@inproceedings{stodden-venugopal-2021-rs,
title = "{RS}{\_}{GV} at {S}em{E}val-2021 Task 1: Sense Relative Lexical Complexity Prediction",
author = "Stodden, Regina and
Venugopal, Gayatri",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.82/",
doi = "10.18653/v1/2021.semeval-1.82",
pages = "640--649",
abstract = "We present the technical report of the system called RS{\_}GV at SemEval-2021 Task 1 on lexical complexity prediction of English words. RS{\_}GV is a neural network using hand-crafted linguistic features in combination with character and word embeddings to predict target words' complexity. For the generation of the hand-crafted features, we set the target words in relation to their senses. RS{\_}GV predicts the complexity well of biomedical terms but it has problems with the complexity prediction of very complex and very simple target words."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stodden-venugopal-2021-rs">
<titleInfo>
<title>RS_GV at SemEval-2021 Task 1: Sense Relative Lexical Complexity Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Stodden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gayatri</namePart>
<namePart type="family">Venugopal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the technical report of the system called RS_GV at SemEval-2021 Task 1 on lexical complexity prediction of English words. RS_GV is a neural network using hand-crafted linguistic features in combination with character and word embeddings to predict target words’ complexity. For the generation of the hand-crafted features, we set the target words in relation to their senses. RS_GV predicts the complexity well of biomedical terms but it has problems with the complexity prediction of very complex and very simple target words.</abstract>
<identifier type="citekey">stodden-venugopal-2021-rs</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.82</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.82/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>640</start>
<end>649</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RS_GV at SemEval-2021 Task 1: Sense Relative Lexical Complexity Prediction
%A Stodden, Regina
%A Venugopal, Gayatri
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F stodden-venugopal-2021-rs
%X We present the technical report of the system called RS_GV at SemEval-2021 Task 1 on lexical complexity prediction of English words. RS_GV is a neural network using hand-crafted linguistic features in combination with character and word embeddings to predict target words’ complexity. For the generation of the hand-crafted features, we set the target words in relation to their senses. RS_GV predicts the complexity well of biomedical terms but it has problems with the complexity prediction of very complex and very simple target words.
%R 10.18653/v1/2021.semeval-1.82
%U https://aclanthology.org/2021.semeval-1.82/
%U https://doi.org/10.18653/v1/2021.semeval-1.82
%P 640-649
Markdown (Informal)
[RS_GV at SemEval-2021 Task 1: Sense Relative Lexical Complexity Prediction](https://aclanthology.org/2021.semeval-1.82/) (Stodden & Venugopal, SemEval 2021)
ACL