@inproceedings{wada-etal-2023-unsupervised,
title = "Unsupervised Paraphrasing of Multiword Expressions",
author = "Wada, Takashi and
Matsumoto, Yuji and
Baldwin, Timothy and
Lau, Jey Han",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.290",
doi = "10.18653/v1/2023.findings-acl.290",
pages = "4732--4746",
abstract = "We propose an unsupervised approach to paraphrasing multiword expressions (MWEs) in context. Our model employs only monolingual corpus data and pre-trained language models (without fine-tuning), and does not make use of any external resources such as dictionaries. We evaluate our method on the SemEval 2022 idiomatic semantic text similarity task, and show that it outperforms all unsupervised systems and rivals supervised systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wada-etal-2023-unsupervised">
<titleInfo>
<title>Unsupervised Paraphrasing of Multiword Expressions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Takashi</namePart>
<namePart type="family">Wada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jey</namePart>
<namePart type="given">Han</namePart>
<namePart type="family">Lau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an unsupervised approach to paraphrasing multiword expressions (MWEs) in context. Our model employs only monolingual corpus data and pre-trained language models (without fine-tuning), and does not make use of any external resources such as dictionaries. We evaluate our method on the SemEval 2022 idiomatic semantic text similarity task, and show that it outperforms all unsupervised systems and rivals supervised systems.</abstract>
<identifier type="citekey">wada-etal-2023-unsupervised</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.290</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.290</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>4732</start>
<end>4746</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Paraphrasing of Multiword Expressions
%A Wada, Takashi
%A Matsumoto, Yuji
%A Baldwin, Timothy
%A Lau, Jey Han
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F wada-etal-2023-unsupervised
%X We propose an unsupervised approach to paraphrasing multiword expressions (MWEs) in context. Our model employs only monolingual corpus data and pre-trained language models (without fine-tuning), and does not make use of any external resources such as dictionaries. We evaluate our method on the SemEval 2022 idiomatic semantic text similarity task, and show that it outperforms all unsupervised systems and rivals supervised systems.
%R 10.18653/v1/2023.findings-acl.290
%U https://aclanthology.org/2023.findings-acl.290
%U https://doi.org/10.18653/v1/2023.findings-acl.290
%P 4732-4746
Markdown (Informal)
[Unsupervised Paraphrasing of Multiword Expressions](https://aclanthology.org/2023.findings-acl.290) (Wada et al., Findings 2023)
ACL
- Takashi Wada, Yuji Matsumoto, Timothy Baldwin, and Jey Han Lau. 2023. Unsupervised Paraphrasing of Multiword Expressions. In Findings of the Association for Computational Linguistics: ACL 2023, pages 4732–4746, Toronto, Canada. Association for Computational Linguistics.