[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

无机化学中,硫化物电正性较强的金属或非金属与硫形成的一类化合物。大多数金属硫化物都可看作氢硫酸的盐。由于氢硫酸是二元弱酸,因此硫化物可分为酸式盐(HS,氢硫化物)、正盐(S2−)和多硫化物(Sn2−)三类。

硫化物
系统名
Sulfide(2−)[1] (additive), recommended name
Sulfanediide (substitutive),[1] not common, rarely used, sometimes generated by automated nomenclature software in organic chemistry
识别
CAS号 18496-25-8  checkY
PubChem 29109
ChemSpider 27079
SMILES
 
  • [S-2]
ChEBI 15138
性质
化学式 S
摩尔质量 32.07 g·mol−1
相关物质
其他阴离子 氧化物
硒化物
碲化物
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

有机化学中,硫化物(英文:Sulfide)指含有二价硫的有机化合物。根据具体情况的不同,有机硫化物可包括:硫醚(R-S-R)、硫酚/硫醇(Ar/R-SH)、硫醛(R-CSH)、硫代羧酸(S取代羧基中的一个或两个O,如R-CO-SH、R-CS-OH、R-CS-SH)和二硫化物(R-S-S-R)等。参见有机硫化合物

合成

编辑

无机硫化物通常可通过以下方法合成:

  • 单质直接化合,例如:
C + 2S -1123~1223K→ CS2
Na2SO4 + 4C -1373K→ Na2S + 4CO
In2S3 + 2H2 → In2S + 2H2S
FeCl2 + H2S → FeS↓ + 2HCl
3SiO2 + 2Al2S3 -1373K→ 3SiS2 + 2Al2O3
  • 以硫代酸盐为原料制取,例如:
(NH4)2MoO4 + 4(NH4)2S + 4H2O → (NH4)2[MoS4] + 8NH3.H2O
(NH4)2[MoS4] + 2HCl —Δ→ MoS3 + H2S + 2NH4Cl
  • 高价硫化物加热分解,例如:
MoS3 -→ MoS2 + S

物理性质

编辑
Al2S3 GeS 灰黑 P4S5 亮黄 CdS
Ga2S3 SnS2 P4S10 HgS 红/黑
In2S3 黄/红 SnS 棕黑 As4S4 MnS 绿/肉
InS 酒红 PbS As4S6 MoS3 红棕
Tl2S3 蓝黑 As4S10 淡黄 RuS2 灰蓝
Tl2S Sb2S3 橙红 FeS2
Bi2S3 棕黑

硫化物大多含有鲜艳的颜色,见右表。[2] 除此之外,MoS2Re2S7FeSCoS2NiSPtS2Cu2SCuSAg2S过渡金属硫化物都是黑色的。

金属的酸式硫化物都可溶于水,但正盐中只有碱金属硫化物和硫化铵可溶。一般地讲,金属硫化物的溶解度可通过阳离子极化力(离子电荷数/离子半径,Z2/r)的大小来预测。阳离子极化能力的增强,将导致化合物共价性的增加,极性减小,因而溶解度也降低。

化学性质

编辑

水解

编辑

金属硫化物在水中都会发生不同程度的水解

S2− + H2O → HS + OH
HS + H2O ⇌ H2S + OH

H2S的pKa分别约为:pKa1 = 6.89 和 pKa2 = 19±2,[3] 因此金属硫化物溶液会呈不同程度的碱性,而碱金属的硫化物溶液的碱性更是可以与相应的氢氧化物匹敌。

S2−不能在水中存在,也无法在超高浓度的CsOH溶液中存在。[4]

灼烧

编辑

灼烧硫化物矿物时可能发生两种反应:[5]

  1. 硫化物转化为相应的氧化物,硫则转化为二氧化硫。例如由方铅矿制取铅时有一步为:
2PbS + 3O2 → 2PbO + 2SO2
  1. 硫化物被氧化为相应的可溶硫酸盐

以上两步都是冶炼金属时,转化硫化物矿石的重要方法。

氧化

编辑

硫化物中-2的硫具有还原性,视条件不同可被氧化为硫、亚硫酸盐硫酸盐等。

S + 2e = S2−; -0.407V[6]

酸碱性

编辑

硫化物和相应的氧化物类似,其酸碱性随周期的变化也和氧化物的类似,但硫化物的碱性不如氧化物强。

[7]
H2S NaHS Na2S As2S3 As2S5 Na2S2
H2O NaOH Na2O As2O3 As2O5 Na2O2
碱性 碱性 两性 酸性 碱性

同周期元素最高氧化态硫化物从左到右酸性增强;同族元素相同氧化态的硫化物从上到下酸性减弱;同种元素的硫化物中,高氧化态的硫化物酸性更强。因此As2S5酸性强于Sb2S5,而Sb2S5的酸性则要强于SnS2和Sb2S3

多硫化物

编辑

多硫化物是含有多硫离子Sn2−的化合物,n=2,3,4,5,6,...,9。多硫化物可由硫在硫化物溶液中煮沸制得,其溶液一般都为黄色,且颜色随n值的增加而加深。

多硫离子类似于过氧化物,具有氧化性,但不及过氧离子氧化性强:

S22− + 2e = 2S2−; Eo = -0.476V
HO2 + H2O + 2e = 3OH; Eo = 0.87V

多硫化物酸化时即放出硫化氢

Sn2− + 2H+ → H2S + (n-1)S

多硫离子还可作配体。例如Na2Sn作用于(η5-C5H5)2TiCl2时,会生成含有TiS5环的配位化合物

分析

编辑
点滴法[2]
点滴法是鉴定S2−和HS离子的灵敏方法,其步骤为:在点滴板上混合可溶硫化物的碱性溶液和1%的硝普酸钠Na2[Fe(CN)5NO](亚硝基铁氰化钠)溶液,若试样中存在S2−离子则会出现不同深度的红紫色,灵敏度1:50000。其机理可能是[Fe(CN)5(NO)S]4−离子的生成。
除此之外,向点滴板中加入试液、浓盐酸、几颗对氨基二甲基苯胺晶体和0.1mol/L氯化铁溶液,若在2~3分钟后出现蓝色,也可证明硫离子的存在。机理是生成了蓝色的亚甲基蓝

应用

编辑

在分析化学中的应用

编辑

硫化氢系统是传统且较广泛的分析阳离子的方法,主要依据各离子硫化物溶解度的显著差异,将常见的阳离子分成五组。

简化的硫化氢系统分组方案[8]
组试剂 HCl 0.3 mol/L HCl, H2S
或 0.2~0.6 mol/L HCl
TAA,加热
NH3 + NH4Cl
(NH4)2S 或
TAA,加热
/
组的名称 I组
银组
盐酸组
II组
铜 锡组
硫化氢组
III组
铁组
硫化铵组
IV组
钙钠组
可溶组
组内离子 Ag+
Hg22+
Pb2+
II A
Pb2+
Bi3+
Cu2+
Cd2+
II B
Hg2+
As(III,V)
Sb(III,V)
Sn(II,IV)
Al3+ Mn2+
Cr3+ Zn2+
Fe3+ Co2+
Fe2+ Ni2+
Ba2+ K+
Ca2+ Na+
Mg2+ NH4+

由于H2S气体毒性大,且储存不便,故一般多以硫代乙酰胺(CH3CSNH2,TAA)水溶液作沉淀剂。

  • 在酸性溶液中TAA水解产生H2S,可替代H2S:
CH3CSNH2 + H+ + 2H2O ⇌ CH3COOH + NH4+ + H2S↑
  • 性溶液中水解生成HS,可替代(NH4)2S:
CH3CSNH2 + 2NH3 ⇌ CH3-C(-NH2)=NH + NH4+ + HS
  • 在碱性溶液中水解生成S2−,可替代Na2S:
CH3CSNH2 + 3OH ⇌ CH3COO + NH3 + H2O + S2−

硫化物的其他应用还有:

另外,有色金属硫化物的互熔体也被称为锍,是等冶炼过程中的中间产品。锍中含有贵重金属。

参见

编辑

参考资料

编辑
  1. ^ 1.0 1.1 sulfide(2−) (CHEBI:15138). Chemical Entities of Biological Interest (ChEBI). UK: European Bioinformatics Institute. [2020-09-22]. (原始内容存档于2021-04-18). 
  2. ^ 2.0 2.1 张青莲等。《无机化学丛书》第五卷。北京:科学出版社。
  3. ^ Giggenbach, W. (1971). Inorg. Chem. 10:1333. Meyer, B.; Ward, K.; Koshlap, K.; & Peter, L. (1983). Inorganic Chemistry 22:2345. Myers, R. J. (1986). Journal of Chemical Education 63:687.
  4. ^ May, P. M.; Batka, D.; Hefter, G.; Königsberger, E.; Rowland, D. Goodbye to S2− in aqueous solution. Chemical Communications. 2018-02-20, 54 (16): 1980–1983 [2021-01-07]. ISSN 1364-548X. doi:10.1039/C8CC00187A. (原始内容存档于2021-04-18) (英语). 
  5. ^ Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements, 2nd Edition, Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
  6. ^ J.A.迪安。《兰氏化学手册》第二版。北京:科学出版社,2003年。ISBN 7-03-010409-9
  7. ^ 宋天佑,徐家宁,程功臻编。《无机化学》下册。北京:高等教育出版社,2006年。ISBN 7-04-015582-6
  8. ^ 华中师范大学等编。《分析化学》上册。北京:高等教育出版社,2005年。ISBN 7-04-009140-2