@inproceedings{stajner-yenikent-2021-mbti,
title = "Why Is {MBTI} Personality Detection from Texts a Difficult Task?",
author = "Stajner, Sanja and
Yenikent, Seren",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.312",
doi = "10.18653/v1/2021.eacl-main.312",
pages = "3580--3589",
abstract = "Automatic detection of the four MBTI personality dimensions from texts has recently attracted noticeable attention from the natural language processing and computational linguistic communities. Despite the large collections of Twitter data for training, the best systems rarely even outperform the majority-class baseline. In this paper, we discuss the theoretical reasons for such low results and present the insights from an annotation study that further shed the light on this issue.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stajner-yenikent-2021-mbti">
<titleInfo>
<title>Why Is MBTI Personality Detection from Texts a Difficult Task?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sanja</namePart>
<namePart type="family">Stajner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seren</namePart>
<namePart type="family">Yenikent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic detection of the four MBTI personality dimensions from texts has recently attracted noticeable attention from the natural language processing and computational linguistic communities. Despite the large collections of Twitter data for training, the best systems rarely even outperform the majority-class baseline. In this paper, we discuss the theoretical reasons for such low results and present the insights from an annotation study that further shed the light on this issue.</abstract>
<identifier type="citekey">stajner-yenikent-2021-mbti</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.312</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.312</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>3580</start>
<end>3589</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Why Is MBTI Personality Detection from Texts a Difficult Task?
%A Stajner, Sanja
%A Yenikent, Seren
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F stajner-yenikent-2021-mbti
%X Automatic detection of the four MBTI personality dimensions from texts has recently attracted noticeable attention from the natural language processing and computational linguistic communities. Despite the large collections of Twitter data for training, the best systems rarely even outperform the majority-class baseline. In this paper, we discuss the theoretical reasons for such low results and present the insights from an annotation study that further shed the light on this issue.
%R 10.18653/v1/2021.eacl-main.312
%U https://aclanthology.org/2021.eacl-main.312
%U https://doi.org/10.18653/v1/2021.eacl-main.312
%P 3580-3589
Markdown (Informal)
[Why Is MBTI Personality Detection from Texts a Difficult Task?](https://aclanthology.org/2021.eacl-main.312) (Stajner & Yenikent, EACL 2021)
ACL