@inproceedings{singh-motlicek-2022-idiap,
title = "{IDIAP} Submission@{LT}-{EDI}-{ACL}2022 : Hope Speech Detection for Equality, Diversity and Inclusion",
author = "Singh, Muskaan and
Motlicek, Petr",
editor = "Chakravarthi, Bharathi Raja and
Bharathi, B and
McCrae, John P and
Zarrouk, Manel and
Bali, Kalika and
Buitelaar, Paul",
booktitle = "Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.ltedi-1.54/",
doi = "10.18653/v1/2022.ltedi-1.54",
pages = "350--355",
abstract = "Social media platforms have been provoking masses of people. The individual comments affect a prevalent way of thinking by moving away from preoccupation with discrimination, loneliness, or influence in building confidence, support, and good qualities. This paper aims to identify hope in these social media posts. Hope significantly impacts the well-being of people, as suggested by health professionals. It reflects the belief to achieve an objective, discovers a new path, or become motivated to formulate pathways. In this paper we classify given a social media post, hope speech or not hope speech, using ensembled voting of BERT, ERNIE 2.0 and RoBERTa for English language with 0.54 macro F1-score ($2^{st}$ rank). For non-English languages Malayalam, Spanish and Tamil we utilized XLM RoBERTA with 0.50, 0.81, 0.3 macro F1 score ($1^{st}$, $1^{st}$,$3^{rd}$ rank) respectively. For Kannada, we use Multilingual BERT with 0.32 F1 score($5^{th}$)position. We release our code-base here: \url{https://github.com/Muskaan-Singh/Hate-Speech-detection.git}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-motlicek-2022-idiap">
<titleInfo>
<title>IDIAP Submission@LT-EDI-ACL2022 : Hope Speech Detection for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Muskaan</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petr</namePart>
<namePart type="family">Motlicek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Bharathi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manel</namePart>
<namePart type="family">Zarrouk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media platforms have been provoking masses of people. The individual comments affect a prevalent way of thinking by moving away from preoccupation with discrimination, loneliness, or influence in building confidence, support, and good qualities. This paper aims to identify hope in these social media posts. Hope significantly impacts the well-being of people, as suggested by health professionals. It reflects the belief to achieve an objective, discovers a new path, or become motivated to formulate pathways. In this paper we classify given a social media post, hope speech or not hope speech, using ensembled voting of BERT, ERNIE 2.0 and RoBERTa for English language with 0.54 macro F1-score (2^st rank). For non-English languages Malayalam, Spanish and Tamil we utilized XLM RoBERTA with 0.50, 0.81, 0.3 macro F1 score (1^st, 1^st,3^rd rank) respectively. For Kannada, we use Multilingual BERT with 0.32 F1 score(5^th)position. We release our code-base here: https://github.com/Muskaan-Singh/Hate-Speech-detection.git.</abstract>
<identifier type="citekey">singh-motlicek-2022-idiap</identifier>
<identifier type="doi">10.18653/v1/2022.ltedi-1.54</identifier>
<location>
<url>https://aclanthology.org/2022.ltedi-1.54/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>350</start>
<end>355</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IDIAP Submission@LT-EDI-ACL2022 : Hope Speech Detection for Equality, Diversity and Inclusion
%A Singh, Muskaan
%A Motlicek, Petr
%Y Chakravarthi, Bharathi Raja
%Y Bharathi, B.
%Y McCrae, John P.
%Y Zarrouk, Manel
%Y Bali, Kalika
%Y Buitelaar, Paul
%S Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F singh-motlicek-2022-idiap
%X Social media platforms have been provoking masses of people. The individual comments affect a prevalent way of thinking by moving away from preoccupation with discrimination, loneliness, or influence in building confidence, support, and good qualities. This paper aims to identify hope in these social media posts. Hope significantly impacts the well-being of people, as suggested by health professionals. It reflects the belief to achieve an objective, discovers a new path, or become motivated to formulate pathways. In this paper we classify given a social media post, hope speech or not hope speech, using ensembled voting of BERT, ERNIE 2.0 and RoBERTa for English language with 0.54 macro F1-score (2^st rank). For non-English languages Malayalam, Spanish and Tamil we utilized XLM RoBERTA with 0.50, 0.81, 0.3 macro F1 score (1^st, 1^st,3^rd rank) respectively. For Kannada, we use Multilingual BERT with 0.32 F1 score(5^th)position. We release our code-base here: https://github.com/Muskaan-Singh/Hate-Speech-detection.git.
%R 10.18653/v1/2022.ltedi-1.54
%U https://aclanthology.org/2022.ltedi-1.54/
%U https://doi.org/10.18653/v1/2022.ltedi-1.54
%P 350-355
Markdown (Informal)
[IDIAP Submission@LT-EDI-ACL2022 : Hope Speech Detection for Equality, Diversity and Inclusion](https://aclanthology.org/2022.ltedi-1.54/) (Singh & Motlicek, LTEDI 2022)
ACL