Although Large Language Models (LLMs) are becoming increasingly powerful, they still exhibit significant but subtle weaknesses, such as mistakes in instruction-following or coding tasks.As these unexpected errors could lead to severe consequences in practical deployments, it is crucial to investigate the limitations within LLMs systematically.Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies, while manual inspections are costly and not scalable. In this paper, we introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks. Inspired by the educational assessment process that measures students’ learning outcomes, AutoDetect consists of three LLM-powered agents: Examiner, Questioner, and Assessor.The collaboration among these three agents is designed to realize comprehensive and in-depth weakness identification. Our framework demonstrates significant success in uncovering flaws, with an identification success rate exceeding 30% in prominent models such as ChatGPT and Claude.More importantly, these identified weaknesses can guide specific model improvements, proving more effective than untargeted data augmentation methods like Self-Instruct. Our approach has led to substantial enhancements in popular LLMs, including the Llama series and Mistral-7b, boosting their performance by over 10% across several benchmarks.Code and data are publicly available at https://github.com/thu-coai/AutoDetect.
Large language models (LLMs) have shown impressive success in various applications. However, these models are often not well aligned with human intents, which calls for additional treatments on them; that is, the alignment problem. To make LLMs better follow user instructions, existing alignment methods primarily focus on further training them. However, the extra training of LLMs is usually expensive in terms of GPU computing; even worse, some LLMs are not accessible for user-demanded training, such as GPTs. In this work, we take a different perspective—Black-Box Prompt Optimization (BPO)—to perform alignments. The idea is to optimize user prompts to suit LLMs’ input understanding, so as to best realize users’ intents without updating LLMs’ parameters. BPO leverages human preferences to optimize prompts, thus making it superior to LLM (e.g., ChatGPT) as a prompt engineer. Moreover, BPO is model-agnostic, and the empirical results demonstrate that the BPO-aligned ChatGPT yields a 22% increase in the win rate against its original version and 10% for GPT-4. Notably, the BPO-aligned LLMs can outperform the same models aligned by PPO and DPO, and it also brings additional performance gains when combining BPO with PPO or DPO. Code and datasets are released at https://github.com/thu-coai/BPO.
Alignment has become a critical step for instruction-tuned Large Language Models (LLMs) to become helpful assistants. However, effective evaluation of alignment for emerging Chinese LLMs is still significantly lacking, calling for real-scenario grounded, open-ended, challenging and automatic evaluations tailored for alignment. To fill in this gap, we introduce AlignBench, a comprehensive multi-dimensional benchmark for evaluating LLMs’ alignment in Chinese. We tailor a human-in-the-loop data curation pipeline, containing 8 main categories, 683 real-scenario rooted queries and corresponding human verified references.To ensure references’ correctness, each knowledge-intensive query is accompanied with evidences collected from reliable webpages (including the url and quotation) by our annotators.For automatic evaluation, our benchmark employs a rule-calibrated multi-dimensional LLM-as-Judge (CITATION) with Chain-of-Thought to generate explanations and final ratings as evaluations, ensuring high reliability and interpretability.All evaluation codes and data are publicly available at https://github.com/THUDM/AlignBench
Since the natural language processing (NLP) community started to make large language models (LLMs) act as a critic to evaluate the quality of generated texts, most of the existing works train a critique generation model on the evaluation data labeled by GPT-4’s direct prompting. We observe that these models lack the ability to generate informative critiques in both pointwise grading and pairwise comparison especially without references. As a result, their generated critiques cannot provide fine-grained distinguishability on generated texts, causing unsatisfactory evaluation performance. In this paper, we propose a simple yet effective method called Eval-Instruct, which can first acquire pointwise grading critiques with pseudo references and then revise these critiques via multi-path prompting to obtain informative evaluation data in different tasks and settings, including pointwise grading and pairwise comparison with / without references. After fine-tuning on these data, the resulting model CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines and even achieve comparable evaluation performance to GPT-4 in system-level correlations of pointwise grading. We also demonstrate that our generated critiques can act as scalable feedback to further improve the generation quality of strong LLMs like ChatGPT.
Due to the lack of human resources for mental health support, there is an increasing demand for employing conversational agents for support. Recent work has demonstrated the effectiveness of dialogue models in providing emotional support. As previous studies have demonstrated that seekers’ persona is an important factor for effective support, we investigate whether there are benefits to modeling such information in dialogue models for support. In this paper, our empirical analysis verifies that persona has an important impact on emotional support. Therefore, we propose a framework for dynamically inferring and modeling seekers’ persona. We first train a model for inferring the seeker’s persona from the conversation history. Accordingly, we propose PAL, a model that leverages persona information and, in conjunction with our strategy-based controllable generation method, provides personalized emotional support. Automatic and manual evaluations demonstrate that PAL achieves state-of-the-art results, outperforming the baselines on the studied benchmark. Our code and data are publicly available at https://github.com/chengjl19/PAL.
Safety detection has been an increasingly important topic in recent years and it has become even more necessary to develop reliable safety detection systems with the rapid development of large language models. However, currently available safety detection systems have limitations in terms of their versatility and interpretability. In this paper, we first introduce InstructSafety, a safety detection framework that unifies 7 common sub-tasks for safety detection. These tasks are unified into a similar form through different instructions. We then conduct a comprehensive survey of existing safety detection datasets and process 39 human-annotated datasets for instruction tuning. We also construct adversarial samples to enhance the model’s robustness. After fine-tuning Flan-T5 on the collected data, we have developed Safety-Flan-T5, a multidimensional and explainable safety detector. We conduct comprehensive experiments on a variety of datasets and tasks, and demonstrate the strong performance of Safety-Flan-T5 in comparison to supervised baselines and served APIs (Perspective API, ChatGPT and InstructGPT). We will release the processed data, fine-tuned Safety-Flan-T5 and related code for public use.
Dialogue safety problems severely limit the real-world deployment of neural conversational models and have attracted great research interests recently. However, dialogue safety problems remain under-defined and the corresponding dataset is scarce. We propose a taxonomy for dialogue safety specifically designed to capture unsafe behaviors in human-bot dialogue settings, with focuses on context-sensitive unsafety, which is under-explored in prior works. To spur research in this direction, we compile DiaSafety, a dataset with rich context-sensitive unsafe examples. Experiments show that existing safety guarding tools fail severely on our dataset. As a remedy, we train a dialogue safety classifier to provide a strong baseline for context-sensitive dialogue unsafety detection. With our classifier, we perform safety evaluations on popular conversational models and show that existing dialogue systems still exhibit concerning context-sensitive safety problems.
Large pretrained language models can easily produce toxic or biased content, which is prohibitive for practical use. In order to detect such toxic generations, existing methods rely on templates, real-world data extraction, crowdsourcing workers or automatic generation to construct adversarial contexts that are likely to induce toxic generations. However, what type of context is more likely to induce unsafe responses is still under-explored. In this paper, we identify that context toxicity and context category (e.g., profanity, insult, drugs, etc.) are two important factors to cause safety issues in response generation. Hence, we propose a method called reverse generation to construct adversarial contexts conditioned on a given response, with the flexibility to control category, toxicity level and inductivity of the generated contexts. Via reverse generation, we augment the existing BAD dataset and construct a new dataset BAD+ which contains more than 120K diverse and highly inductive contexts in 12 categories. We test three popular pretrained dialogue models (Blender, DialoGPT and Plato2) and find that BAD+ can largely expose their safety problems. Furthermore, we show that BAD+ can greatly enhance the safety of generation, and we reveal the key factors of safety improvement. Our code and dataset is available at https://github.com/thu-coai/Reverse_Generation.