@inproceedings{krishnamurthy-etal-2017-neural,
title = "Neural Semantic Parsing with Type Constraints for Semi-Structured Tables",
author = "Krishnamurthy, Jayant and
Dasigi, Pradeep and
Gardner, Matt",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1160",
doi = "10.18653/v1/D17-1160",
pages = "1516--1526",
abstract = "We present a new semantic parsing model for answering compositional questions on semi-structured Wikipedia tables. Our parser is an encoder-decoder neural network with two key technical innovations: (1) a grammar for the decoder that only generates well-typed logical forms; and (2) an entity embedding and linking module that identifies entity mentions while generalizing across tables. We also introduce a novel method for training our neural model with question-answer supervision. On the WikiTableQuestions data set, our parser achieves a state-of-the-art accuracy of 43.3{\%} for a single model and 45.9{\%} for a 5-model ensemble, improving on the best prior score of 38.7{\%} set by a 15-model ensemble. These results suggest that type constraints and entity linking are valuable components to incorporate in neural semantic parsers.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="krishnamurthy-etal-2017-neural">
<titleInfo>
<title>Neural Semantic Parsing with Type Constraints for Semi-Structured Tables</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jayant</namePart>
<namePart type="family">Krishnamurthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pradeep</namePart>
<namePart type="family">Dasigi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Gardner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new semantic parsing model for answering compositional questions on semi-structured Wikipedia tables. Our parser is an encoder-decoder neural network with two key technical innovations: (1) a grammar for the decoder that only generates well-typed logical forms; and (2) an entity embedding and linking module that identifies entity mentions while generalizing across tables. We also introduce a novel method for training our neural model with question-answer supervision. On the WikiTableQuestions data set, our parser achieves a state-of-the-art accuracy of 43.3% for a single model and 45.9% for a 5-model ensemble, improving on the best prior score of 38.7% set by a 15-model ensemble. These results suggest that type constraints and entity linking are valuable components to incorporate in neural semantic parsers.</abstract>
<identifier type="citekey">krishnamurthy-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/D17-1160</identifier>
<location>
<url>https://aclanthology.org/D17-1160</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1516</start>
<end>1526</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Semantic Parsing with Type Constraints for Semi-Structured Tables
%A Krishnamurthy, Jayant
%A Dasigi, Pradeep
%A Gardner, Matt
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F krishnamurthy-etal-2017-neural
%X We present a new semantic parsing model for answering compositional questions on semi-structured Wikipedia tables. Our parser is an encoder-decoder neural network with two key technical innovations: (1) a grammar for the decoder that only generates well-typed logical forms; and (2) an entity embedding and linking module that identifies entity mentions while generalizing across tables. We also introduce a novel method for training our neural model with question-answer supervision. On the WikiTableQuestions data set, our parser achieves a state-of-the-art accuracy of 43.3% for a single model and 45.9% for a 5-model ensemble, improving on the best prior score of 38.7% set by a 15-model ensemble. These results suggest that type constraints and entity linking are valuable components to incorporate in neural semantic parsers.
%R 10.18653/v1/D17-1160
%U https://aclanthology.org/D17-1160
%U https://doi.org/10.18653/v1/D17-1160
%P 1516-1526
Markdown (Informal)
[Neural Semantic Parsing with Type Constraints for Semi-Structured Tables](https://aclanthology.org/D17-1160) (Krishnamurthy et al., EMNLP 2017)
ACL