@inproceedings{zhou-etal-2022-claret,
title = "{C}lar{ET}: Pre-training a Correlation-Aware Context-To-Event Transformer for Event-Centric Generation and Classification",
author = "Zhou, Yucheng and
Shen, Tao and
Geng, Xiubo and
Long, Guodong and
Jiang, Daxin",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.183",
doi = "10.18653/v1/2022.acl-long.183",
pages = "2559--2575",
abstract = "Generating new events given context with correlated ones plays a crucial role in many event-centric reasoning tasks. Existing works either limit their scope to specific scenarios or overlook event-level correlations. In this paper, we propose to pre-train a general Correlation-aware context-to-Event Transformer (ClarET) for event-centric reasoning. To achieve this, we propose three novel event-centric objectives, i.e., whole event recovering, contrastive event-correlation encoding and prompt-based event locating, which highlight event-level correlations with effective training. The proposed ClarET is applicable to a wide range of event-centric reasoning scenarios, considering its versatility of (i) event-correlation types (e.g., causal, temporal, contrast), (ii) application formulations (i.e., generation and classification), and (iii) reasoning types (e.g., abductive, counterfactual and ending reasoning). Empirical fine-tuning results, as well as zero- and few-shot learning, on 9 benchmarks (5 generation and 4 classification tasks covering 4 reasoning types with diverse event correlations), verify its effectiveness and generalization ability.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-etal-2022-claret">
<titleInfo>
<title>ClarET: Pre-training a Correlation-Aware Context-To-Event Transformer for Event-Centric Generation and Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yucheng</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiubo</namePart>
<namePart type="family">Geng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guodong</namePart>
<namePart type="family">Long</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daxin</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Generating new events given context with correlated ones plays a crucial role in many event-centric reasoning tasks. Existing works either limit their scope to specific scenarios or overlook event-level correlations. In this paper, we propose to pre-train a general Correlation-aware context-to-Event Transformer (ClarET) for event-centric reasoning. To achieve this, we propose three novel event-centric objectives, i.e., whole event recovering, contrastive event-correlation encoding and prompt-based event locating, which highlight event-level correlations with effective training. The proposed ClarET is applicable to a wide range of event-centric reasoning scenarios, considering its versatility of (i) event-correlation types (e.g., causal, temporal, contrast), (ii) application formulations (i.e., generation and classification), and (iii) reasoning types (e.g., abductive, counterfactual and ending reasoning). Empirical fine-tuning results, as well as zero- and few-shot learning, on 9 benchmarks (5 generation and 4 classification tasks covering 4 reasoning types with diverse event correlations), verify its effectiveness and generalization ability.</abstract>
<identifier type="citekey">zhou-etal-2022-claret</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.183</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.183</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>2559</start>
<end>2575</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ClarET: Pre-training a Correlation-Aware Context-To-Event Transformer for Event-Centric Generation and Classification
%A Zhou, Yucheng
%A Shen, Tao
%A Geng, Xiubo
%A Long, Guodong
%A Jiang, Daxin
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F zhou-etal-2022-claret
%X Generating new events given context with correlated ones plays a crucial role in many event-centric reasoning tasks. Existing works either limit their scope to specific scenarios or overlook event-level correlations. In this paper, we propose to pre-train a general Correlation-aware context-to-Event Transformer (ClarET) for event-centric reasoning. To achieve this, we propose three novel event-centric objectives, i.e., whole event recovering, contrastive event-correlation encoding and prompt-based event locating, which highlight event-level correlations with effective training. The proposed ClarET is applicable to a wide range of event-centric reasoning scenarios, considering its versatility of (i) event-correlation types (e.g., causal, temporal, contrast), (ii) application formulations (i.e., generation and classification), and (iii) reasoning types (e.g., abductive, counterfactual and ending reasoning). Empirical fine-tuning results, as well as zero- and few-shot learning, on 9 benchmarks (5 generation and 4 classification tasks covering 4 reasoning types with diverse event correlations), verify its effectiveness and generalization ability.
%R 10.18653/v1/2022.acl-long.183
%U https://aclanthology.org/2022.acl-long.183
%U https://doi.org/10.18653/v1/2022.acl-long.183
%P 2559-2575
Markdown (Informal)
[ClarET: Pre-training a Correlation-Aware Context-To-Event Transformer for Event-Centric Generation and Classification](https://aclanthology.org/2022.acl-long.183) (Zhou et al., ACL 2022)
ACL