs, while GPT-2 encountered processing difficulties since a certain type of QUD required pragmatic inference for implicature. The findings revealed that, in terms of theoretical approaches, BERT inherently incorporates pragmatic implicature not all within the term some, adhering to Default model (Levinson, 2000). In contrast, GPT-2 seems to encounter processing difficulties in inferring pragmatic implicature within context, consistent with Context-driven model (Sperber and Wilson, 2002).
%R 10.18653/v1/2024.acl-srw.2
%U https://aclanthology.org/2024.acl-srw.2/
%U https://doi.org/10.18653/v1/2024.acl-srw.2
%P 10-20
Markdown (Informal)
[Pragmatic inference of scalar implicature by LLMs](https://aclanthology.org/2024.acl-srw.2/) (Cho & Kim, ACL 2024)
ACL
- Ye-eun Cho and Seong mook Kim. 2024. Pragmatic inference of scalar implicature by LLMs. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pages 10–20, Bangkok, Thailand. Association for Computational Linguistics.