[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

FlauBERT: Unsupervised Language Model Pre-training for French

Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoit Crabbé, Laurent Besacier, Didier Schwab


Abstract
Language models have become a key step to achieve state-of-the art results in many different Natural Language Processing (NLP) tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient way to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their contextualization at the sentence level. This has been widely demonstrated for English using contextualized representations (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019b). In this paper, we introduce and share FlauBERT, a model learned on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We apply our French language models to diverse NLP tasks (text classification, paraphrasing, natural language inference, parsing, word sense disambiguation) and show that most of the time they outperform other pre-training approaches. Different versions of FlauBERT as well as a unified evaluation protocol for the downstream tasks, called FLUE (French Language Understanding Evaluation), are shared to the research community for further reproducible experiments in French NLP.
Anthology ID:
2020.lrec-1.302
Volume:
Proceedings of the Twelfth Language Resources and Evaluation Conference
Month:
May
Year:
2020
Address:
Marseille, France
Editors:
Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
Venue:
LREC
SIG:
Publisher:
European Language Resources Association
Note:
Pages:
2479–2490
Language:
English
URL:
https://aclanthology.org/2020.lrec-1.302
DOI:
Bibkey:
Cite (ACL):
Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoit Crabbé, Laurent Besacier, and Didier Schwab. 2020. FlauBERT: Unsupervised Language Model Pre-training for French. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 2479–2490, Marseille, France. European Language Resources Association.
Cite (Informal):
FlauBERT: Unsupervised Language Model Pre-training for French (Le et al., LREC 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.lrec-1.302.pdf
Code
 getalp/Flaubert +  additional community code
Data
FLUEGLUEPAWSPAWS-XXNLI