-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_multi_task.py
471 lines (354 loc) · 18.5 KB
/
train_multi_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
37
8000
9
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
'''
Multi-task baseline - Joint, Offline learning on the tasks (non-incremental)
1. CS, BDD
2. CS, IDD
3. BDD, IDD
4. CS, BDD, IDD
all encoder weights = shared
all decoders = Domain specific
Training notes:
- optimizer of shared encoder weights = divide lr by number of tasks, for each iteration/epoch, run forward pass and backprop over all tasks.
- optimizer of DS weights will have normal lr.
- all weights are trainable.
- shared weights are getting updated nb_tasks times in each iter/epoch. all DS weights are getting updated only once for each domain.
'''
import os
import random
import time
import numpy as np
import torch
import math
import re
from PIL import Image, ImageOps
from argparse import ArgumentParser
from torch.optim import SGD, Adam, lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, CenterCrop, Normalize, Resize, Pad
from torchvision.transforms import ToTensor, ToPILImage
from dataset import VOC12, cityscapes, IDD, BDD100k
from transform import Relabel, ToLabel, Colorize
import itertools
import config_task
from iouEval import iouEval, getColorEntry
from models.erfnet_multi_task import Net as Net_MT
from shutil import copyfile
from torch.utils.tensorboard import SummaryWriter
from torchsummary import summary
NUM_CHANNELS = 3
# default value given, will be overwritten by args.num_classes #cityscapes=20, IDD=27, BDD=20 (same as cityscapes)
NUM_CLASSES = 20
color_transform = Colorize(NUM_CLASSES)
image_transform = ToPILImage()
current_task = 0 # global inside train
class MyCoTransform(object):
def __init__(self, augment=True, height=512, width=1024, num_cls=20):
self.augment = augment
self.height = height
self.width = width
self.num_cls = num_cls
pass
def __call__(self, input, target):
input = Resize([self.height, self.width], Image.BILINEAR)(input)
target = Resize([self.height, self.width], Image.NEAREST)(target)
if(self.augment):
# Random hflip
hflip = random.random()
if (hflip < 0.5):
input = input.transpose(Image.FLIP_LEFT_RIGHT)
target = target.transpose(Image.FLIP_LEFT_RIGHT)
# Random translation 0-2 pixels (fill rest with padding
transX = random.randint(-2, 2)
transY = random.randint(-2, 2)
input = ImageOps.expand(input, border=(transX, transY, 0, 0), fill=0)
target = ImageOps.expand(target, border=(transX, transY, 0, 0),
fill=255) # pad label filling with 255
input = input.crop((0, 0, input.size[0]-transX, input.size
8000
[1]-transY))
target = target.crop((0, 0, target.size[0]-transX, target.size[1]-transY))
input = ToTensor()(input)
target = ToLabel()(target)
# print('relabeling 255 as: ', self.num_cls-1)
target = Relabel(255, NUM_CLASSES - 1)(target)
return input, target
class CrossEntropyLoss2d(torch.nn.Module):
def __init__(self, weight=None):
super().__init__()
self.loss = torch.nn.NLLLoss2d(weight)
def forward(self, outputs, targets):
return self.loss(torch.nn.functional.log_softmax(outputs, dim=1), targets)
def is_shared(n): return 'encoder' in n # all encoder wts are shared
def is_DS_curr(n): return 'decoder' in n # all decoders are DS
def train(args, model):
global NUM_CLASSES
print('datasets: ', args.datasets)
print('nb_tasks: ', args.nb_tasks)
print('dataset_name: ', args.dataset)
print('num_classes: ', args.num_classes)
best_acc = 0
tf_dir = 'runs_{}_{}_{}_{}{}_step{}'.format(
args.dataset, args.model, args.num_epochs, args.batch_size, args.model_name_suffix, len(args.num_classes))
writer = SummaryWriter('Adaptations/' + tf_dir)
weight_IDD = torch.tensor([3.235635601598852, 6.76221624390441, 9.458242359884549, 9.446818215454014, 9.947040673126763, 9.789672819856547, 9.476665808564432, 10.465565126694731, 9.59189547383129, 7.637805282159825, 8.990899026692638, 9.26222234098628, 10.265657138809514,
9.386517631614392, 8.357391489170013, 9.910382864314824, 10.389977663948363, 8.997422571963602, 10.418070541191673, 10.483262606962834, 9.511436923349441, 7.597725385711079, 6.1734896019878205, 9.787631041755187, 3.9178330193378708, 4.417448652936843, 10.313160683418731])
weight_BDD = torch.tensor([3.6525147483016243, 8.799815287822142, 4.781908267406055, 10.034828238618045, 9.5567865464289, 9.645099012085169, 10.315292989325766, 10.163473632969513, 4.791692009441432, 9.556915153488912,
4.142994047786311, 10.246903827488143, 10.47145010979545, 6.006704177894196, 9.60620532303246, 9.964959813857726, 10.478333987902301, 10.468010534454706, 10.440929141422366, 3.960822533003462])
weight_city = torch.tensor([2.8159904084894922, 6.9874672455551075, 3.7901719017455604, 9.94305485286704, 9.77037625072462, 9.511470001589007, 10.310780572569994, 10.025305236316246, 4.6341256102158805, 9.561389195953845,
7.869695292372276, 9.518873463871952, 10.374050047877898, 6.662394711556909, 10.26054487392723, 10.28786101490449, 10.289883605859952, 10.405463349170795, 10.138502340710136, 5.131658171724055])
weight_city[19] = 0
weight_BDD[19] = 0
weight_IDD[26] = 0
if args.cuda:
weight_IDD = weight_IDD.cuda()
weight_city = weight_city.cuda()
weight_BDD = weight_BDD.cuda()
co_transform = MyCoTransform(augment=True, height=args.height, width=args.width)
co_transform_val = MyCoTransform(augment=False, height=args.height, width=args.width)
co_transform_idd = MyCoTransform(augment=True, height=args.height, width=args.width, num_cls=27)
co_transform_val_idd = MyCoTransform(
augment=False, height=args.height, width=args.width, num_cls=27)
CS_datadir = '/ssd_scratch/cvit/prachigarg/cityscapes/'
BDD_datadir = '/ssd_scratch/cvit/prachigarg/bdd100k/seg/'
IDD_datadir = '/ssd_scratch/cvit/prachigarg/IDD_Segmentation/'
dataset_train = {}
dataset_val = {}
ce_loss = {}
for data_name in args.datasets:
if data_name == 'CS':
print('taking CS')
dataset_train['CS'] = cityscapes(CS_datadir, co_transform, 'train')
dataset_val['CS'] = cityscapes(CS_datadir, co_transform_val, 'val')
ce_loss['CS'] = CrossEntropyLoss2d(weight_city)
elif data_name == 'BDD':
print('taking BDD')
dataset_train['BDD'] = BDD100k(BDD_datadir, co_transform, 'train')
dataset_val['BDD'] = BDD100k(BDD_datadir, co_transform_val, 'val')
ce_loss['BDD'] = CrossEntropyLoss2d(weight_BDD)
elif data_name == 'IDD':
print('taking IDD')
dataset_train['IDD'] = IDD(IDD_datadir, co_transform_idd, 'train')
dataset_val['IDD'] = IDD(IDD_datadir, co_transform_val_idd, 'val')
ce_loss['IDD'] = CrossEntropyLoss2d(weight_IDD)
print('\ndataset_train: ', dataset_train)
print('\ndataset_val: ', dataset_val)
print('\nce_loss: ', ce_loss)
loader_train = {dname: DataLoader(dataset_train[dname], num_workers=args.num_workers, batch_size=args.batch_size,
shuffle=True) for dname in args.datasets}
loader_val = {dname: DataLoader(dataset_val[dname], num_workers=args.num_workers, batch_size=2,
shuffle=True, drop_last=True) for dname in args.datasets}
# print('global current_task: ', current_task)
# print('\n\n\n')
# for name, m in model.named_parameters():
# print(name, m.requires_grad)
savedir = f'../save/{args.savedir}'
automated_log_path = savedir + "/automated_log.txt"
modeltxtpath = savedir + "/model.txt"
if (not os.path.exists(automated_log_pa
8000
th)): # dont add first line if it exists
with open(automated_log_path, "a") as myfile:
myfile.write("Epoch\t\tTrain-loss\t\tTest-loss\t\tTrain-IoU\t\tTest-IoU\t\tlearningRate")
with open(modeltxtpath, "w") as myfile:
myfile.write(str(model))
# define model dicts: separate for parallel_conv_1.1. and parallel_conv_2.1. params and separate for the rest of them.
params = list(model.named_parameters())
print('\nusing learning rate this for the W_s params', 5e-4/args.nb_tasks, '\n')
print('using 5e-4 lr for W_t')
grouped_parameters = [
# only the shared conv layers in the encoder will use this lr
{"params": [p for n, p in params if is_shared(n)], 'lr': 5e-4/args.nb_tasks},
{"params": [p for n, p in params if is_DS_curr(n)]}, # is domain-specific to current domain
]
optimizer = Adam(
grouped_parameters, 5e-4, (0.9, 0.999), eps=1e-08, weight_decay=1e-4
)
def lambda1(epoch): return pow((1-((epoch-1)/args.num_epochs)), 0.9) # scheduler 2
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) # scheduler 2
start_epoch = 1
n_iters = min([len(loader_train[d]) for d in args.datasets])
print('n_iters ', n_iters)
for epoch in range(start_epoch, args.num_epochs+1):
print("-----TRAINING - EPOCH---", epoch, "-----")
scheduler.step(epoch)
epoch_loss = {d: [] for d in args.datasets}
time_train = []
usedLr = 0
for param_group in optimizer.param_groups:
print("LEARNING RATE: ", param_group['lr'])
usedLr = float(param_group['lr'])
iterator = {dname: iter(loader_train[dname]) for dname in args.datasets}
model.train()
for itr in range(n_iters):
for ind, d in enumerate(args.datasets):
NUM_CLASSES = args.num_classes[ind]
images, labels = next(iterator[d])
if epoch == start_epoch and itr == 1:
print('labels are: ', np.unique(labels.numpy()))
start_time = time.time()
if args.cuda:
inputs = images.cuda()
targets = labels.cuda()
outputs = model(inputs, ind)
optimizer.zero_grad()
loss = ce_loss[d](outputs, targets[:, 0])
loss.backward()
optimizer.step()
epoch_loss[d].append(loss.item())
time_train.append(time.time() - start_time)
average_epoch_loss_train = {d: np.mean(epoch_loss[d]) for d in args.datasets}
print('epoch took: ', sum(time_train))
############TRAINING OVER##############
############VALIDATE ALL DATASETS CONCERNED EVERY 5-10 EPOCHS##########
# THERE IS NO CURRENT TASK
# we can do this dataset wise independently for each dataset.
average_loss_val = {d: 0.0 for d in args.datasets}
val_acc = {d: 0.0 for d in args.datasets}
if epoch % 5 == 0 or epoch == 1:
for ind, d in enumerate(args.datasets):
print('validate: ', d)
val_loader = loader_val[d]
criterion = ce_loss[d]
evalon_task = ind
average_loss_val[d], val_acc[d] = eval(
model, val_loader, criterion, evalon_task, args.num_classes, epoch)
# logging tensorboard plots - epoch wise loss and accuracy. Not calculating iouTrain as that will slow down training
info = {}
for d in args.datasets:
k = 'val_acc_{}'.format(d)
info[k] = val_acc[d]
k2 = 'val_loss_{}'.format(d)
info[k2] = average_loss_val[d]
k3 = 'train_loss_{}'.format(d)
info[k3] = average_epoch_loss_train[d]
print(info)
for tag, value in info.items():
writer.add_scalar(tag, value, epoch)
# remember best valIoU and save checkpoint
temp_acc = sum([val_acc[key] for key in args.datasets])
if temp_acc == 0:
current_acc = -0.0
else:
current_acc = temp_acc/len(args.datasets) # Average of the IoUs to save best model
is_best = current_acc > best_acc
best_acc = max(current_acc, best_acc)
'runs_{}_{}_{}_{}{}_step{}'.format(
args.dataset, args.model, args.num_epochs, args.batch_size, args.model_name_suffix, len(args.num_classes))
filenameCheckpoint = savedir + \
'/checkpoint_{}_{}_{}_{}{}_step{}.pth.tar'.format(
args.dataset, args.model, args.num_epochs, args.batch_size, args.model_name_suffix, len(args.num_classes))
filenameBest = savedir + \
'/model_best_{}_{}_{}_{}{}_step{}.pth.tar'.format(
args.dataset, args.model, args.num_epochs, args.batch_size, args.model_name_suffix, len(args.num_classes))
save_checkpoint({
'epoch': epoch + 1,
'arch': str(model),
'state_dict': model.state_dict(),
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best, filenameCheckpoint, filenameBest)
return(model)
def eval(model, dataset_loader, criterion, task, num_classes, epoch):
# Validate on 500 val images after each epoch of training
global NUM_CLASSES
model.eval()
epoch_loss_val = []
time_val = []
num_cls = num_classes[task]
NUM_CLASSES = num_cls
print('number of classes in current task: ', num_cls)
print('validating task: ', task)
iouEvalVal = iouEval(num_cls, num_cls-1)
with torch.no_grad():
for step, (images, labels) in enumerate(dataset_loader):
start_time = time.time()
inputs = images.cuda()
targets = labels.cuda()
outputs = model(inputs, task)
if step == 1:
print('------------------', outputs.size(), targets.size())
loss = criterion(outputs, targets[:, 0])
epoch_loss_val.append(loss.item())
time_val.append(time.time() - start_time)
iouEvalVal.addBatch(outputs.max(1)[1].unsqueeze(1).data, targets.data)
if 50 > 0 and step % 50 == 0:
average = sum(epoch_loss_val) / len(epoch_loss_val)
print(f'VAL loss: {average:0.4} (epoch: {epoch}, step: {step})',
"// Avg time/img: %.4f s" % (sum(time_val) / len(time_val) / 6))
average_epoch_loss_val = sum(epoch_loss_val) / len(epoch_loss_val)
iouVal = 0
iouVal, iou_classes = iouEvalVal.getIoU()
iouStr = getColorEntry(iouVal)+'{:0.2f}'.format(iouVal*100) + '\033[0m'
print("EPOCH IoU on VAL set: ", iouStr, "%")
print('check val fn, loss, acc: ', average_epoch_loss_val, iouVal)
return average_epoch_loss_val, iouVal
def save_checkpoint(state, is_best, filenameCheckpoint, filenameBest):
torch.save(state, filenameCheckpoint)
print("Saving model: ", filenameCheckpoint)
if is_best:
print("Saving model as best: ", filenameBest)
torch.save(state, filenameBest)
def main(args):
global current_task
current_task = args.current_task
print('\ndataset: ', args.dataset)
savedir = f'../save/{args.savedir}'
if not os.path.exists(savedir):
os.makedirs(savedir)
with open(savedir + '/opts.txt', "w") as myfile:
myfile.write(str(args))
# Load Model
assert os.path.exists(args.model + ".py"), "Error: model definition not found"
print(args.num_classes, args.nb_tasks, args.dataset)
elif args.model == 'erfnet_multi_task':
model = Net_MT(args.num_classes, args.nb_tasks, args.current_task)
if args.cuda:
model = torch.nn.DataParallel(model).cuda()
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
if args.state:
# init imagenet pretrained enc for erfnet using this function.
saved_model = torch.load(args.state)
new_dict_load = {}
print('loading ImageNet pre-trained enc')
# only imagenet encoder was saved like module.features.encoder. rest all don't need name changing
for k, v in saved_model['state_dict'].items():
nkey = re.sub("module.features", "module", k)
new_dict_load[nkey] = v
model.load_state_dict(new_dict_load, strict=False)
print('loaded\n')
model = train(args, model)
print("========== TRAINING FINISHED ===========")
if __name__ == '__main__':
parser = ArgumentParser()
# NOTE: cpu-only has not been tested so you might have to change code if you deactivate this flag
parser.add_argument('--cuda', action='store_true', default=True)
parser.add_argument('--model', default="erfnet_multi_task")
parser.add_argument('--dataset', default="CSBDD")
parser.add_argument('--datasets', nargs="+", required=True, default=['CS', 'BDD'])
parser.add_argument('--dlr', type=float, default=100.0)
# 27 for level 3 of IDD, 20 for BDD and city
parser.add_argument('--num-classes', type=int, nargs="+", help='pass list with number of classes',
required=True, default=[20]) # send [20, 20] in IL-step1, [20, 20, 27] in IL-step2
parser.add_argument('--nb_tasks', type=int, default=1) # 2 for IL-step1, 3 for IL-step2
# 0 for IL-step1 (CS), 1 for IL-step2 (BDD), 2 for IL-step3 (IDD)
parser.add_argument('--current_task', type=int, default=0)
parser.add_argument('--state')
parser.add_argument('--port', type=int, default=8097)
parser.add_argument('--datadir', default=os.getenv("HOME") + "/datasets/cityscapes/")
parser.add_argument('--height', type=int, default=512)
parser.add_argument('--width', type=int, default=1024)
parser.add_argument('--num-epochs', type=int, default=150)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=6)
parser.add_argument('--steps-loss', type=int, default=50)
parser.add_argument('--steps-plot', type=int, default=50)
# You can use this value to save model every X epochs
parser.add_argument('--epochs-save', type=int, default=0)
parser.add_argument('--savedir', required=True)
parser.add_argument('--decoder', action='store_true')
# , default="../trained_models/erfnet_encoder_pretrained.pth.tar")
parser.add_argument('--pretrainedEncoder')
# recommended: False (takes more time to train otherwise)
parser.add_argument('--iouTrain', action='store_true', default=False)
parser.add_argument('--iouVal', action='store_true', default=True)
# Use this flag to load last checkpoint for training
parser.add_argument('--resume', action='store_true')
parser.add_argument('--model-name-suffix', default="RAP_FT")
main(parser.parse_args())