Recent research has increasingly focused on evaluating large language models’ (LLMs) alignment with diverse human values and preferences, particularly for open-ended tasks like story generation. Traditional evaluation metrics rely heavily on lexical similarity with human-written references, often showing poor correlation with human judgments and failing to account for alignment with the diversity of human preferences. To address these challenges, we introduce PerSE, an interpretable evaluation framework designed to assess alignment with specific human preferences. It is tuned to infer specific preferences from an in-context personal profile and evaluate the alignment between the generated content and personal preferences. PerSE enhances interpretability by providing detailed comments and fine-grained scoring, facilitating more personalized content generation. Our 13B LLaMA-2-based PerSE shows a 15.8% increase in Kendall correlation and a 13.7% rise in accuracy with zero-shot reviewers compared to GPT-4. It also outperforms GPT-4 by 46.01% in Kendall correlation on new domains, indicating its transferability
Travel planning is a challenging and time-consuming task that aims to find an itinerary which satisfies multiple, interdependent constraints regarding flights, accommodations, attractions, and other travel arrangements. In this paper, we propose To the Globe (TTG), a real-time demo system that takes natural language requests from users, translates it to symbolic form via a fine-tuned Large Language Model, and produces optimal travel itineraries with Mixed Integer Linear Programming solvers. The overall system takes ~5seconds to reply to the user request with guaranteed itineraries. To train TTG, we develop a synthetic data pipeline that generates userrequests, flight and hotel information in symbolic form without human annotations, based on the statistics of real-world datasets, and fine-tune an LLM to translate NL user requests to their symbolic form, which is sent to the symbolic solver to compute optimal itineraries. Our NL-symbolic translation achieves ~91% exact match in a backtranslation metric (i.e., whether the estimated symbolic form of generated natural language matches the groundtruth), and its returned itineraries have a ratio of 0.979 compared to the optimal cost of the ground truth user request. When evaluated by users, TTG achieves consistently high Net Promoter Scores (NPS) of 35-40% on generated itinerary.
We propose the Detailed Outline Control (DOC) framework for improving long-range plot coherence when automatically generating several-thousand-word-long stories. DOC consists of two complementary components: a detailed outliner and a detailed controller. The detailed outliner creates a more detailed, hierarchically structured outline, shifting creative burden from the main drafting procedure to the planning stage. The detailed controller ensures the more detailed outline is still respected during generation by controlling story passages to align with outline details. In human evaluations of automatically generated stories, DOC substantially outperforms a strong Re3 baseline (Yang et al., 2022) on plot coherence (22.5% absolute gain), outline relevance (28.2%), and interestingness (20.7%). Humans also judged DOC to be much more controllable in an interactive generation setting.
We consider the problem of automatically generating longer stories of over two thousand words. Compared to prior work on shorter stories, long-range plot coherence and relevance are more central challenges here. We propose the Recursive Reprompting and Revision framework (Re3) to address these challenges by (a) prompting a general-purpose language model to construct a structured overarching plan, and (b) generating story passages by repeatedly injecting contextual information from both the plan and current story state into a language model prompt. We then revise by (c) reranking different continuations for plot coherence and premise relevance, and finally (d) editing the best continuation for factual consistency. Compared to similar-length stories generated directly from the same base model, human evaluators judged substantially more of Re3’s stories as having a coherent overarching plot (by 14% absolute increase), and relevant to the given initial premise (by 20%).
In this work, we propose a goal-driven collaborative task that combines language, perception, and action. Specifically, we develop a Collaborative image-Drawing game between two agents, called CoDraw. Our game is grounded in a virtual world that contains movable clip art objects. The game involves two players: a Teller and a Drawer. The Teller sees an abstract scene containing multiple clip art pieces in a semantically meaningful configuration, while the Drawer tries to reconstruct the scene on an empty canvas using available clip art pieces. The two players communicate with each other using natural language. We collect the CoDraw dataset of ~10K dialogs consisting of ~138K messages exchanged between human players. We define protocols and metrics to evaluate learned agents in this testbed, highlighting the need for a novel “crosstalk” evaluation condition which pairs agents trained independently on disjoint subsets of the training data. We present models for our task and benchmark them using both fully automated evaluation and by having them play the game live with humans.