[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Di Wu


2024

pdf bib
Neuron Specialization: Leveraging Intrinsic Task Modularity for Multilingual Machine Translation
Shaomu Tan | Di Wu | Christof Monz
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Training a unified multilingual model promotes knowledge transfer but inevitably introduces negative interference. Language-specific modeling methods show promise in reducing interference. However, they often rely on heuristics to distribute capacity and struggle to foster cross-lingual transfer via isolated modules. In this paper, we explore intrinsic task modularity within multilingual networks and leverage these observations to circumvent interference under multilingual translation. We show that neurons in the feed-forward layers tend to be activated in a language-specific manner. Meanwhile, these specialized neurons exhibit structural overlaps that reflect language proximity, which progress across layers. Based on these findings, we propose Neuron Specialization, an approach that identifies specialized neurons to modularize feed-forward layers and then continuously updates them through sparse networks. Extensive experiments show that our approach achieves consistent performance gains over strong baselines with additional analyses demonstrating reduced interference and increased knowledge transfer.

pdf bib
The Factuality Tax of Diversity-Intervened Text-to-Image Generation: Benchmark and Fact-Augmented Intervention
Yixin Wan | Di Wu | Haoran Wang | Kai-Wei Chang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Prompt-based “diversity interventions” are commonly adopted to improve the diversity of Text-to-Image (T2I) models depicting individuals with various racial or gender traits. However, will this strategy result in nonfactual demographic distribution, especially when generating real historical figures? In this work, we propose **DemOgraphic FActualIty Representation (DoFaiR)**, a benchmark to systematically quantify the trade-off between using diversity interventions and preserving demographic factuality in T2I models. DoFaiR consists of 756 meticulously fact-checked test instances to reveal the factuality tax of various diversity prompts through an automated evidence-supported evaluation pipeline. Experiments on DoFaiR unveil that diversity-oriented instructions increase the number of different gender and racial groups in DALLE-3’s generations at the cost of historically inaccurate demographic distributions. To resolve this issue, we propose **Fact-Augmented Intervention** (FAI), which instructs a Large Language Model (LLM) to reflect on verbalized or retrieved factual information about gender and racial compositions of generation subjects in history, and incorporate it into the generation context of T2I models. By orienting model generations using the reflected historical truths, FAI significantly improves the demographic factuality under diversity interventions while preserving diversity.

pdf bib
Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation
Di Wu | Jia-Chen Gu | Fan Yin | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Retrieval-augmented language models (RALMs) have shown strong performance and wide applicability in knowledge-intensive tasks. However, there are significant trustworthiness concerns as RALMs are prone to generating unfaithful outputs, including baseless information or contradictions with the retrieved context. This paper proposes SynCheck, a lightweight monitor that leverages fine-grained decoding dynamics including sequence likelihood, uncertainty quantification, context influence, and semantic alignment to synchronously detect unfaithful sentences. By integrating efficiently measurable and complementary signals, SynCheck enables accurate and immediate feedback and intervention. Experiments show that SynCheck significantly outperforms existing faithfulness detection baselines, achieving over 0.85 AUROC across a suite of six long-form retrieval-augmented generation tasks. Leveraging SynCheck, we further introduce FOD, a faithfulness-oriented decoding algorithm guided by beam search for long-form retrieval-augmented generation. Empirical results demonstrate that FOD outperforms traditional strategies such as abstention, reranking, or contrastive decoding significantly in terms of faithfulness, achieving over 10% improvement across six datasets.

pdf bib
KMatrix: A Flexible Heterogeneous Knowledge Enhancement Toolkit for Large Language Model
Shun Wu | Di Wu | Kun Luo | XueYou Zhang | Jun Zhao | Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Knowledge-Enhanced Large Language Models (K-LLMs) system enhances Large Language Models (LLMs) abilities using external knowledge. Existing K-LLMs toolkits mainly focus on free-textual knowledge, lacking support for heterogeneous knowledge like tables and knowledge graphs, and fall short in comprehensive datasets, models, and user-friendly experience. To address this gap, we introduce KMatrix: a flexible heterogeneous knowledge enhancement toolkit for LLMs including verbalizing-retrieval and parsing-query methods. Our modularity and control-logic flow diagram design flexibly supports the entire lifecycle of various complex K-LLMs systems, including training, evaluation, and deployment. To assist K-LLMs system research, a series of related knowledge, datasets, and models are integrated into our toolkit, along with performance analyses of K-LLMs systems enhanced by different types of knowledge. Using our toolkit, developers can rapidly build, evaluate, and deploy their own K-LLMs systems.

pdf bib
KPEval: Towards Fine-Grained Semantic-Based Keyphrase Evaluation
Di Wu | Da Yin | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL 2024

Despite the significant advancements in keyphrase extraction and keyphrase generation methods, the predominant approach for evaluation mainly relies on exact matching with human references. This scheme fails to recognize systems that generate keyphrases semantically equivalent to the references or diverse keyphrases that carry practical utility. To better assess the capability of keyphrase systems, we propose KPEval, a comprehensive evaluation framework consisting of four critical aspects: reference agreement, faithfulness, diversity, and utility. For each aspect, we design semantic-based metrics to reflect the evaluation objectives. Meta-evaluation studies demonstrate that our evaluation strategy correlates better with human preferences compared to a range of previously proposed metrics. Using KPEval, we re-evaluate 23 keyphrase systems and discover that (1) established model comparison results have blind-spots especially when considering reference-free evaluation; (2) large language models are underestimated by prior evaluation works; and (3) there is no single best model that can excel in all the aspects.

pdf bib
How Far can 100 Samples Go? Unlocking Zero-Shot Translation with Tiny Multi-Parallel Data
Di Wu | Shaomu Tan | Yan Meng | David Stap | Christof Monz
Findings of the Association for Computational Linguistics: ACL 2024

Zero-shot translation aims to translate between language pairs not seen during training in Multilingual Machine Translation (MMT) and is widely considered an open problem. A common, albeit resource-consuming, solution is to add as many related translation directions as possible to the training corpus. In this paper, we show that for an English-centric model, surprisingly large zero-shot improvements can be achieved by simply fine-tuning with a very small amount of multi-parallel data. For example, on the EC30 dataset, we obtain up to +21.7 ChrF++ non-English overall improvements (870 directions) by using only 100 multi-parallel samples while preserving English-centric translation quality. This performance exceeds M2M100 by an average of 5.9 ChrF++ in the involved non-English directions. When investigating the size effect of fine-tuning data on translation quality, we found that already a small, randomly sampled set of fine-tuning directions is sufficient to achieve comparable improvements. The resulting non-English performance is close to the complete translation upper bound. Even in a minimal setting—fine-tuning with only one single sample—the well-known off-target issue is almost completely resolved, explaining parts—but not all—of the observed improvements in translation quality.

pdf bib
MetaKP: On-Demand Keyphrase Generation
Di Wu | Xiaoxian Shen | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2024

Traditional keyphrase prediction methods predict a single set of keyphrases per document, failing to cater to the diverse needs of users and downstream applications. To bridge the gap, we introduce on-demand keyphrase generation, a novel paradigm that requires keyphrases that conform to specific high-level goals or intents. For this task, we present MetaKP, a large-scale benchmark comprising four datasets, 7500 documents, and 3760 goals across news and biomedical domains with human-annotated keyphrases. Leveraging MetaKP, we design both supervised and unsupervised methods, including a multi-task fine-tuning approach and a self-consistency prompting method with large language models. The results highlight the challenges of supervised fine-tuning, whose performance is not robust to distribution shifts. By contrast, the proposed self-consistency prompting approach greatly improves the performance of large language models, enabling GPT-4o to achieve 0.548 SemF1, surpassing the performance of a fully fine-tuned BART-base model. Finally, we demonstrate the potential of our method to serve as a general NLP infrastructure, exemplified by its application in epidemic event detection from social media.

pdf bib
Representational Isomorphism and Alignment of Multilingual Large Language Models
Di Wu | Yibin Lei | Andrew Yates | Christof Monz
Findings of the Association for Computational Linguistics: EMNLP 2024

In this paper, we investigate the capability of Large Language Models (LLMs) to represent texts in multilingual contexts. Our findings show that sentence representations derived from LLMs exhibit a high degree of isomorphism across languages.This existing isomorphism can facilitate representational alignments in zero-shot and few-shot settings.Specifically, by applying a contrastive objective at the representation level with only a small number of translation pairs (e.g., 100), we substantially improve models’ performance on Semantic Textual Similarity (STS) tasks across languages. This representation-level approach proves to be more efficient and effective for semantic alignment than continued pretraining or instruction tuning. Interestingly, we also observe substantial STS improvements within individual languages, even without a monolingual objective specifically designed for this purpose.

pdf bib
Flow Matching for Conditional Text Generation in a Few Sampling Steps
Vincent Hu | Di Wu | Yuki Asano | Pascal Mettes | Basura Fernando | Björn Ommer | Cees Snoek
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

Diffusion models are a promising tool for high-quality text generation. However, current models face multiple drawbacks including slow sampling, noise schedule sensitivity, and misalignment between the training and sampling stages. In this paper, we introduce FlowSeq, which bypasses all current drawbacks by leveraging flow matching for conditional text generation. FlowSeq can generate text in a few steps by training with a novel anchor loss, alleviating the need for expensive hyperparameter optimization of the noise schedule prevalent in diffusion models. We extensively evaluate our proposed method and show competitive performance in tasks such as question generation, open-domain dialogue, and paraphrasing tasks.

pdf bib
UvA-MT’s Participation in the WMT24 General Translation Shared Task
Shaomu Tan | David Stap | Seth Aycock | Christof Monz | Di Wu
Proceedings of the Ninth Conference on Machine Translation

Fine-tuning Large Language Models (FT-LLMs) with parallel data has emerged as a promising paradigm in recent machine translation research. In this paper, we explore the effectiveness of FT-LLMs and compare them to traditional encoder-decoder Neural Machine Translation (NMT) systems under the WMT24 general MT shared task for English to Chinese direction. We implement several techniques, including Quality Estimation (QE) data filtering, supervised fine-tuning, and post-editing that integrate NMT systems with LLMs. We demonstrate that fine-tuning LLaMA2 on a high-quality but relatively small bitext dataset (100K) yields COMET results comparable to much smaller encoder-decoder NMT systems trained on over 22 million bitexts. However, this approach largely underperforms on surface-level metrics like BLEU and ChrF. We further control the data quality using the COMET-based quality estimation method. Our experiments show that 1) filtering low COMET scores largely improves encoder-decoder systems, but 2) no clear gains are observed for LLMs when further refining the fine-tuning set. Finally, we show that combining NMT systems with LLMs via post-editing generally yields the best performance for the WMT24 official test set.

pdf bib
Representational Isomorphism and Alignment of Multilingual Large Language Models
Di Wu | Yibin Lei | Andrew Yates | Christof Monz
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)

In this extended abstract, we investigate the capability of Large Language Models (LLMs) to represent texts in multilingual contexts. Our findings reveal that sentence representations derived from LLMs exhibit a high degree of isomorphism across languages. This existing isomorphism facilitates representational alignments in few-shot settings. Specifically, by applying a contrastive objective at the representation level with only a small number (e.g., 100) of translation pairs, we significantly improve models’ performance on Semantic Textual Similarity (STS) tasks across languages.

pdf bib
Meta-Task Prompting Elicits Embeddings from Large Language Models
Yibin Lei | Di Wu | Tianyi Zhou | Tao Shen | Yu Cao | Chongyang Tao | Andrew Yates
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation (MetaEOL), for generating high-quality sentence embeddings from Large Language Models (LLMs) without the need for model fine-tuning. Leveraging meta-task prompting, MetaEOL guides LLMs to produce embeddings through a series of carefully designed prompts that address multiple representational aspects. Our comprehensive experiments demonstrate that embeddings averaged from various meta-tasks are versatile embeddings that yield competitive performance on Semantic Textual Similarity (STS) benchmarks and excel in downstream tasks, surpassing contrastive-trained models. Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.

pdf bib
On Leveraging Encoder-only Pre-trained Language Models for Effective Keyphrase Generation
Di Wu | Wasi Ahmad | Kai-Wei Chang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This study addresses the application of encoder-only Pre-trained Language Models (PLMs) in keyphrase generation (KPG) amidst the broader availability of domain-tailored encoder-only models compared to encoder-decoder models. We investigate three core inquiries: (1) the efficacy of encoder-only PLMs in KPG, (2) optimal architectural decisions for employing encoder-only PLMs in KPG, and (3) a performance comparison between in-domain encoder-only and encoder-decoder PLMs across varied resource settings. Our findings, derived from extensive experimentation in two domains reveal that with encoder-only PLMs, although keyphrase extraction with Conditional Random Fields slightly excels in identifying present keyphrases, the KPG formulation renders a broader spectrum of keyphrase predictions. Additionally, prefix-LM fine-tuning of encoder-only PLMs emerges as a strong and data-efficient strategy for KPG, outperforming general-domain seq2seq PLMs. We also identify a favorable parameter allocation towards model depth rather than width when employing encoder-decoder architectures initialized with encoder-only PLMs. The study sheds light on the potential of utilizing encoder-only PLMs for advancing KPG systems and provides a groundwork for future KPG methods. Our code and pre-trained checkpoints are released at https://github.com/uclanlp/DeepKPG.

2023

pdf bib
Active Instruction Tuning: Improving Cross-Task Generalization by Training on Prompt Sensitive Tasks
Po-Nien Kung | Fan Yin | Di Wu | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions. However, how to select new tasks to improve the performance and generalizability of IT models remains an open question. Training on all existing tasks is impractical due to prohibiting computation requirements, and randomly selecting tasks can lead to suboptimal performance. In this work, we propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks. We represent the informativeness of new tasks with the disagreement of the current model outputs over perturbed prompts. Our experiments on NIV2 and Self-Instruct datasets demonstrate that our method consistently outperforms other baseline strategies for task selection, achieving better out-of-distribution generalization with fewer training tasks. Additionally, we introduce a task map that categorizes and diagnoses tasks based on prompt uncertainty and prediction probability. We discover that training on ambiguous (prompt-uncertain) tasks improves generalization while training on difficult (prompt-certain and low-probability) tasks offers no benefit, underscoring the importance of task selection for instruction tuning.

pdf bib
Empathy Intent Drives Empathy Detection
Liting Jiang | Di Wu | Bohui Mao | Yanbing Li | Wushour Slamu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Empathy plays an important role in the human dialogue. Detecting the empathetic direction expressed by the user is necessary for empathetic dialogue systems because it is highly relevant to understanding the user’s needs. Several studies have shown that empathy intent information improves the ability to response capacity of empathetic dialogue. However, the interaction between empathy detection and empathy intent recognition has not been explored. To this end, we invite 3 experts to manually annotate the healthy empathy detection datasets IEMPATHIZE and TwittEmp with 8 empathy intent labels, and perform joint training for the two tasks. Empirical study has shown that the introduction of empathy intent recognition task can improve the accuracy of empathy detection task, and we analyze possible reasons for this improvement. To make joint training of the two tasks more challenging, we propose a novel framework, Cascaded Label Signal Network, which uses the cascaded interactive attention module and the label signal enhancement module to capture feature exchange information between empathy and empathy intent representations. Experimental results show that our framework outperforms all baselines under both settings on the two datasets.

pdf bib
Rethinking Model Selection and Decoding for Keyphrase Generation with Pre-trained Sequence-to-Sequence Models
Di Wu | Wasi Ahmad | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Keyphrase Generation (KPG) is a longstanding task in NLP with widespread applications. The advent of sequence-to-sequence (seq2seq) pre-trained language models (PLMs) has ushered in a transformative era for KPG, yielding promising performance improvements. However, many design decisions remain unexplored and are often made arbitrarily. This paper undertakes a systematic analysis of the influence of model selection and decoding strategies on PLM-based KPG. We begin by elucidating why seq2seq PLMs are apt for KPG, anchored by an attention-driven hypothesis. We then establish that conventional wisdom for selecting seq2seq PLMs lacks depth: (1) merely increasing model size or performing task-specific adaptation is not parameter-efficient; (2) although combining in-domain pre-training with task adaptation benefits KPG, it does partially hinder generalization. Regarding decoding, we demonstrate that while greedy search achieves strong F1 scores, it lags in recall compared with sampling-based methods. Based on these insights, we propose DeSel, a likelihood-based decode-select algorithm for seq2seq PLMs. DeSel improves greedy search by an average of 4.7% semantic F1 across five datasets. Our collective findings pave the way for deeper future investigations into PLM-based KPG.

pdf bib
Beyond Shared Vocabulary: Increasing Representational Word Similarities across Languages for Multilingual Machine Translation
Di Wu | Christof Monz
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Using a shared vocabulary is common practice in Multilingual Neural Machine Translation (MNMT). In addition to its simple design, shared tokens play an important role in positive knowledge transfer, which manifests naturally when the shared tokens refer to similar meanings across languages. However, when words overlap is small, e.g., using different writing systems, transfer is inhibited. In this paper, we propose a re-parameterized method for building embeddings to alleviate this problem. More specifically, we define word-level information transfer pathways via word equivalence classes and rely on graph networks to fuse word embeddings across languages. Our experiments demonstrate the advantages of our approach: 1) the semantics of embeddings are better aligned across languages, 2) our method achieves evident BLEU improvements on high- and low-resource MNMT, and 3) only less than 1.0% additional trainable parameters are required with a limited increase in computational costs, while the inference time is identical to baselines.

pdf bib
UvA-MT’s Participation in the WMT 2023 General Translation Shared Task
Di Wu | Shaomu Tan | David Stap | Ali Araabi | Christof Monz
Proceedings of the Eighth Conference on Machine Translation

This paper describes the UvA-MT’s submission to the WMT 2023 shared task on general machine translation. We participate in the constrained track in two directions: English Hebrew. In this competition, we show that by using one model to handle bidirectional tasks, as a minimal setting of Multilingual Machine Translation (MMT), it is possible to achieve comparable results with that of traditional bilingual translation for both directions. By including effective strategies, like back-translation, re-parameterized embedding table, and task-oriented fine-tuning, we obtained competitive final results in the automatic evaluation for both English Hebrew and Hebrew English directions.

2022

pdf bib
Challenges to Open-Domain Constituency Parsing
Sen Yang | Leyang Cui | Ruoxi Ning | Di Wu | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2022

Neural constituency parsers have reached practical performance on news-domain benchmarks. However, their generalization ability to other domains remains weak. Existing findings on cross-domain constituency parsing are only made on a limited number of domains. Tracking this, we manually annotate a high-quality constituency treebank containing five domains. We analyze challenges to open-domain constituency parsing using a set of linguistic features on various strong constituency parsers. Primarily, we find that 1) BERT significantly increases parsers’ cross-domain performance by reducing their sensitivity on the domain-variant features.2) Compared with single metrics such as unigram distribution and OOV rate, challenges to open-domain constituency parsing arise from complex features, including cross-domain lexical and constituent structure variations.

pdf bib
Representation Learning for Resource-Constrained Keyphrase Generation
Di Wu | Wasi Ahmad | Sunipa Dev | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2022

State-of-the-art keyphrase generation methods generally depend on large annotated datasets, limiting their performance in domains with limited annotated data. To overcome this challenge, we design a data-oriented approach that first identifies salient information using retrieval-based corpus-level statistics, and then learns a task-specific intermediate representation based on a pre-trained language model using large-scale unlabeled documents. We introduce salient span recovery and salient span prediction as denoising training objectives that condense the intra-article and inter-article knowledge essential for keyphrase generation. Through experiments on multiple keyphrase generation benchmarks, we show the effectiveness of the proposed approach for facilitating low-resource keyphrase generation and zero-shot domain adaptation. Our method especially benefits the generation of absent keyphrases, approaching the performance of models trained with large training sets.

pdf bib
MirrorAlign: A Super Lightweight Unsupervised Word Alignment Model via Cross-Lingual Contrastive Learning
Di Wu | Liang Ding | Shuo Yang | Mingyang Li
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

Word alignment is essential for the downstream cross-lingual language understanding and generation tasks. Recently, the performance of the neural word alignment models has exceeded that of statistical models. However, they heavily rely on sophisticated translation models. In this study, we propose a super lightweight unsupervised word alignment model named MirrorAlign, in which bidirectional symmetric attention trained with a contrastive learning objective is introduced, and an agreement loss is employed to bind the attention maps, such that the alignments follow mirror-like symmetry hypothesis. Experimental results on several public benchmarks demonstrate that our model achieves competitive, if not better, performance compared to the state of the art in word alignment while significantly reducing the training and decoding time on average. Further ablation analysis and case studies show the superiority of our proposed MirrorAlign. Notably, we recognize our model as a pioneer attempt to unify bilingual word embedding and word alignments. Encouragingly, our approach achieves 16.4X speedup against GIZA++, and 50X parameter compression compared with the Transformer-based alignment methods. We release our code to facilitate the community: https://github.com/moore3930/MirrorAlign.

2021

pdf bib
Improving Neural Machine Translation by Bidirectional Training
Liang Ding | Di Wu | Dacheng Tao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We present a simple and effective pretraining strategy – bidirectional training (BiT) for neural machine translation. Specifically, we bidirectionally update the model parameters at the early stage and then tune the model normally. To achieve bidirectional updating, we simply reconstruct the training samples from “srctgt” to “src+tgttgt+src” without any complicated model modifications. Notably, our approach does not increase any parameters or training steps, requiring the parallel data merely. Experimental results show that BiT pushes the SOTA neural machine translation performance across 15 translation tasks on 8 language pairs (data sizes range from 160K to 38M) significantly higher. Encouragingly, our proposed model can complement existing data manipulation strategies, i.e. back translation, data distillation, and data diversification. Extensive analyses show that our approach functions as a novel bilingual code-switcher, obtaining better bilingual alignment.

2020

pdf bib
Context-Aware Cross-Attention for Non-Autoregressive Translation
Liang Ding | Longyue Wang | Di Wu | Dacheng Tao | Zhaopeng Tu
Proceedings of the 28th International Conference on Computational Linguistics

Non-autoregressive translation (NAT) significantly accelerates the inference process by predicting the entire target sequence. However, due to the lack of target dependency modelling in the decoder, the conditional generation process heavily depends on the cross-attention. In this paper, we reveal a localness perception problem in NAT cross-attention, for which it is difficult to adequately capture source context. To alleviate this problem, we propose to enhance signals of neighbour source tokens into conventional cross-attention. Experimental results on several representative datasets show that our approach can consistently improve translation quality over strong NAT baselines. Extensive analyses demonstrate that the enhanced cross-attention achieves better exploitation of source contexts by leveraging both local and global information.

pdf bib
SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling
Di Wu | Liang Ding | Fan Lu | Jian Xie
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Slot filling and intent detection are two main tasks in spoken language understanding (SLU) system. In this paper, we propose a novel non-autoregressive model named SlotRefine for joint intent detection and slot filling. Besides, we design a novel two-pass iteration mechanism to handle the uncoordinated slots problem caused by conditional independence of non-autoregressive model. Experiments demonstrate that our model significantly outperforms previous models in slot filling task, while considerably speeding up the decoding (up to x10.77). In-depth analysis show that 1) pretraining schemes could further enhance our model; 2) two-pass mechanism indeed remedy the uncoordinated slots.

2018

pdf bib
WECA: A WordNet-Encoded Collocation-Attention Network for Homographic Pun Recognition
Yufeng Diao | Hongfei Lin | Di Wu | Liang Yang | Kan Xu | Zhihao Yang | Jian Wang | Shaowu Zhang | Bo Xu | Dongyu Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Homographic puns have a long history in human writing, widely used in written and spoken literature, which usually occur in a certain syntactic or stylistic structure. How to recognize homographic puns is an important research. However, homographic pun recognition does not solve very well in existing work. In this work, we first use WordNet to understand and expand word embedding for settling the polysemy of homographic puns, and then propose a WordNet-Encoded Collocation-Attention network model (WECA) which combined with the context weights for recognizing the puns. Our experiments on the SemEval2017 Task7 and Pun of the Day demonstrate that the proposed model is able to distinguish between homographic pun and non-homographic pun texts. We show the effectiveness of the model to present the capability of choosing qualitatively informative words. The results show that our model achieves the state-of-the-art performance on homographic puns recognition.