[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Tao Meng


2024

pdf bib
Control Large Language Models via Divide and Conquer
Bingxuan Li | Yiwei Wang | Tao Meng | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

This paper investigates the capability of LLMs on controllable generation with prompt-based controlling, focusing on Lexically Constrained Generation (LCG). We systematically evaluate the performance of LLMs on satisfying lexical constraints with prompt-based controlling, as well as their efficacy in downstream applications. We identified three key reasons that highlight the limitations of LLMs in LCG, including (1) position bias, where LLMs tend to satisfy constraints that appear in specific positions within the input; (2) low responsiveness to control decoding parameters, which minimally impact the performance of LLMs; and (3) struggle with handling the inherent complexity of certain constraints (e.g. compound word). We conclude that black-box LLMs face significant challenges in consistently satisfying lexical constraints with prompt-based controlling. To address this bottleneck, we introduce the Divide and Conquer Generation strategy, effective for both white-box and black-box LLMs, to enhance LLMs performance in LCG tasks, which demonstrates over 90% improvement on success rate in the most challenging LCG task. Our analysis aims to provide valuable insights into the performance of LLMs in LCG with prompt-based controlling, and our proposed strategy offers a pathway to more sophisticated and customized text generation applications.

pdf bib
Monotonic Paraphrasing Improves Generalization of Language Model Prompting
Qin Liu | Fei Wang | Nan Xu | Tianyi Lorena Yan | Tao Meng | Muhao Chen
Findings of the Association for Computational Linguistics: EMNLP 2024

Performance of large language models (LLMs) may vary with different prompts or instructions of even the same task. One commonly recognized factor for this phenomenon is the model’s familiarity with the given prompt or instruction, which is typically estimated by its perplexity. However, finding the prompt with the lowest perplexity is challenging, given the enormous space of possible prompting phrases. In this paper, we propose monotonic paraphrasing (MonoPara), an end-to-end decoding strategy that paraphrases given prompts or instructions into their lower perplexity counterparts based on an ensemble of a paraphrase LM for prompt (or instruction) rewriting, and a target LM (i.e. the prompt or instruction executor) that constrains the generation for lower perplexity. The ensemble decoding process can efficiently paraphrase the original prompt without altering its semantic meaning, while monotonically decrease the perplexity of each generation as calculated by the target LM. We explore in detail both greedy and search-based decoding as two alternative decoding schemes of MonoPara. Notably, MonoPara does not require any training and can monotonically lower the perplexity of the paraphrased prompt or instruction, leading to improved performance of zero-shot LM prompting as evaluated on a wide selection of tasks. In addition, MonoPara is also shown to effectively improve LMs’ generalization on perturbed and unseen task instructions.

pdf bib
Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification
Tao Meng | Ninareh Mehrabi | Palash Goyal | Anil Ramakrishna | Aram Galstyan | Richard Zemel | Kai-Wei Chang | Rahul Gupta | Charith Peris
Findings of the Association for Computational Linguistics: EMNLP 2024

We propose a constraint learning schema forfine-tuning Large Language Models (LLMs)with attribute control. Given a training corpusand control criteria formulated as a sequence-level constraint on model outputs, our methodfine-tunes the LLM on the training corpus whileenhancing constraint satisfaction with minimalimpact on its utility and generation quality.Specifically, our approach regularizes the LLMtraining by penalizing the KL divergence be-tween the desired output distribution, which sat-isfies the constraints, and the LLM’s posterior.This regularization term can be approximatedby an auxiliary model trained to decomposethe sequence-level constraints into token-levelguidance, allowing the term to be measuredby a closed-form formulation. To further im-prove efficiency, we design a parallel schemefor concurrently updating both the LLM andthe auxiliary model. We evaluate the empiricalperformance of our approach by controlling thetoxicity when training an LLM. We show thatour approach leads to an LLM that producesfewer inappropriate responses while achievingcompetitive performance on benchmarks and atoxicity detection task

2021

pdf bib
GEMNET: Effective Gated Gazetteer Representations for Recognizing Complex Entities in Low-context Input
Tao Meng | Anjie Fang | Oleg Rokhlenko | Shervin Malmasi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Named Entity Recognition (NER) remains difficult in real-world settings; current challenges include short texts (low context), emerging entities, and complex entities (e.g. movie names). Gazetteer features can help, but results have been mixed due to challenges with adding extra features, and a lack of realistic evaluation data. It has been shown that including gazetteer features can cause models to overuse or underuse them, leading to poor generalization. We propose GEMNET, a novel approach for gazetteer knowledge integration, including (1) a flexible Contextual Gazetteer Representation (CGR) encoder that can be fused with any word-level model; and (2) a Mixture-of- Experts gating network that overcomes the feature overuse issue by learning to conditionally combine the context and gazetteer features, instead of assigning them fixed weights. To comprehensively evaluate our approaches, we create 3 large NER datasets (24M tokens) reflecting current challenges. In an uncased setting, our methods show large gains (up to +49% F1) in recognizing difficult entities compared to existing baselines. On standard benchmarks, we achieve a new uncased SOTA on CoNLL03 and WNUT17.

2020

pdf bib
Mitigating Gender Bias Amplification in Distribution by Posterior Regularization
Shengyu Jia | Tao Meng | Jieyu Zhao | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Advanced machine learning techniques have boosted the performance of natural language processing. Nevertheless, recent studies, e.g., (CITATION) show that these techniques inadvertently capture the societal bias hidden in the corpus and further amplify it. However, their analysis is conducted only on models’ top predictions. In this paper, we investigate the gender bias amplification issue from the distribution perspective and demonstrate that the bias is amplified in the view of predicted probability distribution over labels. We further propose a bias mitigation approach based on posterior regularization. With little performance loss, our method can almost remove the bias amplification in the distribution. Our study sheds the light on understanding the bias amplification.

pdf bib
On the Robustness of Language Encoders against Grammatical Errors
Fan Yin | Quanyu Long | Tao Meng | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We conduct a thorough study to diagnose the behaviors of pre-trained language encoders (ELMo, BERT, and RoBERTa) when confronted with natural grammatical errors. Specifically, we collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data. We use this approach to facilitate debugging models on downstream applications. Results confirm that the performance of all tested models is affected but the degree of impact varies. To interpret model behaviors, we further design a linguistic acceptability task to reveal their abilities in identifying ungrammatical sentences and the position of errors. We find that fixed contextual encoders with a simple classifier trained on the prediction of sentence correctness are able to locate error positions. We also design a cloze test for BERT and discover that BERT captures the interaction between errors and specific tokens in context. Our results shed light on understanding the robustness and behaviors of language encoders against grammatical errors.

pdf bib
SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics
Da Yin | Tao Meng | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We propose SentiBERT, a variant of BERT that effectively captures compositional sentiment semantics. The model incorporates contextualized representation with binary constituency parse tree to capture semantic composition. Comprehensive experiments demonstrate that SentiBERT achieves competitive performance on phrase-level sentiment classification. We further demonstrate that the sentiment composition learned from the phrase-level annotations on SST can be transferred to other sentiment analysis tasks as well as related tasks, such as emotion classification tasks. Moreover, we conduct ablation studies and design visualization methods to understand SentiBERT. We show that SentiBERT is better than baseline approaches in capturing negation and the contrastive relation and model the compositional sentiment semantics.

2019

pdf bib
Target Language-Aware Constrained Inference for Cross-lingual Dependency Parsing
Tao Meng | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Prior work on cross-lingual dependency parsing often focuses on capturing the commonalities between source and target languages and overlook the potential to leverage the linguistic properties of the target languages to facilitate the transfer. In this paper, we show that weak supervisions of linguistic knowledge for the target languages can improve a cross-lingual graph-based dependency parser substantially. Specifically, we explore several types of corpus linguistic statistics and compile them into corpus-statistics constraints to facilitate the inference procedure. We propose new algorithms that adapt two techniques, Lagrangian relaxation and posterior regularization, to conduct inference with corpus-statistics constraints. Experiments show that the Lagrangian relaxation and posterior regularization techniques improve the performances on 15 and 17 out of 19 target languages, respectively. The improvements are especially large for the target languages that have different word order features from the source language.