[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng Zou, Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui Zheng, Zexiong Pang, Qinzhuo Wu, Zhengyan Li, Chong Zhang, Ruotian Ma, Zichu Fei, Ruijian Cai, Jun Zhao, Xingwu Hu, Zhiheng Yan, Yiding Tan, Yuan Hu, Qiyuan Bian, Zhihua Liu, Shan Qin, Bolin Zhu, Xiaoyu Xing, Jinlan Fu, Yue Zhang, Minlong Peng, Xiaoqing Zheng, Yaqian Zhou, Zhongyu Wei, Xipeng Qiu, Xuanjing Huang


Abstract
TextFlint is a multilingual robustness evaluation toolkit for NLP tasks that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analyses. This enables practitioners to automatically evaluate their models from various aspects or to customize their evaluations as desired with just a few lines of code. TextFlint also generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model in terms of its robustness. To guarantee acceptability, all the text transformations are linguistically based and all the transformed data selected (up to 100,000 texts) scored highly under human evaluation. To validate the utility, we performed large-scale empirical evaluations (over 67,000) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. The toolkit is already available at https://github.com/textflint with all the evaluation results demonstrated at textflint.io.
Anthology ID:
2021.acl-demo.41
Volume:
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations
Month:
August
Year:
2021
Address:
Online
Editors:
Heng Ji, Jong C. Park, Rui Xia
Venues:
ACL | IJCNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
347–355
Language:
URL:
https://aclanthology.org/2021.acl-demo.41/
DOI:
10.18653/v1/2021.acl-demo.41
Bibkey:
Cite (ACL):
Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng Zou, Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui Zheng, Zexiong Pang, Qinzhuo Wu, Zhengyan Li, Chong Zhang, Ruotian Ma, Zichu Fei, Ruijian Cai, Jun Zhao, Xingwu Hu, Zhiheng Yan, Yiding Tan, Yuan Hu, Qiyuan Bian, Zhihua Liu, Shan Qin, Bolin Zhu, Xiaoyu Xing, Jinlan Fu, Yue Zhang, Minlong Peng, Xiaoqing Zheng, Yaqian Zhou, Zhongyu Wei, Xipeng Qiu, and Xuanjing Huang. 2021. TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations, pages 347–355, Online. Association for Computational Linguistics.
Cite (Informal):
TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing (Wang et al., ACL-IJCNLP 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.acl-demo.41.pdf
Video:
 https://aclanthology.org/2021.acl-demo.41.mp4
Data
MultiNLISQuAD