@inproceedings{xu-etal-2019-privacy,
title = "Privacy-Aware Text Rewriting",
author = "Xu, Qiongkai and
Qu, Lizhen and
Xu, Chenchen and
Cui, Ran",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "{--}" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8633",
doi = "10.18653/v1/W19-8633",
pages = "247--257",
abstract = "Biased decisions made by automatic systems have led to growing concerns in research communities. Recent work from the NLP community focuses on building systems that make fair decisions based on text. Instead of relying on unknown decision systems or human decision-makers, we argue that a better way to protect data providers is to remove the trails of sensitive information before publishing the data. In light of this, we propose a new privacy-aware text rewriting task and explore two privacy-aware back-translation methods for the task, based on adversarial training and approximate fairness risk. Our extensive experiments on three real-world datasets with varying demographical attributes show that our methods are effective in obfuscating sensitive attributes. We have also observed that the fairness risk method retains better semantics and fluency, while the adversarial training method tends to leak less sensitive information.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2019-privacy">
<titleInfo>
<title>Privacy-Aware Text Rewriting</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qiongkai</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lizhen</namePart>
<namePart type="family">Qu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenchen</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ran</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Biased decisions made by automatic systems have led to growing concerns in research communities. Recent work from the NLP community focuses on building systems that make fair decisions based on text. Instead of relying on unknown decision systems or human decision-makers, we argue that a better way to protect data providers is to remove the trails of sensitive information before publishing the data. In light of this, we propose a new privacy-aware text rewriting task and explore two privacy-aware back-translation methods for the task, based on adversarial training and approximate fairness risk. Our extensive experiments on three real-world datasets with varying demographical attributes show that our methods are effective in obfuscating sensitive attributes. We have also observed that the fairness risk method retains better semantics and fluency, while the adversarial training method tends to leak less sensitive information.</abstract>
<identifier type="citekey">xu-etal-2019-privacy</identifier>
<identifier type="doi">10.18653/v1/W19-8633</identifier>
<location>
<url>https://aclanthology.org/W19-8633</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>247</start>
<end>257</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Privacy-Aware Text Rewriting
%A Xu, Qiongkai
%A Qu, Lizhen
%A Xu, Chenchen
%A Cui, Ran
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F xu-etal-2019-privacy
%X Biased decisions made by automatic systems have led to growing concerns in research communities. Recent work from the NLP community focuses on building systems that make fair decisions based on text. Instead of relying on unknown decision systems or human decision-makers, we argue that a better way to protect data providers is to remove the trails of sensitive information before publishing the data. In light of this, we propose a new privacy-aware text rewriting task and explore two privacy-aware back-translation methods for the task, based on adversarial training and approximate fairness risk. Our extensive experiments on three real-world datasets with varying demographical attributes show that our methods are effective in obfuscating sensitive attributes. We have also observed that the fairness risk method retains better semantics and fluency, while the adversarial training method tends to leak less sensitive information.
%R 10.18653/v1/W19-8633
%U https://aclanthology.org/W19-8633
%U https://doi.org/10.18653/v1/W19-8633
%P 247-257
Markdown (Informal)
[Privacy-Aware Text Rewriting](https://aclanthology.org/W19-8633) (Xu et al., INLG 2019)
ACL
- Qiongkai Xu, Lizhen Qu, Chenchen Xu, and Ran Cui. 2019. Privacy-Aware Text Rewriting. In Proceedings of the 12th International Conference on Natural Language Generation, pages 247–257, Tokyo, Japan. Association for Computational Linguistics.