@inproceedings{post-gildea-2008-parsers,
title = "Parsers as language models for statistical machine translation",
author = "Post, Matt and
Gildea, Daniel",
booktitle = "Proceedings of the 8th Conference of the Association for Machine Translation in the Americas: Research Papers",
month = oct # " 21-25",
year = "2008",
address = "Waikiki, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2008.amta-papers.16",
pages = "172--181",
abstract = "Most work in syntax-based machine translation has been in translation modeling, but there are many reasons why we may instead want to focus on the language model. We experiment with parsers as language models for machine translation in a simple translation model. This approach demands much more of the language models, allowing us to isolate their strengths and weaknesses. We find that unmodified parsers do not improve BLEU scores over ngram language models, and provide an analysis of their strengths and weaknesses.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="post-gildea-2008-parsers">
<titleInfo>
<title>Parsers as language models for statistical machine translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Gildea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-oct 21-25</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Conference of the Association for Machine Translation in the Americas: Research Papers</title>
</titleInfo>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">Waikiki, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most work in syntax-based machine translation has been in translation modeling, but there are many reasons why we may instead want to focus on the language model. We experiment with parsers as language models for machine translation in a simple translation model. This approach demands much more of the language models, allowing us to isolate their strengths and weaknesses. We find that unmodified parsers do not improve BLEU scores over ngram language models, and provide an analysis of their strengths and weaknesses.</abstract>
<identifier type="citekey">post-gildea-2008-parsers</identifier>
<location>
<url>https://aclanthology.org/2008.amta-papers.16</url>
</location>
<part>
<date>2008-oct 21-25</date>
<extent unit="page">
<start>172</start>
<end>181</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Parsers as language models for statistical machine translation
%A Post, Matt
%A Gildea, Daniel
%S Proceedings of the 8th Conference of the Association for Machine Translation in the Americas: Research Papers
%D 2008
%8 oct 21 25
%I Association for Machine Translation in the Americas
%C Waikiki, USA
%F post-gildea-2008-parsers
%X Most work in syntax-based machine translation has been in translation modeling, but there are many reasons why we may instead want to focus on the language model. We experiment with parsers as language models for machine translation in a simple translation model. This approach demands much more of the language models, allowing us to isolate their strengths and weaknesses. We find that unmodified parsers do not improve BLEU scores over ngram language models, and provide an analysis of their strengths and weaknesses.
%U https://aclanthology.org/2008.amta-papers.16
%P 172-181
Markdown (Informal)
[Parsers as language models for statistical machine translation](https://aclanthology.org/2008.amta-papers.16) (Post & Gildea, AMTA 2008)
ACL