@inproceedings{bastianelli-etal-2020-slurp,
title = "{SLURP}: A Spoken Language Understanding Resource Package",
author = "Bastianelli, Emanuele and
Vanzo, Andrea and
Swietojanski, Pawel and
Rieser, Verena",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.588",
doi = "10.18653/v1/2020.emnlp-main.588",
pages = "7252--7262",
abstract = "Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited. In this paper, we release SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning 18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error analysis for identifying potential areas of improvement. SLURP is available at \url{https://github.com/pswietojanski/slurp}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bastianelli-etal-2020-slurp">
<titleInfo>
<title>SLURP: A Spoken Language Understanding Resource Package</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emanuele</namePart>
<namePart type="family">Bastianelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Vanzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pawel</namePart>
<namePart type="family">Swietojanski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Verena</namePart>
<namePart type="family">Rieser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited. In this paper, we release SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning 18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error analysis for identifying potential areas of improvement. SLURP is available at https://github.com/pswietojanski/slurp.</abstract>
<identifier type="citekey">bastianelli-etal-2020-slurp</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.588</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.588</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>7252</start>
<end>7262</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SLURP: A Spoken Language Understanding Resource Package
%A Bastianelli, Emanuele
%A Vanzo, Andrea
%A Swietojanski, Pawel
%A Rieser, Verena
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F bastianelli-etal-2020-slurp
%X Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited. In this paper, we release SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning 18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error analysis for identifying potential areas of improvement. SLURP is available at https://github.com/pswietojanski/slurp.
%R 10.18653/v1/2020.emnlp-main.588
%U https://aclanthology.org/2020.emnlp-main.588
%U https://doi.org/10.18653/v1/2020.emnlp-main.588
%P 7252-7262
Markdown (Informal)
[SLURP: A Spoken Language Understanding Resource Package](https://aclanthology.org/2020.emnlp-main.588) (Bastianelli et al., EMNLP 2020)
ACL
- Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojanski, and Verena Rieser. 2020. SLURP: A Spoken Language Understanding Resource Package. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7252–7262, Online. Association for Computational Linguistics.