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Abstract

This artifact provides a software implementation of the privacy-preserving sub-
string search protocol described in the corresponding paper. Specifically, the
artifact includes the source code of the implementation as well as a Makefile
which can be used to build the executable. This implementation, which is writ-
ten in C/C++, besides performing the substring search on genomic data both
in a private and non-private manner, is already enriched with some additional
routines which allow to measure the performance metrics discussed in the ex-
perimental evaluation section of the paper. To this end, the artifact provides
some bash scripts (described in this document) which allow to run all the tests
described in the paper. To the extent of providing a viable dataset to be em-
ployed as the text where the substrings are looked-up, the artifacts additionally
includes genomic data obtained from publicly available sources (reference [13]
in the corresponding paper): this data is stored in a textual file containing DNA
sequences of a human chromosome in the FASTA format. The implementation
has been tested on Linux systems equipped with x86 Intel processors and it
depends on few external software libraries (listed in the documentation). We
remark that to obtain results similar to the ones showed in the paper, the build of
the referenced external libraries (at least the GNU MultiPrecision one) should
be optimized for the specific platform where the implementation is executed
(e.g., employing the gce compiler option: -march=native).
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1 Introduction

The C/C++ source code found in this artifact allows to reproduce and ver-
ify the experimental results found in the corresponding paper, where a novel
privacy-preserving substring search protocol is proposed. Furthermore, the im-
plementation provided in this artifact can be effectively used to privately re-
trieve the position of the occurrences of genomic sequences in genomic data
stored in a textual file. The genomic format recognized by the current imple-
mentation mandates to employ strings over an alphabet of five characters: the
four usual nucleotide found in DNA sequences (A, C, G, T) and the wildcard
character N, used in FASTA format to denote any possible nucleotide. For
user’s convenience, the artifact already includes a textual file which represents
a portion of a human chromosome; this file, downloaded from [2], was simply
processed to remove metadata and newlines, obtaining a genomic string over
the aforementioned alphabet. The current implementation also encompasses
an implementation of a state-of-the-art substring search algorithm which re-
trieves the position of the occurrences without any confidentiality guarantees,
comparing the results of private and non-private queries in order to assess the
correctness of the proposed protocol. We remark that in the current implemen-
tation the client and the server resides in the same process instead of being
deployed on two different machines. This choice allows to reduce the time re-
quired for the experimental evaluation due to the absence of network overhead
while retaining the significance of the results, as the application is conceptually
partitioned in a client-side part and a server-side one, which are independently
profiled. This artifact provides three different implementations of the proposed
privacy-preserving substring search protocol: in the first one, the server side
computation of the query procedure is sequentially performed on a single core,
while in the second one the same computation is split among multiple threads;
the third one simulates the multi-user scenario, where several queries are simul-
taneously performed in different threads (each performing the query on a single
core). In this document, we provide all the necessary information in order to
build all these three implementations, we describe their command-line inter-
face and how to replicate the experimental results observed in the experimental
evaluation of the corresponding paper.



2 Dependencies & Build

We start by describing how to build the executables and the needed external
libraries.

Dependencies

All the implementations contained in this artifact hinges upon three external li-
braries for the arithmetic and cryptographic operations required by the privacy-
preserving substring search protocol:

e GNU MultiPrecision library [3] (1ibgmp) is employed as a fast implemen-
tation of multi precision modular arithmetic operations. The protocol has
been tested with GMP 6.1.

e HCS library [5] (1ibhcs) provides software implementations of some par-
tially homomorphic encryption schemes, including the length flexible ver-
sion of the Paillier scheme, proposed by Damgard and Jurik, employed in
the protocol.

e The cryptographic library of OpenSSL [4] (Libcrypto) is employed for
AES-128 CounTeR (CTR) mode operations. The protocol has been tested
with OpenSSL version 1.0.2r.

Furthermore, the standard C++4 API for multi-threading applications are em-
ployed, which require to link the pthread library on Linux based systems. We
remark that in our testing environment all the external libraries are compiled
from source code and thus optimized for the specific platform where the tests
were run; therefore, in order to faithfully replicate the results, all these libraries
should be compiled enabling native architecture-specific optimizations. Given
that most of the computation is devoted to performing modular arithmetic op-
erations, compiling from scratch only the GMP and HCS libraries it is expected
to be sufficient to reproduce performance results similar to the ones reported in
the paper. Figures of merit of the proposed protocol are marginally affected by
the use of OpenSSL binaries obtained either downloading them from the official
repository or compiling locally the source files.

Build

The artifact already provides a Makefile to automate the compilation of the
source code. Before using the Makefile, it may be necessary to configure it for the
platform where the implementations are built: the two variables INCLUDE_DIR
and LIB_DIR can be modified to specify additional locations where the compiler
can look for, respectively, header files and libraries. The CC variable can be
used to specify the compiler to be used (otherwise g++ compiler is employed).
Once these variables are set, the source code can be compiled by running the
make command. The Makefile has three main targets, each corresponding to one
of the three different implementations discussed in the previous section, whose
details, including the source files to be compiled and the libraries which need
to be linked, are summarized in Table 1. All these targets are built with the
make command, however it is possible to build only one target by specifying its
name as a parameter of the make command (e.g., the command make parallel



Table 1: Source files and required libraries for each of the three implementations
provided in the artifact

Target Name Implementation Source Files Libraries
e single_core.c e libgmp
single single core e lipmaa.c e libcrypto
Ifpaillier.c e libhcs
o multi_core.c e libgmp
. o multithread_lipmaa.c e libcrypto
parallel multi core paillier.c e libhcs
e libpthread
e multi_user.c e libgmp
. . lipmaa.c e libcrypto
multiuser multi user paillier.c e libhcs
e libpthread

builds only the multi core implementation). Each of these targets generates
an object file, whose name can be customized by modifying the three variables
EXE_SINGLE, EXE_PARALLEL and EXE_ MUSER, which are located in the first lines
of the Makefile.

3 Docker Container

To the extent of easing the build of the implementation, we provide also a
Docker container which encloses the three implementations ready to be used
with all the required dependencies. In this section, we describe how to setup
this container and retrieve the results of the experiments from it.

The artifact includes a Dockerfile, which can be used to build a Docker image
of the container with the following command:

# docker build —t <image_name> <path_of_artifact_folder >

where <image name> is a name to be assigned to the docker image (say,
test_ppss). The build process sets up the image for the container, according
to the instructions found in the Dockerfile. In particular, the build process first
bootstraps a docker image [1] based on the Alpine Linux distribution, installing
some basic packages required in the container (including the OpenSSL library
required by our implementations), and then downloads and builds the GMP
and HCS libraries with platform specific optimizations. Lastly, once all the
dependencies are satisfied, the three implementations of the privacy-preserving
substring search protocol are built. Since the GMP library is downloaded and
compiled from sources, the image build process may take a while (e.g., few
minutes).

Once the build is finished, a docker container based on the built image can
be instantiated with the following command:

# docker run —i —t <image_name>



This command should start a bash terminal inside the container. All the files
of the artifact should be located in the /home/myuser folder, which should
be the working directory of the bash terminal started in the container. In
case of a successful build, there should be three executable in the container,
called single_ppss, parallel_ppss and mu_ppss, which correspond to the three
implementations of our protocol. These implementations, as well as the bash
scripts available in the container, can be employed as described in Section 4 to
run the experiments. We remark that the Alpine Linux distribution is generally
employed to bootstrap Docker images as it is particularly lightweight; however,
this feature has the drawback that only strictly necessary tools are already
shipped in this distribution. In case additional software is needed, it can be
installed through the Alpine package manager with the following command (to
be run inside the instantiated container):

# apk add <package_name>

After running the experiments, the CSV files storing the output data can be
copied outside the container by hinging upon the docker cp command. This
command requires either the ID or the name of the container, which can be
retrieved with the docker ps command, which lists all the running containers.
Once the ID or the name have been found, the file can be copied outside the
container with the following command (to be run on the host machine):

# docker cp <container_id >:<path_to_the_file_in_container >
<dest_path_host_machine>

For instance, to retrieve the file called single-core-data.csv from the container
with ID a3b38d2£271c, the command to be employed is:

# docker cp a3b38d2f271c:/home/myuser/single —core—data.csv ./

4 Usage & Experimental Validation

As discussed earlier, three different implementations are included in this artifact,
which correspond to three different programs with specific user interfaces. We
now describe how to use each of these implementations and how the experiments
found in the corresponding paper can be reproduced by hinging upon some
simple bash scripts enclosed in the artifact.

How to Use

The single core implementation requires four command line arguments, which
must be provided in this order:

1. substring: a string over the alphabet ¥ = {4, C,G, N, T}, which is the
sequence of nucleotide whose occurrences are searched in the text.

2. input_file: path of a textual file, which must be formatted as described
in the introduction, which stores the string where the occurrences of
substring are searched. An example file bigDNA is already contained
in the artifact.



Figure 1: Execution of single core implementation

3. b: an integer > 2 which is employed as the radix to be used for the
Lipmaa’s PIR protocol.

4. test_type: an integer (which can be either 0 or 1) used in our experi-
mental setting to determine which experiment is performed. Specifically,
as this implementation is used for two different experiments in our exper-
imental validation, this integer allows to distinguish between these two
experiments, which is required in order to report on the output file the
correct information for the experiment being performed.

Figure 1 shows how to call the single core implementation and its output printed
to stdout. Given these values, the implementation reads the text in input_file
and builds the privacy-preserving search index based on the Burrows-Wheeler
Transform (BWT) and the Suffix Array as described in the corresponding pa-
per. Then, it retrieves the number of occurrences of substring in the text and
the positions of one of these occurrences ! by employing the Query procedure of
the privacy-preserving substring search protocol; furthermore, the same query
is performed in a non-private setting by employing Algorithm 1 of the corre-
sponding paper, which is a known algorithm for substring search which hinges
upon unencrypted BWT and suffix array. The results of both these queries are
written to stdout at the end of the computation, allowing the user to verify the
correctness of our protocol. For each of the two phases of the Query procedure,
referred to as Qnum and Qocc in the corresponding paper, the implementation
measures the client and server costs, which are computed as the execution time
of the portion of computation in the Query procedure executed by the client
(resp. server). These values are both printed to stdout and written to a CSV
file which contains the result of the experiment; the name and the information
found in the file depends on the type of experiment being performed, which is
inferred from the test_type integer. The implementation computes also the
communication cost, which is estimated as the size of the binary representation
obtained by serializing the trapdoors which would be sent from the client to
the server during each of the two phases of the Query procedure?. This cost is
not printed to stdout but it is included in the results of the experiment being
written in the CSV file.

The multi core implementation exhibits the same execution flow of the single
core one, although the modified search procedure of the Lipmaa’s PIR protocol
(i.e., Algorithm 3 in the corresponding paper) is executed on multiple cores. As
mentioned in the paper, the parallel strategy employs one separate thread for

Lwhile the substring search functionality defined in the paper requires to retrieve the posi-
tion of all the occurrences, we decide to retrieve only one of them in our experimental setting,
to the extent of reducing the overall time required to perform all the experiments

2We do not consider the size of the response of the server to the client in the communication
cost as it is negligible w.r.t. the trapdoor size



Figure 2: Execution of multi core implementation

each recursive call in Algorithm 3, thus splitting the computation among b cores.
Therefore, the value b is chosen by the implementation in order to split as evenly
as possible the computational workload among the b threads. In this implemen-
tation, two different values, labeled as b,, and b,, are chosen for the two phases
Qnum and Qocc, respectively, which means that a different number of threads
may be used in these phases. However, the user can choose to provide a value
b as the third command line argument, as for the single core implementation:
in this case, this value is used for both the phases instead of the ones chosen
by the implementation. Lastly, the test_type integer would be useless in this
implementation, as it is employed in only one experiment in our campaign. In
conclusion, the multi core implementation has two mandatory arguments (i.e.,
substring and input_file) and an optional one (i.e., b). Figure 2 shows how
to call the multi core implementation and its output printed to stdout.

The multi-user implementation simultaneously performs single core queries
on the same search index: specifically, each query is executed in a separate
thread, simulating multiple independent users performing substring search on
the same document. Each query is performed also in the non-private setting,
with both the results being printed to stdout to let the user verify their con-
sistency. The interface of this implementation has four mandatory arguments
and it is designed mainly for our experimental setting:

1. queries: a path to a file which contains a set of strings to be searched
over the text. Each string is separated by a newline. An example file with
16 queries is already provided in the artifact

2. input_file: same as single core implementation
3. b: same as single core implementation

4. num_users: an integer which specifies the number of users to be simulated,
which is equivalent to the number of queries to be performed.

Figure 3 shows how to call the multi-user implementation and its output printed
to stdout. We remark that this implementation always performs num users
queries simultaneously: if there are more strings in the queries file, they are
ignored, while if there are less strings, they are cyclically re-used. Since the
experiments in the multi-user scenario are mainly aimed at showing the limited
increasing of the memory consumption when the number of users increases,
this implementation employs a separate thread which periodically reads the
memory consumption from the Linux’s virtual proc filesystem and computes the
maximum value, which is then reported in a file as the result of the experiment.



Figure 3: Execution of multi-user implementation

Run Experiments

We now describe how to perform the experiments which allow to reproduce the
experimental results found in the corresponding paper. We provide here all
the details about these experiments and how they can be simply run through
the bash scripts which are available in the artifact. We remark that both the
overall duration of the experiments reported in this section and the execution
times found in the results of the paper depend on the platform being used for
these experiments, which is a machine equipped with a dual Intel Xeon E5-2620
CPU clocked at 3 GHz (16 physical cores with hyper-threading overall) and 128
GiB DDR4-2133 memory, with 64-bit Linux Gentoo 17.0 OS.

As most of the experiments require texts of varying size as input data, script
split_file.sh takes the bigDNA genome data, which is available in the artifact, and
dumps increasing portions of it in distinct files with different size. Specifically,
the script can be simply invoked with no parameters and automatically generates
7 files which contains the first n - 10° characters of bigDNA, with n ranging in
{0.5,1,2,4,8,16,32}; these files have the same size of the ones used in our
experimental validation.

There are four different experiments which must be run in order to repro-
duce the results of the corresponding paper. For each of these experiments,
there is a bash script which automatically runs the experiment at hand. All
these scripts have a variable called num_repetitions which specifies the num-
ber of times the experiment has to be repeated: indeed, all the experiments
should be performed more than once to make the results more robust against
noisy measurement. Nevertheless, as the number of repetitions linearly increases
the overall time needed to perform the experiment, we chose to perform only
few repetitions. Specifically, the experiments where the execution times are



measured are repeated 3 times, while the multi user experiment is performed
only once, as it measures only memory consumption, which is expected to be
less sensitive to noise. However, we remark that the number of repetitions for
each experiment can be changed by modifying the variable num_repetitions in
the bash script of the experiment at hand.

The first experiment concerns the impact of the radix b employed for the
Lipmaa’s PIR protocol on the performance of the protocol, whose results are
reported in Figure 3 of the paper. Specifically, this experiment invokes the
single core implementation with values for b in {2,...,40} on the smallest ge-
nomic data (i.e., the one with 0.5 - 10° nucleotide). The experiment can be run
through the test_b.sh script and it lasts slightly more than 4 hours on our plat-
form. The results of the experiment are appended to a file called radiz_tune.csv.
Specifically, for each value b being tested, the file contains the client, server and
communication cost for both the Qnum and the Qocc phases.

The second experiment aims at assessing the performance of the single core
implementation, whose results are represented by the continuous lines in Figure
4. This experiment measures the performance of the single core implementation
over the bigDNA file and all the other files generated with the split_file.sh script.
A fixed value b = 20 is employed in this experiment. The experiment can
be run through the single-core_test.sh script and it is the longest one, lasting
approximately 15 hours on our platform. The results of the experiment are
appended to a file called single-core-data.csv. Specifically, for each size of the
genomic data being tested, the file contains the client, server and communication
cost for both the Qnum and the Qocc phases.

The third experiment is equivalent to the previous one, but the multi core
implementation is employed instead of the single core one. The results are rep-
resented by the dashed lines in Figure 4 of the paper. As discussed in the paper,
for the multi core implementation we do not employ a fixed value for the radix
b, but we let the implementation choose a value which allows to split as evenly
as possible the computational workload among the b threads. Therefore, the re-
sults of the experiment, which are appended to a file called multi-core-data.csv,
besides all the values reported also in the previous experiment, additionally in-
clude the two values b, and b, employed in, respectively, the Qnum and Qocc
phases. The experiment can be run through the multi-core_test.sh script and it
lasts only a couple of hours on our platform.

The fourth experiment concerns the multi user case, aiming at verifying
that the memory consumption does not significantly increase with the number
of simultaneous queries being performed. In particular, the experiment analyzes
how the memory consumption varies with the number of users when genomic
data with different sizes are employed for the substring search, leading to the
result reported at the end of the experimental evaluation section of the paper,
namely that the additional memory required for each user does not linearly
increase with the size of the dataset. To this extent, this experiment employs the
multi user implementation and, for each dataset being tested, it simultaneously
performs 1,2,4,8 and 16 queries, hinging upon the information available in the
Linux proc virtual filesystem to estimate the maximum memory consumption.
To reduce the amount of time required for this experiment, we employ only
half of the genomic data available, namely the ones containing, respectively,
0.5-106,2-105,8-10%,32 - 10% nucleotide. A fixed value b = 20 is used in these
experiment. The experiment can be run through the muse_test.sh script and it



lasts about 10 hours on our platform. The results are appended to a file called
mem_consumption.csv which reports, for each dataset and for each number of
queries being tested, the base memory consumption (i.e., the memory when no
queries are performed) and the maximum memory consumption throughout all
queries. The memory consumption data, as given by the proc virtual filesystem,
is reported as the number of pages allocated in the data and stack frames of the
process.

5 Result Analysis

To conclude this document, we show how to process the output of the experiment
in order to obtain the results reported in the paper and we provide some insights
on the post-processed results.

The artifact includes a python script, called post_process.py, which allows
to automatically compute the average value over all the repetitions of the ex-
periment for each measurement. The script takes as input the filename of the
output file to be processed, compute the average values and store them in a new
CSV file with the same name of the original file prefixed with the string avg-.
For instance, if the file multi-core-data.csv is given to the script, the output file
will be called avg-multi-core-data.csv. The files obtained after this processing
should replicate the results reported in the experimental evaluation of the cor-
responding paper. Each of these CSV files has an header which describes the
meaning of each field and, if needed, the unit of measurement. The artifact
includes also a latex file plots.tex, located in the tex folder, which allows to gen-
erate the plots found in Figures 3 and 4 of the corresponding paper, which are
reported here for reader’s convenience in Figure 4 and Figure 5, respectively.
By compiling this file with pdflatex, a PDF file which contains these plots will
be generated; to generate only one the plots for Figure 3 (resp. 4), it is possible
to comment on the plots.tex source code the line \input{perf plot.tex} (resp.
\input{radixb_plot.tex}).

We remark that, because of the different platforms where the experiments are
performed, the actual values in terms of execution times and memory consump-
tion may differ from the ones reported in the paper; nonetheless, the behavior
of the implementations showed by the results should fit the one reported on
the paper. In other words, the shape and the trend of the plots obtained from
these results should resemble the ones reported in the paper. For the multi user
experiment, which has no plot in the paper due to space constraints, the results
should provide two evidences:

1. the increase of memory consumption per user becomes more negligible
w.r.t. the base memory consumption when the dataset size increases

2. the increase of memory consumption per user does not increase signifi-
cantly (i.e., linearly) with the dataset size

For instance, on our platform, for all the dataset being tested, the increase of
memory consumption per user is always approximately 70 MB independently
from the size of the dataset, thus proving that the additional memory consump-
tion due to new allocated data in the computation is negligible w.r.t. other
system overhead (e.g., data structures for handling more threads).
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