
Continuous Social Distance Monitoring in Indoor Space
Harry Kai-Ho Chan

Roskilde University, Denmark

kai-ho@ruc.dk

Huan Li

Aalborg University, Denmark

lihuan@cs.aau.dk

Xiao Li

Roskilde University, Denmark

xiaol@ruc.dk

Hua Lu

Roskilde University, Denmark

luhua@ruc.dk

ABSTRACT
The COVID-19 pandemic has caused over 6 million deaths since

2020. To contain the spread of the virus, social distancing is one

of the most simple yet effective approaches. Motivated by this,

in this paper we study the problem of continuous social distance

monitoring (SDM) in indoor space, in which we can monitor and

predict the pairwise distances between moving objects (people)

in a building in real time. SDM can also serve as the fundamental

service for downstream applications, e.g., a mobile alert application

that prevents its users from potential close contact with others. To

facilitate the monitoring process, we propose a framework that

takes the current and future uncertain locations of the objects into

account, and finds the object pairs that are close to each other in a

near future. We develop efficient algorithms to update the result

when object locations update. We carry out experiments on both

real and synthetic datasets. The results verify the efficiency and

effectiveness of our proposed framework and algorithms.

PVLDB Reference Format:
Harry Kai-Ho Chan, Huan Li, Xiao Li, and Hua Lu. Continuous Social

Distance Monitoring in Indoor Space. PVLDB, 15(7): 1390-1402, 2022.

doi:10.14778/3523210.3523217

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/harryckh/CSDM-public.

1 INTRODUCTION
The COVID-19 pandemic has affected almost all countries since

the beginning of 2020. As of March 8, 2022, there have been more

than 446 million confirmed cases and caused more than 6 million

deaths
1
. To prevent the virus spread, theWorld Health Organization

has suggested many guidelines, such as keeping at least 1 meter

between people (i.e., social distancing), wearing face masks, and

maintaining good hygiene practices. Since the virus mainly spreads

to people in close contact, social distancing is one of the effective

approaches to lower the infection rate [2, 20].

On the other hand, people spend more time in various indoor

venues (e.g., airports, malls and office buildings) than outdoors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 7 ISSN 2150-8097.

doi:10.14778/3523210.3523217

1
https://covid19.who.int

Multiple studies [14, 18] disclose that people spend on average 87%

of their time indoors. Motivated by this, in this paper we study

the problem of continuous social distance monitoring (SDM) in

an indoor space, in which we keep track of the pairwise distances

between the people in a building in real time. This can help to

reinforce the social distancing requirement in indoor spaces as an

effective means to contain the spread of the virus. For example, a

gallery or museum can provide a guide app that integrates with

social distance monitoring. With such an app, the visitors can keep

track of the distances with others. As another example, the staff in

those high-risk workplaces (e.g., elderly care centers and quarantine

hotels) could avoid contact with each other to lower the infection

risk as much as possible. Moreover, it can also provide statistics

from a global perspective, such as calculating the contact frequency

and identifying hotspots that close contact is likely to happen. These

can give insights to the policy-makers on the effectiveness of the

social distancing, and help them to further refine the restrictions,

e.g., limiting the number of people in certain areas at peak hours.

In addition, our problem can be applied in other settings. For

example, monitoring the distances between the pick-and-put robots

in a warehouse to avoid possible collisions. It can also serve as the

foundation for further indoor data analysis and data-mining, such

as online clustering and classification.

Nevertheless, if we only monitor the distances between the peo-

ple at the current time, it does not help to achieve social distancing.

Thus, we also have to predict the distances in advance. Specifically,

given a set of moving objects in an indoor space, SDM identifies

all object pairs that are going to form close contact, i.e., having a

distance smaller than a pre-defined threshold 𝜖 (e.g., 1 meter) within

a near future (e.g., in 5 seconds or so). Such monitoring and predic-

tions can serve as the fundamental service for other downstream

applications. For example, a preventive application can suggest

further actions to those contact object pairs by giving them an alert.

Or, a routing application can find alternative routes for users to

avoid close contacts en route. Depending on the application need,

the actual alert frequency should be adjustable to the users to avoid

overwhelming alerts. For example, the frequency can be lower if

the user is in a private room, whereas it should be higher if the user

is in a public space, suspiciously infected, or a close contact of an

infected person. As object locations in the future are uncertain by

nature, the distances between pairs are probabilistic. In this paper,

we calculate the expected distances based on their future possible

locations, and report object pairs with that smaller than 𝜖 .

Moreover, unlike the accurate GPS positioning records outdoors,

raw indoor positioning data is uncertain and discrete in nature due

to the limited indoor positioning technologies [4]. For example, an

1390

https://doi.org/10.14778/3523210.3523217
https://github.com/harryckh/CSDM-public
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3523210.3523217
https://covid19.who.int
https://www.acm.org/publications/policies/artifact-review-and-badging-current

indoor object’s location is not always up-to-date as it might update

only once in a few seconds. We need to take the uncertainty into

consideration when computing distances between objects.

Yet another challenge is that we need to keep a balance between

the frequency of objects’ updates and the accuracy of the results. If

the objects update their locations too frequently, it will bring about

pressures to the network load, and consume more energy on the

object’s device (usually a smartphone). On the other hand, if the

updates are too sparse, the accuracy of the computed distances will

be low. Therefore, we need to design a mechanism that minimizes

the number of location updates, while maintaining the accuracy of

the predicted distances and thus keeping the quality of the results.

To address these challenges, we propose an integrated client-

server framework to facilitate the whole monitoring process. In

particular, given objects’ last reporting locations only, the server

computes the expected distance between the object pairs, from

the current time to a (near) future time, as a sliding time window.

Subsequently, the server maintains those object pairs that satisfy

the distance threshold in the result. When an object’s location

updates or when a new object is inserted, the server updates the

monitoring results accordingly in an incremental fashion.

While some existing works [40] target minimizing the commu-

nication cost between the server and clients (i.e., objects), our focus

is to compute the result efficiently in the system. With the ubiquity

of the high-speed 5G network, the communication delay between

the server and objects will become less crucial, and thus in this

paper we aim at optimizing the server’s running time to achieve a

real-time response. Nevertheless, our framework requests objects

to update their locations only when necessary.

In this paper, we adopt the online indoor positioning data setting

in [24]. That is, the server only stores the latest position data for

each object. As the user locations are volatile, this setting can

greatly reduce the storage and maintenance costs on the server.

The contributions of this paper are summarized as follows.

• We formulate the indoor social distance monitoring prob-

lem, and propose a framework for handling the whole mon-

itoring process. Also, we propose an object updating mech-

anism that helps to reduce the server side computation.

• We analyze the indoor location uncertainty, and derive the

expected distance for object pairs. Based on the analysis,

we design efficient algorithms to search for the possible

pairs as the results and maintain the results properly.

• We perform extensive experiments to validate the efficiency

and effectiveness of our framework and algorithms.

The rest of the paper is organized as follows. Section 2 formulates

the problem and presents an overall framework to address it. Sec-

tion 3 elaborates on the location uncertainty model and expected

distances for indoor objects. Section 4 details our computational

techniques. Section 5 reports on the experimental study and Sec-

tion 6 reviews the related works. Section 7 concludes the paper.

2 PROBLEM DEFINITION AND SOLUTION
OVERVIEW

2.1 Indoor Positioning Data
Table 1 shows the notations used in this paper. Following the on-

line data setting in the literature [24], we assume only the latest

Table 1: Notations

Symbol Description

𝑡𝑙𝑖 The latest reporting time of an object 𝑜𝑖

[𝑡𝑐 , 𝑡𝑓] The future prediction time interval

Δ𝑖 (𝑡) The time interval length between 𝑡𝑙𝑖 and 𝑡

𝑈𝑅 (𝑜𝑖 , 𝑡) The uncertainty region of 𝑜𝑖 at time 𝑡

𝑜𝑚
𝑖

The𝑚-th discrete sample of 𝑜𝑖

𝑜𝑖 [𝑎] The uncertainty sub-region of 𝑜𝑖

𝑁 𝑡
𝑖

Number of uncertainty sub-regions of 𝑜𝑖 at time 𝑡

𝑃 (𝑐𝑖) The partition that a point 𝑐𝑖 falls in

𝐷 (𝑐𝑖) Set of doors that are associated to the partition 𝑃 (𝑐𝑖)

Table 2: An OIPT Example

𝑜𝑖𝑑 𝑙 (𝑐, 𝑟) 𝑡𝑙 𝑜𝑖𝑑 𝑙 (𝑐, 𝑟) 𝑡𝑙

𝑜1 (𝑐1, 3) 𝑡4 𝑜4 (𝑐4, 1) 𝑡4

𝑜2 (𝑐2, 2.5) 𝑡2 𝑜5 (𝑐5, 2.5) 𝑡6

𝑜3 (𝑐3, 3.5) 𝑡3 𝑜6 (𝑐6, 2) 𝑡6

reporting location is stored for each moving object in an online
indoor positioning table (OIPT). In particular, the OIPT record is in

the format of (𝑜𝑖𝑑, 𝑙, 𝑡𝑙), where 𝑜𝑖𝑑 identifies an object in the object

set 𝑂 , 𝑙 is a location estimate and 𝑡𝑙 is the latest reporting time. For
simplicity, we denote an object 𝑜𝑖 ’s location estimate as 𝑙𝑖 and the

latest reporting time as 𝑡𝑙𝑖 throughout this paper.

Due to the limitations of indoor positioning [19], the location

estimates in OIPT are usually with an error of a few meters. Follow-

ing the existing studies [42, 43], we model each location estimate 𝑙𝑖
by a circular region ⊙(𝑐𝑖 , 𝑟𝑖) centered at a point 𝑐𝑖 with a radius 𝑟𝑖 ,

meaning that the possible location of 𝑜𝑖 is within ⊙(𝑐𝑖 , 𝑟𝑖).
In an OIPT, the latest reporting times could be different across ob-

jects since the positioning system produces the positioning records

aperiodically for an object. The updating of positioning records is

controlled by two system parameters, namely 𝑇Min and 𝑇Max , the

shortest and longest time interval between two consecutive updates

of an object, respectively. The former avoids overwhelming updates.

The latter, on the other hand, guarantees the location estimate of

an object will be updated to OIPT no more than a period of 𝑇Max .

Otherwise, the system would treat the object as offline and remove

the corresponding record, as in the existing works [15, 32, 54].

Example 1. A snapshot of an example OIPT at timestamp 𝑡6 is
shown in Table 2, which contains 6 objects. For example, the location
estimate 𝑙1 for 𝑜1 is ⊙(𝑐1, 3) and its latest reporting time 𝑡𝑙1 = 𝑡4.

2.2 Problem Definition
Given a timestamp 𝑡 , two objects 𝑜𝑖 and 𝑜 𝑗 , let 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) be the
indoor distance from 𝑜𝑖 to 𝑜 𝑗 at time 𝑡 . The object location estimates

in OIPT are already out-of-date if 𝑡𝑙𝑖 , 𝑡𝑙 𝑗 < 𝑡 . In this case, we need to

analyze the possible locations of the two objects at the timestamp 𝑡

in calculating 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡). The details will be given in Section 3.

We define our research problem as follows.

Problem (Continuous Social Distance Monitoring). Given
a set 𝑂 of indoor objects, a distance threshold 𝜖 , the continuous social
distance monitoring (SDM) problem identifies the pairs of close contact
objects along with their earliest timestamp in close contact. Formally,

1391

SDM constantly generates the triplet in the form of (𝑜𝑖 , 𝑜 𝑗 , 𝑡) to a
result set 𝑅, satisfying ∀(𝑜𝑖 , 𝑜 𝑗 , 𝑡) ∈ 𝑅, 𝑜𝑖 , 𝑜 𝑗 ∈ 𝑂 ∧ 𝑜𝑖 ≠ 𝑜 𝑗 ∧
𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≤ 𝜖 and �(𝑜𝑖 , 𝑜 𝑗 , 𝑡 ′) ∈ 𝑅, 𝑡 ′ < 𝑡 .

We only report the first found timestamp in our setting to avoid

overwhelming results from some particular close contact object

pairs. Besidesmonitoring the distance-based condition𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)
≤ 𝜖 , we can easily extend our framework to consider other types

of conditions such as 𝑜𝑖 and 𝑜 𝑗 are located in the same room/floor.

2.3 Overall Framework for SDM
We propose an incremental approach for query processing, because

not every object update causes changes to the query result. Specif-

ically, when an insert/update of OIPT record arrives, we check if

it will affect the query result and compute the relevant indoor dis-

tances accordingly. Consequently, the query result will be updated

incrementally only based on those computed indoor distances.

At the current timestamp 𝑡𝑐 when a new OIPT record is received,

we need to identify the close contact object pairs within a short

future time interval. This is necessary because such a prediction

gives a reaction time for objects to avoid close contact. We define

the future prediction interval 𝑇FP as the time interval during which

we monitor and predict the contacts for the OIPT records at 𝑡𝑐 . That

is, we monitor and predict the distances between objects for time

interval [𝑡𝑐 , 𝑡𝑓] at time 𝑡𝑐 , where 𝑡𝑓 = 𝑡𝑐 + 𝑇FP . In practice, 𝑇FP is

a system parameter within [𝑇Min,𝑇Max]. If 𝑇FP < 𝑇Min, the close

contacts will only be predicted within the time interval [𝑡𝑐 , 𝑡𝑐 +𝑇FP],
not covering (𝑡𝑐 +𝑇FP , 𝑡𝑐 +𝑇Min]. This shortens the reaction time for

objects to avoid close contacts, rendering our contact predictions

less useful. In contrast, if 𝑇FP > 𝑇Max , a new OIPT record must

arrive before the timestamp 𝑡𝑐 +𝑇FP , which makes the prediction

after receiving the new update less meaningful. Figure 1 shows an

example of the three intervals, where 𝑡𝑐 is the current timestamp.

We set 𝑇Min = 5s, 𝑇FP = 10s and 𝑇Max = 20s. This ensures, at each

second, the contacts in the coming 10 seconds are being predicted,

and all records are at most 20 seconds old.

𝑡
𝑡!

𝑇!"# = 5

𝑡"

𝑇$% = 10

𝑇!&' = 20

𝑡#𝑡$
Figure 1: Example of time intervals.

Figure 2 shows the overall framework of the system. When a

new query is issued in the system, we compute the initial results.

The results of the query are stored in the main memory. As time

passes, the system receives the location updates from objects, and

the query result will be updated accordingly by the query updat-

ing/processing module. To compute concrete indoor distances, the

indoor distance calculation module is called by the query updat-

ing/processing module. The main modules are described as follows.

Query Updating/Processing Module computes the initial re-

sults when a new query is issued, and updates the results when

an object 𝑜𝑖 ’s location is updated in OIPT. To check whether 𝑜𝑖
is in contact with other objects, it retrieves the object locations

in OIPT, checks if any of them will have contact with 𝑜𝑖 during

Query Updating /
Processing Module

New Monitoring Query

OIPT

Query Result Notification Module

Indoor Topology

Distance Calculation
Module

Figure 2: Continuous monitoring query processing.

the prediction interval, and updates the query result accordingly.

As we can compute the initial result by adapting the range join

algorithm [43], we focus on how to efficiently maintain the result.

The efficient update computation will be detailed in Section 4.

Distance CalculationModule calculates the concrete distances
between two objects using the uncertain and discrete location esti-

mates in OIPT. The details will be introduced in Section 3.

Notification Module maintains the result as a list of triplets

(𝑜𝑖 , 𝑜 𝑗 , 𝑡) in the main memory, and notifies the users if they are

going to contact with others soon. If the timestamp in a triplet

expires, the module removes the triplet from the list. In addition, it

notifies the object to update its location when the object has been

determined or suspected to be in close contact with others.

3 INDOOR DISTANCE CALCULATIONS
3.1 Indoor Space Foundations
In an indoor space, we use partitions to refer to rooms, staircases or

hallways. They are the basic topological units in an indoor space

and are connected by doors. One can go from a partition to another

through their common doors. To capture the indoor topology, we

use the accessibility graph [29], and the mappings of 𝑃2𝐷 and 𝐷2𝑃 .

Specifically, given a door 𝑑𝑖 , 𝐷2𝑃 (𝑑𝑖) is mapped to two partitions

𝑝𝑖 and 𝑝 𝑗 such that one can enter and leave through 𝑑𝑖 . Inversely,

given a partition 𝑝𝑖 , 𝑃2𝐷 (𝑝𝑖) maps 𝑝𝑖 to the set of doors through

which one can enter or leave 𝑝𝑖 .

Given two doors 𝑑𝑖 and 𝑑 𝑗 , we use |𝑑𝑖 , 𝑑 𝑗 |𝐼 to denote the distance
of the indoor shortest path from 𝑑𝑖 to 𝑑 𝑗 . Following the existing

study [43], given two indoor points 𝑝 and 𝑞, we use |𝑞, 𝑝 |𝐼 to denote
the distance of the indoor shortest path from 𝑞 to 𝑝 . Let 𝐷 (𝑞) be
the set of doors of the partition that 𝑞 is located in. We have

|𝑞, 𝑝 |𝐼 = min

𝑑𝑞 ∈𝐷 (𝑞),𝑑𝑝 ∈𝐷 (𝑝)
(|𝑞, 𝑑𝑞 |𝐸 + |𝑑𝑞, 𝑑𝑝 |𝐼 + |𝑑𝑝 , 𝑝 |𝐸) (1)

where |𝑞, 𝑑𝑞 |𝐸 and |𝑑𝑝 , 𝑝 |𝐸 are the Euclidean distance from 𝑞 to 𝑑𝑞
and that from 𝑑𝑝 to 𝑝 , respectively. In practice, depending on the

concrete layout within a partition, we can adopt other distance

metrics such as obstacle distance [53] and Manhattan distance. For

example, when the partition is an empty space (e.g., in a gallery

hall), the Euclidean distance can be used. When the partition is an

office space with rows of desks and chairs, Manhattan distance can

be adopted.When the partition has furniture of irregular shapes, the

obstacle distance is more appropriate. Nevertheless, our framework

adapts to the aforementioned spatial distance types.

To speed up the indoor distance computation, we utilize three in-

dexes in this paper. (1) The door-to-door distance matrix 𝐷2𝐷 [29]

where 𝐷2𝐷 [𝑖] [𝑗] stores |𝑑𝑖 , 𝑑 𝑗 |𝐼 . (2) The distance index matrix

1392

v1

v2

v3

o1

𝑈𝑅(𝑜! , 𝑡")𝑈𝑅(𝑜! , 𝑡#)

d1 d2

d3

o2

𝑈𝑅(𝑜$, 𝑡")𝑈𝑅(𝑜$, 𝑡$)

d5

v5

v4
𝑈𝑅(𝑜% , 𝑡&)

o3
d4

𝑈𝑅(𝑜# , 𝑡")

o5

𝑈𝑅(𝑜' , 𝑡")

o6

𝑈𝑅(𝑜" , 𝑡")

o4

𝑈𝑅(𝑜% , 𝑡")

𝑈𝑅(𝑜% , 𝑡%)

x

𝑈𝑅(𝑜' , 𝑡&)

v6

d6
x

Figure 3: A running example.

𝐷2𝐷id [29], where 𝐷2𝐷id [𝑖] [𝑘] stores the ID of a door whose in-

door distance from 𝑑𝑖 is the 𝑘-th shortest among all doors. We build

𝐷2𝐷 and 𝐷2𝐷id following [29]. (3) The partition-to-partition dom-

inating door matrix 𝑃2𝑃 , which is constructed as follows. Given

two partitions 𝑝𝑖 and 𝑝 𝑗 , we say 𝑑do ∈ 𝑃2𝐷 (𝑝𝑖) is a dominating
door if the shortest path for any point in 𝑝𝑖 to reach 𝑝 𝑗 must pass

through 𝑑do . The shortest path computation utilizes the matrices

𝐷2𝐷 and 𝐷2𝐷id . To build 𝑃2𝑃 , for each pair of partitions 𝑝𝑖 and

𝑝 𝑗 , we set 𝑃2𝑃 [𝑖] [𝑗] = 𝑑do if there exists a door 𝑑do in 𝑃2𝐷 (𝑝𝑖)
having the smallest distance to all doors 𝑑 𝑗 in 𝑃2𝐷 (𝑝 𝑗). Otherwise,
𝑃2𝑃 [𝑖] [𝑗] = ∅.

3.2 Uncertainty Regions of Moving Objects
The OIPT keeps an object 𝑜𝑖 ’s location estimate 𝑙𝑖 = ⊙(𝑐𝑖 , 𝑟𝑖) at the
latest reporting time 𝑡𝑙𝑖 . For a newer timestamp 𝑡 > 𝑡𝑙𝑖 , the object’s

location becomes further uncertain. To model 𝑜𝑖 ’s possible location

at time 𝑡 , we adapt the indoor uncertainty region from a previous

study [24] as follows. We expand the circular region ⊙(𝑐𝑖 , 𝑟𝑖) at 𝑡𝑙𝑖
outwardly by an indoor distance 𝑠max · (𝑡 −𝑡𝑙𝑖), where 𝑠max denotes

the maximum moving speed of all indoor objects
2
. The resultant

region is denoted as𝑈𝑅(𝑜𝑖 , 𝑡). Unlike the study [24] that expands

the uncertainty region from a single positioned point (i.e., 𝑟𝑖 = 0),

we expand the uncertainty region from its boundary. Since location

estimates usually manifest a certain degree of positioning errors,

our modeling of uncertainty regions better captures real scenarios.

Given two timestamps 𝑡1 > 𝑡2 > 𝑡𝑙𝑖 , it is easy to see𝑈𝑅(𝑜𝑖 , 𝑡𝑙𝑖) =
⊙(𝑐𝑖 , 𝑟𝑖) ⊆ 𝑈𝑅(𝑜𝑖 , 𝑡2) ⊆ 𝑈𝑅(𝑜𝑖 , 𝑡1). Note that the location estimates

modeled as circular regions are not affected by the underlying doors

and partitions, but the expansion of indoor uncertainty regionsmust

consider the topological restriction formed by doors and partitions.

Example 2. Figure 3 shows 6 objects corresponding to the OIPT in
Table 2. Consider the object 𝑜1 whose location estimate is ⊙(𝑐1, 3) at
the latest reporting time 𝑡𝑙1 = 𝑡4. Its uncertainty region𝑈𝑅(𝑜1, 𝑡4) is
the circle with solid circumference that overlaps partitions 𝑣2 and 𝑣3.
For a newer time 𝑡6 > 𝑡4, its uncertainty region 𝑈𝑅(𝑜1, 𝑡6) expands
to the concentric circle enclosed by the dashed circumference.

2
E.g., 𝑠max can be the maximum walking speed when the objects are people. While

𝑠max is the same for all objects in this paper, our framework can support individualized

𝑠max s for different objects.

Type 2: Directly
Connected Regions

Type 1: One
Single Region

Type 3: Indirectly
Connected Regions

UR expands to
another partition

All sub-regions
connect to

core partition

UR expands to be not
directly connected to

core partition

Figure 4: Indoor uncertain object type diagram.

Given an object 𝑜𝑖 , we use core partition to denote the partition

that 𝑐𝑖 is located in, and uncertainty sub-regions to refer to the dif-

ferent portions of an uncertainty region inside different partitions.

Accordingly, we differentiate three types of objects:

Type 1 (One Single Region): The object and its uncertainty region
lie in the core partition only. In Figure 3, 𝑜2 and 𝑜4 are of type 1 at

time 𝑡6.

Type 2 (Directly Connected Regions): The object’s uncertainty
region spans multiple partitions, and all sub-regions are connected

to the core partition by doors. In Figure 3, 𝑜6 is of type 2 at time 𝑡6,

since its uncertainty sub-regions overlap with partitions 𝑣5 and 𝑣6,

and they are connected by door 𝑑6.

Type 3 (Indirectly Connected Regions): The object’s uncertainty
region spans multiple partitions, while there exist at least one sub-

region that is not directly connected to the core partition by any

door. In Figure 3, 𝑜1 and 𝑜5 are of type 3 at time 𝑡6. For either of

them, its uncertainty sub-regions are not directly connected.

Object types enable us to design different pruning techniques

for computing and bounding the distances between different types

of objects, as to be discussed in Section 4.1.

We then discuss how object types may vary as the time elapses

and uncertainty regions expand. Figure 4 depicts the transitions,

for which the conditions are summarized as follows.

• When a type 1 object expands its uncertainty region to another

partition, it becomes a type 2 object (e.g., 𝑜3 at time 𝑡6).

• When a type 2 object expands its uncertainty region to a partition

that is indirectly connected to the core partition, it becomes a

type 3 object (e.g., 𝑜3 has a part of its uncertainty region in 𝑣5 at

time 𝑡9, which is indirectly connected to the core partition 𝑣4).

• When a type 3 object expands its uncertainty region such that all

sub-regions connected to the core partition directly, it becomes

a type 2 object (e.g., the two sub-regions of 𝑜5 connect through

door 𝑑2 at time 𝑡9).

Example 3. Figure 5 shows the temporal view of three objects.
Consider 𝑜3. At time 𝑡3, it is of type 1, as its uncertainty region is only
located inside 𝑣4. At time 𝑡6, it is of type 2, as its uncertainty region
overlaps with both 𝑣3 and 𝑣4. At time 𝑡9, it becomes of type 3, as its
uncertainty sub-region inside 𝑣5 is indirectly connected to 𝑣4.

Algorithm 1 shows the procedure of determining an object 𝑜𝑖 ’s

types in its life time. It returns a list of tuples which each specifies

a time interval for its type. Specifically, it maintains the variables

curType and nextType storing the types of 𝑜𝑖 in the current and

next intervals, respectively. It first finds 𝑜𝑖 ’s initial type based on

the current location estimate (line 1), and performs an iterative

process to determine the duration for each interval (lines 2 to 14).

Consider an iteration. It determines the duration of curType as

1393

𝑡
𝑡!

𝑇"#$

𝑜%
𝑜&

𝑜'

𝑡(𝑡'𝑡& 𝑡)

T3

T1

T1 T3T2

Figure 5: Temporal view of objects 𝑜1, 𝑜2 and 𝑜3 (𝑡𝑐 = 𝑡4).

follows. If curType = TYPE1, it finds the minimum time needed

for 𝑜𝑖 to expand its uncertainty region to another partition, and

sets nextType to TYPE2 (lines 3 to 5). If curType = TYPE2, it finds
the minimum time for 𝑜𝑖 to expand to a partition that is indirectly

connected to its core partition, and sets nextType to TYPE3 (lines
6 to 8). If curType = TYPE3, it finds the minimum duration needed

for all sub-regions to connect to the core partition directly, and sets

nextType to TYPE2 (lines 9 to 11). If such a case does not exist, the

duration is set to 𝑇Max . The interval is then inserted into the list

Types, and the iteration is repeated until all types’ intervals have

been determined. Finally, Types is returned as the result.

Algorithm 1 findObjTypes(𝑜𝑖)

1: curType← get initial type of 𝑜𝑖 ; 𝑡𝑠 ← 𝑡𝑙𝑖 ; 𝑡𝑒 ← 𝑡𝑙𝑖

2: while 𝑡𝑠 < 𝑡𝑙𝑖 +𝑇Max do
3: if curType = TYPE1 then
4: 𝑚𝑖𝑛𝐷 ← min𝑑∈𝐷 (𝑃 (𝑐𝑖)) |𝑐𝑖 , 𝑑 |𝐸 ; Δ𝑡 ← (𝑚𝑖𝑛𝐷 − 𝑟𝑖)/𝑠max
5: nextType← TYPE2
6: else if curType = TYPE2 then
7: Δ𝑡 ← duration to expand to an indirectly connected partition

8: nextType← TYPE3
9: else
10: Δ𝑡 ← duration for all sub-regions to connect directly

11: nextType← TYPE2
12: if Δ𝑡 > 𝑇Max then 𝑡𝑒 ← 𝑡𝑙𝑖 +𝑇Max else 𝑡𝑒 ← 𝑡𝑠 + Δ𝑡
13: Types.insert(curType, [𝑡𝑠 , 𝑡𝑒))
14: curType← nextType; 𝑡𝑠 ← 𝑡𝑒

15: return Types

3.3 Expected Indoor Distance
Consider an uncertain object 𝑜𝑖 at time 𝑡 . The exact location of 𝑜𝑖
can be modeled as a random variable 𝑙 associated with a probability
density function (pdf). The pdf can be represented by either a closed

form equation [8, 9], or a set of discrete samples [25, 43]. In this

paper, we adopt the discrete sample representation, as it has the

advantage of modeling arbitrary distributions, such as the distance

decay functions (DDFs) [24]. That is, given a moving object 𝑜𝑖
at time 𝑡 , we have a set of pairs {(𝑜𝑚

𝑖
, 𝑜𝑚
𝑖
.𝜌𝑡)}, where 𝑜𝑚𝑖 is the

𝑚-th sample located inside 𝑈𝑅(𝑜𝑖 , 𝑡) and 𝑜𝑚
𝑖
.𝜌𝑡 is its existential

probability at time 𝑡 , satisfying
∑
𝑜𝑚
𝑖
∈𝑜𝑖 𝑜

𝑚
𝑖
.𝜌𝑡 = 1.

Sample-based representation can be generated by many indoor

object movement prediction models such as HiddenMarkov Models

(HMM) [31, 34, 37], Mixed Markov Models (MMM) [3], particle

filters [11, 12], and Bayesian Networks [33]. Thus, those models

can be used to determine the existential probabilities of the samples.

As the moving objects can be in anywhere in their correspond-

ing uncertainty region, the inter-object distance is probabilistic in

nature. Thus, we utilize the expected indoor distance to measure

the distance. Based on the discrete sample representation, we define

the expected indoor distance for moving objects as follows.

Definition 1 (Expected indoor distance [43]). Given a times-
tamp 𝑡 and two moving objects 𝑜𝑖 and 𝑜 𝑗 , the expected indoor distance
between 𝑜𝑖 and 𝑜 𝑗 at 𝑡 is:

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) = E𝑜𝑚
𝑖
∈𝑈𝑅 (𝑜𝑖 ,𝑡),𝑜𝑛𝑗 ∈𝑈𝑅 (𝑜 𝑗 ,𝑡) (|𝑜

𝑚
𝑖 , 𝑜

𝑛
𝑗 |𝐼)

=
∑︁

𝑜𝑚
𝑖
∈𝑈𝑅 (𝑜𝑖 ,𝑡)

∑︁
𝑜𝑛
𝑗
∈𝑈𝑅 (𝑜 𝑗 ,𝑡)

|𝑜𝑚𝑖 , 𝑜
𝑛
𝑗 |𝐼 · 𝑜

𝑚
𝑖 .𝜌𝑡 · 𝑜𝑛𝑗 .𝜌𝑡 (2)

Above, the number of samples in 𝑜𝑖 and 𝑜 𝑗 are proportional to

the area of their uncertainty regions. Note that the expected in-

door distance defined in [43] only considers the samples from static

uncertainty regions. In contrast, our definition on the expected dis-

tance is time-parameterized such that it can estimate the distances

for two moving objects with expanding uncertainty regions.

Based on the types of the object pair, we use different formulas

to calculate the 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡).
(I) Type 1 Object Pairs.When both 𝑜𝑖 and 𝑜 𝑗 are type 1 objects,

we have the following three cases.

• Case 1 (both objects are located at the same partition). In this

case, all samples are in the same partition. We simply use the

Euclidean distance to compute 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) as∑︁
𝑜𝑚
𝑖
∈𝑈𝑅 (𝑜𝑖 ,𝑡)

∑︁
𝑜𝑛
𝑗
∈𝑈𝑅 (𝑜 𝑗 ,𝑡)

|𝑜𝑚𝑖 , 𝑜
𝑛
𝑗 |𝐸 · 𝑜

𝑚
𝑖 .𝜌𝑡 · 𝑜𝑛𝑗 .𝜌𝑡 (3)

• Case 2 (all samples of 𝑜𝑖 have the same door sequence to all

samples of 𝑜 𝑗). In this case, we can reuse the shortest distance

information for all pairs and compute 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) as∑︁
𝑜𝑚
𝑖
∈𝑈𝑅 (𝑜𝑖 ,𝑡)

|𝑜𝑚𝑖 , 𝑑𝑖 |𝐸 · 𝑜𝑚𝑖 .𝜌𝑡 + |𝑑𝑖 , 𝑑 𝑗 |𝐼 +
∑︁

𝑜𝑛
𝑗
∈𝑈𝑅 (𝑜𝑗 ,𝑡)

|𝑑 𝑗 , 𝑜𝑛𝑗 |𝐸 · 𝑜𝑛𝑗 .𝜌𝑡 (4)

where 𝑑𝑖 and 𝑑 𝑗 are the doors of the partition containing 𝑜𝑖 and

𝑜 𝑗 , respectively.

• Case 3 (otherwise). In this case, we need to consider all pairs of

samples and compute 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) as∑︁
𝑜𝑚
𝑖
∈𝑈𝑅 (𝑜𝑖 ,𝑡)

∑︁
𝑜𝑛
𝑗
∈𝑈𝑅 (𝑜 𝑗 ,𝑡)

|𝑜𝑚𝑖 , 𝑜
𝑛
𝑗 |𝐼 · 𝑜

𝑚
𝑖 .𝜌𝑡 · 𝑜𝑛𝑗 .𝜌𝑡 (5)

(II) Object Pairs Involving Type 2 or Type 3 Object. Let 𝑁 𝑡
𝑖

be the number of uncertainty sub-regions that 𝑜𝑖 has at time 𝑡 .

We have 𝑜𝑖 = ∪1≤𝑎≤𝑁 𝑡
𝑖
𝑜𝑖 [𝑎], where each 𝑜𝑖 [𝑎] corresponds to the

sub-region in a different partition and it consists of a set of samples.

In this case, we calculate the distance separately for each pair of

sub-regions, using the above Equations 3, 4 or 5. Specifically, with

a slight abuse of notation, we compute 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) as∑︁𝑁 𝑡
𝑖

𝑎=1

∑︁𝑁 𝑡
𝑗

𝑏=1

(
𝑑𝑖𝑠𝑡 (𝑜𝑖 [𝑎], 𝑜 𝑗 [𝑏], 𝑡)

)
(6)

Based on the above discussion, we present distCalc function
(formalized in Algorithm 2) that calculates the expected indoor

distance between 𝑜𝑖 and 𝑜 𝑗 at a time 𝑡 . Specifically, it first checks

whether both 𝑜𝑖 and 𝑜 𝑗 are type 1 objects. If so, it computes the

distances between 𝑜𝑖 and 𝑜 𝑗 according to the case they belong to

1394

Algorithm 2 distCalc(𝑜𝑖 , 𝑜 𝑗 , 𝑡)

1: dist ← 0

2: if 𝑁 𝑡
𝑖
= 1 and 𝑁 𝑡

𝑗
= 1 then ⊲ Type 1 Object Pair

3: 𝑝𝑖 ← 𝑃 (𝑜𝑖) ; 𝑝 𝑗 ← 𝑃 (𝑜 𝑗)
4: if 𝑝𝑖 = 𝑝 𝑗 then ⊲ Case 1

5: for each sample pair (𝑜𝑚
𝑖
, 𝑜𝑛

𝑗
) ∈ 𝑈𝑅 (𝑜𝑖 , 𝑡) ×𝑈𝑅 (𝑜 𝑗 , 𝑡) do

6: dist ← dist + |𝑜𝑚
𝑖
, 𝑜𝑛

𝑗
|𝐸 · 𝑜𝑚𝑖 .𝜌𝑡 · 𝑜𝑛𝑗 .𝜌𝑡

7: else if 𝑃2𝑃 [𝑖] [𝑗] ≠ ∅ and 𝑃2𝑃 [𝑗] [𝑖] ≠ ∅ then ⊲ Case 2

8: 𝑑𝑖 ← 𝑃2𝑃 [𝑖] [𝑗]; 𝑑 𝑗 ← 𝑃2𝑃 [𝑗] [𝑖]
9: dist ← 𝑑𝑖𝑠𝑡 + |𝑑𝑖 , 𝑑 𝑗 |𝐼
10: for each sample 𝑜𝑚

𝑖
∈ 𝑈𝑅 (𝑜𝑖 , 𝑡) do

11: dist ← dist + |𝑜𝑚
𝑖
, 𝑑𝑖 |𝐸 · 𝑜𝑚𝑖 .𝜌𝑡

12: for each sample 𝑜𝑛
𝑗
∈ 𝑈𝑅 (𝑜 𝑗 , 𝑡) do

13: dist ← dist + |𝑑 𝑗 , 𝑜𝑛𝑗 |𝐸 · 𝑜𝑛𝑗 .𝜌𝑡
14: else ⊲ Case 3

15: for each sample pair (𝑜𝑚
𝑖
, 𝑜𝑛

𝑗
) ∈ 𝑈𝑅 (𝑜𝑖 , 𝑡) ×𝑈𝑅 (𝑜 𝑗 , 𝑡) do

16: dist ← dist + |𝑜𝑚
𝑖
, 𝑜𝑛

𝑗
|𝐼 · 𝑜𝑚𝑖 .𝜌𝑡 · 𝑜𝑛𝑗 .𝜌𝑡

17: else ⊲ Object Pair Involving Type 2 or Type 3 Object

18: for each sub-region pair (𝑜𝑖 [𝑎], 𝑜 𝑗 [𝑏]) do
19: dist ← dist + distCalc(𝑜𝑖 [𝑎], 𝑜 𝑗 [𝑏], 𝑡)
20: return dist

(lines 2–16). In Case 2, the 𝑃2𝑃 index and pre-computed door-to-

door distances (see Section 3.1) are used to accelerate the com-

putation (lines 8–9). Otherwise, it computes the distance by sum-

ming up the distances for each sub-region pair (obtained by calling

distCalc(·)). Finally, it returns dist as the result.
As object types change with time, it is possible that the formula

used for calculating 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) changes with time. In any case,

we need to find the shortest distance for every pair of samples from

𝑜𝑖 and 𝑜 𝑗 , which requires O(𝑚 ·𝑛 ·𝑇FP) shortest distance calculations
for each object pair. In Section 4, we will discuss effective pruning

techniques and algorithms to avoid expensive computations.

4 COMPUTATION APPROACH
In this section, we present the computation approach employed in

the query updating/processing module for maintaining the result

continuously as objects are updated. In particular, we propose sev-

eral effective pruning techniques in Section 4.1, and based on these

techniques, we develop an efficient query updating algorithm and

batch processing algorithm in Sections 4.2 and 4.3, respectively.

4.1 Pruning
In fact, not all object pairs at all timestamps in the prediction in-

terval need to be considered. In the following, we consider floor-

based, topology-based, and probability-based prunings to reduce

the number of candidate object pairs for which we need to compute

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡).

4.1.1 Floor-based Pruning.
We lower bound the expected distance between the object pairs that

are on different floors. In fact, staircases are crucial in determining

the bound, because an object must go through one of the staircases

to reach the other floors. If the object is far away from the staircases,

it cannot visit and contact the objects on other floors under the

maximum speed constraint. Let 𝑐𝑖 and 𝑐 𝑗 be the center point of 𝑙𝑖

and 𝑙 𝑗 , respectively, the skeleton distance [43] is computed as

|𝑐𝑖 , 𝑐 𝑗 |𝐾 =

|𝑐𝑖 , 𝑐 𝑗 |𝐸 , if 𝑐𝑖 .𝑓 = 𝑐 𝑗 .𝑓 ;

min𝑠𝑐𝑖 ∈𝑆𝐶 (𝑐𝑖 .𝑓),
𝑠𝑐 𝑗 ∈𝑆𝐶 (𝑐 𝑗 .𝑓)

(
|𝑐𝑖 , 𝑠𝑐𝑖 |𝐸+

|𝑠𝑐𝑖 , 𝑠𝑐 𝑗 |𝐼 + |𝑠𝑐 𝑗 , 𝑐 𝑗 |𝐸
)
, otherwise.

where 𝑆𝐶 (𝑓) is the set of staircase doors in the 𝑓 -th floor. It was

proved in the study [43] that |𝑐𝑖 , 𝑐 𝑗 |𝐾 ≤ |𝑐𝑖 , 𝑐 𝑗 |𝐼 . We utilize this

definition and give the following lemma for pruning.

Lemma 1 (Time-parameterized Skeleton Distance Bound).

Given two objects 𝑜𝑖 , 𝑜 𝑗 and a time 𝑡 , let Δ𝑖 (𝑡) = 𝑡 − 𝑡𝑙𝑖 and Δ𝑖 𝑗 (𝑡) =
Δ𝑖 (𝑡) +Δ 𝑗 (𝑡), we have the following skeleton distance bound function.

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 = |𝑐𝑖 , 𝑐 𝑗 |𝐾 − 𝑟𝑖 − 𝑟 𝑗 − 𝑠max · Δ𝑖 𝑗 (𝑡) (7)

Proof. As proved in the study [43] that 𝑑 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≥ |𝑐𝑖 , 𝑐 𝑗 |𝐼 −
𝑟𝑖 − 𝑟 𝑗 for 𝑡 = 𝑡𝑙𝑖 = 𝑡𝑙 𝑗 . Thus, 𝑑 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≥ |𝑐𝑖 , 𝑐 𝑗 |𝐾 − 𝑟𝑖 − 𝑟 𝑗 as
|𝑐𝑖 , 𝑐 𝑗 |𝐼 ≥ |𝑐𝑖 , 𝑐 𝑗 |𝐾 . As the maximum moving speed is 𝑠max , we

have that in the worst case 𝑜𝑖 can move 𝑠max · Δ𝑖 (𝑡) since 𝑡𝑙𝑖 . The
same applies to 𝑜 𝑗 . Combining the above, we have 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≥
|𝑐𝑖 , 𝑐 𝑗 |𝐾 − 𝑟𝑖 − 𝑟 𝑗 − 𝑠max (Δ𝑖 (𝑡) + Δ 𝑗 (𝑡)) = 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 . □

Consider an object 𝑜𝑖 located on the floor 𝑜𝑖 .𝑓 . Based on the

above lemma, we propose to filter the objects in OIPT that cannot

contribute to a contact pair with 𝑜𝑖 as follows. Let |𝑐𝑖 , 𝑠𝑑𝑘 |𝐼 be the
minimum indoor distance from 𝑐𝑖 to one of the staircases’ doors

in 𝑜𝑖 .𝑓 , and 𝑙𝑒𝑛𝑆𝐶 be the length of a stairway (i.e., the distance

between two adjacent floors). If |𝑐𝑖 , 𝑠𝑑𝑘 |𝐼 + 𝑟𝑖 + 2 · 𝑠max · Δ𝑖 (𝑡) + 𝜖 <

𝑙𝑒𝑛𝑆𝐶 · |𝑜𝑖 .𝑓 − 𝑓 ′ |, where |𝑜𝑖 .𝑓 − 𝑓 ′ | is the floor number difference

between 𝑜𝑖 .𝑓 and 𝑓 ′, we do not need to process the objects on the

𝑓 ′-th floor at time 𝑡 , as the objects on 𝑓 ′-th floor are too far away

to reach 𝑜𝑖 . In practice, this simple pruning is effective since it can

restrict the search space of processing 𝑜𝑖 to 𝑜𝑖 ’s nearby floors only.

4.1.2 Topology-based Pruning.
Given an object 𝑜𝑖 and some other objects 𝑜 𝑗 ∈ 𝑂 , the topology-
based pruning removes those candidate object pairs that have

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) > 𝜖 for some timestamps 𝑡 , and includes the pairs

that must be in contact within the prediction interval. In other

words, we want to identify those tuples (𝑜𝑖 , 𝑜 𝑗 , 𝑡) such that 𝑜𝑖 and

𝑜 𝑗 always have their expected distance to each other greater or

smaller than 𝜖 at time 𝑡 .

Specifically, we consider the topological distance bounds be-

tween each object pair. For different types of objects, different

pruning bounds are applied. We first consider the simple case that

both 𝑜𝑖 and 𝑜 𝑗 are type 1 objects (i.e., both objects’ uncertainty

regions only overlap with one partition). Inspired by the study [43],

we develop the following lemma.

Lemma 2 (Time-parameterized TopologicalDistance Bounds

for Type 1 Object Pairs). Given two type 1 objects 𝑜𝑖 , 𝑜 𝑗 and a
timestamp 𝑡 , we have the following distance bounds for 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡).

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 = |𝑐𝑖 , 𝑐 𝑗 |𝐼 − 𝑟𝑖 − 𝑟 𝑗 − 𝑠max · Δ𝑖 𝑗 (𝑡)
𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵 = |𝑐𝑖 , 𝑐 𝑗 |𝐼 + 𝑟𝑖 + 𝑟 𝑗 + 𝑠max · Δ𝑖 𝑗 (𝑡)

s.t. 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 ≤ 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≤ 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵
Proof. As proved in the study [43] that 𝑑 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≥ |𝑐𝑖 , 𝑐 𝑗 |𝐼 −

𝑟𝑖 − 𝑟 𝑗 for 𝑡 = 𝑡𝑙𝑖 = 𝑡𝑙 𝑗 . We proceed to prove 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≥

1395

|𝑐𝑖 , 𝑐 𝑗 |𝐼 − 𝑟𝑖 − 𝑟 𝑗 − 𝑠max ·Δ𝑖 𝑗 (𝑡) for all 𝑡s. Given the maximum speed

𝑠max , we know that in the worst case 𝑜𝑖 can move 𝑠max ·Δ𝑖 (𝑡) since
𝑡𝑙𝑖 . The same applies to 𝑜 𝑗 . Thus, we have

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≥ |𝑐𝑖 , 𝑐 𝑗 |𝐼 − 𝑟𝑖 − 𝑟 𝑗 − 𝑠max · Δ𝑖 𝑗 (𝑡) = 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵
The case for 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵 is similar and thus is omitted due to

the page limit. □

As 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 (resp. 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵) is monotonic decreas-

ing (resp. increasing) as time passes, we find the timestamp 𝑡𝐿𝐵
(resp. 𝑡𝑈𝐵) that 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 = 𝜖 (resp. 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵 = 𝜖).

Based on the relationship between 𝑡𝐿𝐵 , 𝑡𝑈𝐵 , 𝑡𝑐 and 𝑡𝑓 , we discuss

the following cases.

• Case 1 (𝑡𝐿𝐵 > 𝑡𝑓): We can safely prune this pair as we have

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) > 𝜖 for any time 𝑡 ∈ [𝑡𝑐 , 𝑡𝑓].
• Case 2 (𝑡𝐿𝐵 < 𝑡𝑐): It is possible that 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≤ 𝜖 for 𝑡 ∈
[𝑡𝑐 , 𝑡𝑓]. There are two sub-cases.

– (a) (𝑡𝑈𝐵 ≥ 𝑡𝑐): We simply insert the tuple (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑐) into
the result, since we know that 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑐) < 𝜖 , and we

terminate the search on this pair.

– (b) (𝑡𝑈𝐵 < 𝑡𝑐): We add the pair as a candidate pair and check

the distances in the interval [𝑡𝑐 , 𝑡𝑓].
• Case 3 (𝑡𝐿𝐵 ∈ [𝑡𝑐 , 𝑡𝑓]): We separate the time interval into two

sub-intervals. The interval [𝑡𝑐 , 𝑡𝐿𝐵] can be safely pruned, similar

to Case 1. The interval [𝑡𝐿𝐵, 𝑡𝑓] needs to be handled in a way

similar to Case 2. Figure 6 shows an example in this case.

We proceed to consider the bounds for a pair of type 2 objects. In

fact, we can easily generalize the bounds in Lemma 2 by modifying

the definition of 𝑟𝑖 to be the maximum indoor distance among all

distances from 𝑐𝑖 to the boundary of the uncertainty regions.

For a pair of type 3 objects, we treat each uncertainty sub-region

of an object as a type 1 object and utilize Lemma 2, with the follow-

ing adaption. Consider a sub-region 𝑜𝑖 [𝑎]. Let 𝑃 (𝑜𝑖 [𝑎]) denotes the
partition in which 𝑜𝑖 [𝑎] is located in. We create a fictitious center

𝑐 ′
𝑖
with the same position as 𝑐𝑖 (but still located inside 𝑃 (𝑜𝑖 [𝑎])),

and set the radius 𝑟𝑖 to be the Euclidean distance from 𝑐𝑖 to the

boundary of 𝑜𝑖 [𝑎]. An example is shown in Figure 7, where the

sub-region 𝑜𝑖 [2] is located at 𝑣2 with the center 𝑐 ′
𝑖
. While 𝑐 ′

𝑖
is ac-

tually outside 𝑜𝑖 [2], we need to connect it to the doors of 𝑃 (𝑜𝑖 [2])
first when computing its indoor distances to the points in other

partitions. Then, we have the following lemma.

Lemma 3 (Time-parameterized TopologicalDistance Bounds

for Type 3 Object Pairs). Given two type 3 objects 𝑜𝑖 , 𝑜 𝑗 and a
timestamp 𝑡 , we have the following distance bounds for 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡).

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 = min

1≤𝑎≤𝑁 𝑡
𝑖
,1≤𝑏≤𝑁 𝑡

𝑗

𝑑𝑖𝑠𝑡 (𝑜𝑖 [𝑎], 𝑜 𝑗 [𝑏], 𝑡)𝐿𝐵

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵 = max

1≤𝑎≤𝑁 𝑡
𝑖
,1≤𝑏≤𝑁 𝑡

𝑗

𝑑𝑖𝑠𝑡 (𝑜𝑖 [𝑎], 𝑜 𝑗 [𝑏], 𝑡)𝑈𝐵

s.t. 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 ≤ 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≤ 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵

Proof. We first prove the case for 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 . Consider a
sub-region 𝑜𝑖 [𝑎]. If 𝑃 (𝑐𝑖) = 𝑃 (𝑜𝑖 [𝑎]), it is similar to the proof in

Lemma 2. Otherwise, we prove as follows. Let 𝐷 (𝑜𝑖 [𝑎]) be the

set of doors associated with 𝑃 (𝑜𝑖 [𝑎]), 𝑑𝑖 be a door in 𝐷 (𝑜𝑖 [𝑎]),
and 𝑥 be a point in 𝑜𝑖 [𝑎]. By the triangle inequality, we have

|𝑐 ′
𝑖
, 𝑑𝑖 |𝐸 − |𝑐 ′𝑖 , 𝑥 |𝐸 ≤ |𝑥, 𝑑𝑖 |𝐸 . Also, we know that |𝑐 ′

𝑖
, 𝑥 |𝐸 ≤ 𝑟𝑖 . We

then have |𝑐 ′
𝑖
, 𝑑𝑖 |𝐸 − 𝑟𝑖 ≤ |𝑥, 𝑑𝑖 |𝐸 . Thus, 𝑑𝑖𝑠𝑡 (𝑜𝑖 [𝑎], 𝑜 𝑗 [𝑏], 𝑡)𝐿𝐵 ≤

𝑡
𝑡! 𝑡"

𝑑𝑖𝑠𝑡 𝑜# , 𝑜$, 𝑡 %&

𝑑𝑖𝑠𝑡

𝜀
𝑑𝑖𝑠𝑡 𝑜# , 𝑜$, 𝑡 '&

𝑡'&

Figure 6:
Time-parameterized
topological bounds.

𝑜![2]
𝑜! [1]

d1

d3

𝑐′!

d2

𝑟!

v1 v2

Figure 7: The
sub-region 𝑜𝑖 [2] and
its fictitious center 𝑐 ′

𝑖
.

𝑑𝑖𝑠𝑡 (𝑥, 𝑜 𝑗 [𝑏], 𝑡) for all points 𝑥 ∈ 𝑜𝑖 [𝑎]. The same applies for 𝑜 𝑗 [𝑏].
The case for𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵 is similar, but utilizing another triangle

inequality |𝑐 ′
𝑖
, 𝑑𝑖 |𝐸 + |𝑐 ′𝑖 , 𝑥 |𝐸 ≥ |𝑥, 𝑑𝑖 |𝐸 . □

So far, Lemmas 2 and 3 handle a pair of objects that are of static

and identical types. To make the lemmas generic to all object pairs,

we discuss the following two extensions, namely object type change

and different object types in a pair.

Object Type Change. As we discussed in Section 3.2, the type of

an object could change during its lifetime. In this case, we simply

perform separated checking for each sub-interval segmented by

the timestamp(s) when an object changes its type. Suppose that

an object changes its type twice, from type 1 to type 2 at a time

𝑡𝑒1 ∈ [𝑡𝑐 , 𝑡𝑓], and from type 2 to type 3 at a time 𝑡𝑒2 ∈ [𝑡𝑐 , 𝑡𝑓].
Then, we perform the pruning for sub-intervals [𝑡𝑐 , 𝑡𝑒1), [𝑡𝑒1, 𝑡𝑒2)
and [𝑡𝑒2, 𝑡𝑓], separately.
Different Object Types in a Pair. Our pruning lemmas can be

easily extended to bound the distances for the object pair with

different types. For example, when 𝑜𝑖 is a type 3 object and 𝑜 𝑗 is a

type 1 object at time 𝑡 , we have the following distance lower bound.

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 = min
1≤𝑎≤𝑁 𝑡

𝑖
𝑑𝑖𝑠𝑡 (𝑜𝑖 [𝑎], 𝑜 𝑗 , 𝑡)𝐿𝐵

The distance of the object pairs with other different types can

be bounded in a similar way. It is easy to see that the correctness

of the bounds is not affected. We omit the complete list of bounds

with all possible type combinations here due to the space limit.

4.1.3 Probability-based Pruning.
We consider the probability distribution among the samples of

objects. First, we introduce the concept of 𝛽-region.

Definition 2 (𝛽-region [26, 27]). Given an object𝑜𝑖 , the 𝛽-region
of 𝑜𝑖 is a closed region such that 𝑜𝑖 locates inside this region with a
probability at least 𝛽 .

Recall that we defined 𝑜𝑚
𝑖
.𝜌𝑡 as the existential probability of

the sample 𝑜𝑚
𝑖

at a timestamp 𝑡 in Section 3.3. The 𝛽-region is

constructed as follows. Given a pre-defined region Φ ⊆ 𝑈𝑅(𝑜𝑖 , 𝑡)
for a timestamp 𝑡 , we set 𝛽 to be the sum of probabilities of discrete

samples inside Φ, i.e., 𝛽 =
∑
𝑜𝑚
𝑖
∈Φ 𝑜

𝑚
𝑖
.𝜌𝑡 . We use a circle to be the

shape of Φ, with center 𝑐𝑖 , and radius being the maximum distance

from 𝑐𝑖 of the samples. We extend the above definition to the time-

parameterized 𝛽-region.

Definition 3 (Time-parameterized 𝛽 (𝑡)-region). Given an
object 𝑜𝑖 and a timestamp 𝑡 ∈ [𝑡𝑐 , 𝑡𝑓], the time-parameterized 𝛽 (𝑡)-
region of 𝑜𝑖 is a closed region such that 𝑜𝑖 locates inside this region
with a probability at least 𝛽 (𝑡) at timestamp 𝑡 .

1396

𝑈𝑅(𝑜!, 𝑡")

𝛽#!
$!-region

𝑈𝑅(𝑜!, 𝑡%)

Region 𝑡2 𝑡4 𝑡6 · · ·
𝛽𝑡2 1 0.8 0.6 · · ·
𝛽𝑡4 - 1 0.7 · · ·
𝛽𝑡6 - - 1 · · ·

Figure 8: An example of 𝛽𝑡𝑐𝑜2 -region.

We construct a 𝛽 (𝑡)-region to be the region that is exactly the

same region as𝑈𝑅(𝑜𝑖 , 𝑡𝑝) for each timestamp 𝑡𝑝 ∈ [𝑡𝑐 , 𝑡𝑓], denoted
by 𝛽

𝑡𝑝
𝑖
(𝑡). When the uncertainty region of 𝑜𝑖 expands with 𝑡 , it is

easy to see that the probability 𝛽
𝑡𝑝
𝑖
(𝑡) decreases accordingly.

Example 4. An example of the 𝛽 (𝑡)-region of object 𝑜2 is shown
in Figure 8. Given the 𝛽𝑡2

2
(𝑡)-region (which is equal to𝑈𝑅(𝑜2, 𝑡2)), we

have 𝛽𝑡2
2
(𝑡4) = 0.8 and 𝛽𝑡2

2
(𝑡6) = 0.6.

We utilize the above definition and derive the following lemma.

Lemma 4 (Time-parameterized 𝛽-region bounds). Given two
objects 𝑜𝑖 , 𝑜 𝑗 , a timestamp 𝑡 and a timestamp 𝑡𝑝 < 𝑡 , we have

𝐿𝐵𝛽 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) = 𝛽
𝑡𝑝
𝑖
(𝑡)𝛽𝑡𝑝

𝑗
(𝑡) · 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑝)

+ (1 − 𝛽𝑡𝑝
𝑖
(𝑡)𝛽𝑡𝑝

𝑗
(𝑡)) 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵

𝑈𝐵𝛽 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) = 𝛽
𝑡𝑝
𝑖
(𝑡)𝛽𝑡𝑝

𝑗
(𝑡) · 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑝)

+ (1 − 𝛽𝑡𝑝
𝑖
(𝑡)𝛽𝑡𝑝

𝑗
(𝑡)) 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵

s.t. 𝐿𝐵𝛽 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≤ 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≤ 𝑈𝐵𝛽 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)
where 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 and 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵 are any lower and upper
bounds of 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡), respectively.

Proof. We prove the case for 𝐿𝐵𝛽 below. From Equation 2,

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) = 𝐸𝑜𝑚
𝑖
∈𝑈𝑅 (𝑜𝑖 ,𝑡),𝑜𝑛𝑗 ∈𝑈𝑅 (𝑜 𝑗 ,𝑡) (|𝑜

𝑚
𝑖 , 𝑜

𝑛
𝑗 |𝐼)

= 𝐸𝑜𝑚
𝑖
∈𝑈𝑅 (𝑜𝑖 ,𝑡𝑝),𝑜𝑛𝑗 ∈𝑈𝑅 (𝑜 𝑗 ,𝑡𝑝) (|𝑜

𝑚
𝑖 , 𝑜

𝑛
𝑗 |𝐼)

+ 𝐸𝑜𝑚
𝑖
∈𝑈𝑅 (𝑜𝑖 ,𝑡)\𝑈𝑅 (𝑜𝑖 ,𝑡𝑝),

𝑜𝑛
𝑗
∈𝑈𝑅 (𝑜 𝑗 ,𝑡)\𝑈𝑅 (𝑜 𝑗 ,𝑡𝑝)

(|𝑜𝑚𝑖 , 𝑜
𝑛
𝑗 |𝐼)

≥ 𝛽
𝑡𝑝
𝑖
(𝑡)𝛽𝑡𝑝

𝑗
(𝑡) · 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑝)

+ (1 − 𝛽𝑡𝑝
𝑖
(𝑡)𝛽𝑡𝑝

𝑗
(𝑡)) 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 = 𝐿𝐵𝛽

The case for𝑈𝐵𝛽 is similar and is omitted due to the page limit. □

To ease the computation, we simply derive 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 and

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵 in Lemma 4 based on the maximum moving speed

constraint, i.e.,

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 = 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑝) − 2 · 𝑠max · (𝑡 − 𝑡𝑝)
𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵 = 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑝) + 2 · 𝑠max · (𝑡 − 𝑡𝑝)

(8)

Consequently, we have

𝐿𝐵𝛽 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) = 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑝) − (1 − 𝛽
𝑡𝑝
𝑖
(𝑡)𝛽𝑡𝑝

𝑗
(𝑡)) 2 · 𝑠max (𝑡 − 𝑡𝑝)

𝑈𝐵𝛽 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) = 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑝) + (1 − 𝛽
𝑡𝑝
𝑖
(𝑡)𝛽𝑡𝑝

𝑗
(𝑡)) 2 · 𝑠max (𝑡 − 𝑡𝑝)

Based on the above lemma, we can use the distance computed

at the current timestamp to bound the distances for the future

timestamps. Specifically, after obtaining𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑝) at timestamp

𝑡𝑝 , we bound the distances 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) for all future timestamps

𝑡 ∈ (𝑡𝑝 , 𝑡𝑓]. For each such timestamp 𝑡 whose lower bound distance

is larger than 𝜖 , its distance calculation can be skipped safely. If the

distance is always smaller than 𝜖 during (𝑡𝑝 , 𝑡𝑓], the pair can be

safely pruned. Similarly, if the upper bound distance at 𝑡 is at most

𝜖 , we know that the triplet (𝑜𝑖 , 𝑜 𝑗 , 𝑡) must be in the result.

4.2 Query Update for One Object
We use the bounds and lemmas proposed above to efficiently gener-

ate the updated result of SDM. When an object 𝑜𝑖 updates/inserts,

we first determine the object’s type. Second, depending on the type

of object, we utilize the proposed pruning lemmas to remove the

pairs that are not possible to be in the result. Third, for the remain-

ing object pairs, we compute their indoor distances and insert the

contact pairs to the query results.

The queryUpdate algorithm is presented in Algorithm 3. Given

the updated location of 𝑜𝑖 , it returns the set of contact pairs involv-

ing 𝑜𝑖 . First, it filters the objects in OIPT that cannot contribute to

the result (line 2). This is done by examining the objects’ floors and

their skeleton distances (see Section 4.1.1). The qualified objects

are inserted into 𝑂 ′. Then, it checks the objects 𝑜 𝑗 ∈ 𝑂 ′ to see

whether a contact pair (𝑜𝑖 , 𝑜 𝑗) can be found (lines 3-6). For each

𝑜 𝑗 , it invokes the checkPair algorithm. If a triplet is returned, it is

added to 𝑅. Finally, the algorithm returns 𝑅.

The checkPair algorithm, which checks if a candidate object

pair (𝑜𝑖 , 𝑜 𝑗) is in contact in [𝑡𝑐 , 𝑡𝑓], is presented in Algorithm 4.

First, it invokes the findULBTime(·) to find the lower and upper

bound times (𝑡𝐿𝐵 and 𝑡𝑈𝐵 , respectively) that the pair is going to con-

tact (line 1). The procedure follows the discussion in Section 4.1.2.

If 𝑡𝐿𝐵 > 𝑡𝑓 , the pair cannot be in contact, and thus it returns ∅
immediately. If 𝑡𝑈𝐵 ≥ 𝑡𝑐 , the pair must be in contact at 𝑡𝑐 , and thus

it returns the triplet (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑐). Otherwise, it checks for each times-

tamp 𝑡 ∈ [𝑡𝑠 , 𝑡𝑓] (lines 5-10). For each 𝑡 , it obtains 𝐿𝐵𝛽 and𝑈𝐵𝛽 by

invoking betaBounds(·). This procedure computes the lower and

upper distance bounds of the candidate pair based on the discussion

in Section 4.1.3. If the candidate pair is not pruned, the 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)
is computed and the triplet (𝑜𝑖 , 𝑜 𝑗 , 𝑡) is returned if 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≤ 𝜖

(line 9). The algorithm returns ∅ if no contact is found.

Algorithm 3 queryUpdate(𝑜𝑖 , 𝑡𝑐 ,OIPT, 𝜖)

1: 𝑡𝑓 ← 𝑡𝑐 +𝑇FP
2: 𝑂′ ← filterObjs(𝑜𝑖 ,OIPT, 𝑡𝑐 , 𝑡𝑓 , 𝜖) ⊲ Floor-based Pruning

3: for each object 𝑜 𝑗 ∈ 𝑂′ do
4: triplet ← checkPair(𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑐 , 𝑡𝑓 , 𝜖)
5: if triplet ≠ ∅ then
6: 𝑅 ← 𝑅 ∪ {triplet }
7: return 𝑅

Algorithm 4 checkPair(𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑐 , 𝑡𝑓 , 𝜖)

1: (𝑡𝐿𝐵, 𝑡𝑈𝐵) ← findULBTime(𝑜𝑖 , 𝑜 𝑗 , 𝜖) ⊲ Topology-based Pruning

2: if 𝑡𝐿𝐵 > 𝑡𝑓 then return ∅
3: if 𝑡𝑈𝐵 ≥ 𝑡𝑐 then return (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑐)
4: 𝑡𝑠 ← max{𝑡𝑐 , 𝑡𝐿𝐵 }
5: for 𝑡 ∈ [𝑡𝑠 , 𝑡𝑓] do
6: (𝐿𝐵𝛽 ,𝑈 𝐵𝛽) ← betaBounds(𝑜𝑖 , 𝑜 𝑗 , 𝑡)⊲ Probability-based Pruning

7: if 𝐿𝐵𝛽 > 𝜖 then return ∅
8: if 𝑈𝐵𝛽 ≤ 𝜖 then return (𝑜𝑖 , 𝑜 𝑗 , 𝑡)
9: if 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡) ≤ 𝜖 then return (𝑜𝑖 , 𝑜 𝑗 , 𝑡)
10: return ∅

1397

4.3 Query Update based on Batch Processing
The above discussion handles the case that one object is updated

at each timestamp. We extend our techniques to handle multiple

object updating and inserting efficiently in a timestamp.

Consider a timestamp that there are multiple updating objects

objBatch = {𝑜1, 𝑜2, . . . , 𝑜𝑙 }, we process the objects in objBatch in

batch by the batchUpdate algorithm. It has four major steps.

• Step 1 (New Object Processing) finds the contact object

pairs among the objects in objBatch and stores them in 𝑅.

• Step 2 (Object Grouping) assigns the objects in objBatch
into different groups based on the result set 𝑅.

• Step 3 (Group Processing) processes each group with the

following two sub-steps to find the contact pairs: (i) finds

the candidate partitions and (ii) processes the active objects

in each candidate partition.

• Step 4 (Object Inserting) inserts all objects in objBatch into

OIPT for future processing timestamps.

The batch processing algorithm is shown in Algorithm 5. Next,

we present the details of Steps 1-3 (note that Step 4 is straight-

forward). In Step 1, it processes the object pairs among the new

objects in objBatch using the queryUpdate algorithm (lines 1-2 in

Algorithm 5). In Step 2, it puts the objects in objBatch into different

groups heuristically as follows. If two objects 𝑜𝑥 , 𝑜𝑦 are located

at the same partition, or if they have 𝑑𝑖𝑠𝑡 (𝑜𝑥 , 𝑜𝑦, 𝑡) ≤ 𝜖 for any

𝑡 ∈ [𝑡𝑐 , 𝑡𝑓], we put them into a group. A group 𝐺 can be viewed as

a “big” object with center 𝑐𝐺 equals to the mean of the object cen-

ters in that group, and the radius 𝑟𝐺 = max𝑜𝑖 ∈𝐺 (|𝑐𝐺 , 𝑐𝑖 |𝐸 + 𝑟𝑖). We

process the objects sequentially and obtain groups of close objects.

Step 3(i) processes each group to find candidate partitions. For

each group 𝐺𝑘 , it finds the candidate partitions by considering

the doors that connect to the partitions. Specifically, it finds all

doors 𝑑 𝑗 such that |𝑑𝑖 , 𝑑 𝑗 |𝐼 ≤ 2 · 𝑠max ·𝑇Max + 𝜖 + 𝑟𝑚𝑎𝑥 + 𝑟𝐺 , where
𝑑𝑖 ∈ 𝐷 (𝐺𝑘) is a door associated with the partitions that overlap

with𝐺𝑘 , and 𝑟𝑚𝑎𝑥 is the maximum radius among all objects in the

OIPT. Then, the partitions that are associated with such 𝑑 𝑗 s are

the candidate partitions. It can be proven that objects not in these

candidate partitions cannot form contact pairs with the objects in

the group. The objects in the candidate partitions form the set𝑂 ′ of
candidate objects (lines 6-7). To enable this pruning, we maintain,

for each partition 𝑝 , the pointers to the objects that each has its

location estimate overlapping with 𝑝 . This can be done efficiently

when the object is inserted or removed.

In Step 3(ii), it processes each group with the candidate objects

𝑜 𝑗 in𝑂
′
, and finds the resulting pairs. Since the objects in the group

might have different types, we use the loosest bounds (Lemma 3)

to determine 𝑑𝑖𝑠𝑡 (𝐺,𝑜 𝑗 , 𝑡)𝐿𝐵 and 𝑑𝑖𝑠𝑡 (𝐺,𝑜 𝑗 , 𝑡)𝑈𝐵 (lines 8-14 in Al-

gorithm 5). If the group is not pruned by the bounds, the objects in

the group are then processed one by one (lines 16-19). We evaluate

the effect of the batch processing strategy in our experiments.

4.4 Complexity Analysis
We first analyze the time complexity of Algorithm 4. Let𝑚 and 𝑛 be

the maximum number of discrete samples of 𝑜𝑖 and 𝑜 𝑗 , respectively.

Since we need to calculate O(𝑚 · 𝑛) indoor distances in the worst

case, its time complexity is O(|𝑇FP | ·𝑚 ·𝑛). Note that the actual num-

ber of such computations is much smaller given our topology-based

Algorithm 5 batchUpdate(objBatch, 𝑡𝑐 ,OIPT, 𝜖)

1: for each object 𝑜𝑖 ∈ objBatch do ⊲ Step 1

2: 𝑅 ← 𝑅 ∪ queryUpdate(𝑜𝑖 , 𝑡𝑐 , objBatch \ {𝑜𝑖 }, 𝜖)
3: G ← grouping(objBatch, 𝑅) ⊲ Step 2

4: 𝑑2𝑑𝑈𝐵 ← 2 · 𝑠max · 𝑇Max + 𝜖 + 𝑟𝑚𝑎𝑥

5: for each group𝐺𝑘 ∈ G do
6: 𝐷′ ← {𝑑 𝑗 | 𝑑𝑖 ∈ 𝐷 (𝐺𝑘) ∧ |𝑑𝑖 , 𝑑 𝑗 |𝐼 ≤ 𝑑2𝑑𝑈𝐵 + 𝑟𝐺 } ⊲ Step 3(i)

7: 𝑂′ ← {𝑜 | 𝑜.𝑙 ∩ 𝑝 ≠ ∅ ∧ 𝑑 𝑗 ∈ 𝐷′ ∧ 𝑝 ∈ 𝐷2𝑃 (𝑑 𝑗) }
8: for each object 𝑜 𝑗 ∈ 𝑂′ do ⊲ Step 3(ii)

9: (𝑡𝐿𝐵, 𝑡𝑈𝐵) ← findULBTime(𝐺𝑘 , 𝑜 𝑗 , 𝜖)
10: if 𝑡𝐿𝐵 > 𝑡𝑓 then return ∅
11: if 𝑡𝑈𝐵 ≥ 𝑡𝑐 then
12: for each 𝑜𝑖 ∈ 𝐺𝑘 do
13: 𝑅 ← 𝑅 ∪ (𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑐)
14: continue
15: 𝑡𝑠 ← max{𝑡𝑐 , 𝑡𝐿𝐵 }
16: for each 𝑜𝑖 ∈ 𝐺𝑘 do
17: triplet ← checkPair(𝑜𝑖 , 𝑜 𝑗 , 𝑡𝑠 , 𝑡𝑓 , 𝜖)
18: if triplet ≠ ∅ then
19: 𝑅 ← 𝑅 ∪ {triplet }
20: OIPT← OIPT ∪ {(𝑜𝑖 , 𝑙𝑖 , 𝑡𝑐) |𝑜𝑖 ∈ objBatch ∧ 𝑙𝑖 = 𝑜𝑖 .𝑙 } ⊲ Step 4

21: return 𝑅

pruning and probability-based pruning. Thus, the time complexity

of Algorithm 3 is O(|𝑂 ′ | · |𝑇FP | ·𝑚 · 𝑛), where |𝑂 ′ | << |𝑂 | by our

floor-based pruning. In addition, the time complexity of Algorithm 5

is O
(
(|objBatch|2 + |objBatch| · |𝑂 ′ |) · (|𝑇FP | ·𝑚 · 𝑛)

)
, since Step 1

processes the object pairs within objBatch, and Step 3 processes the

objects pairs (𝑜𝑖 , 𝑜 𝑗), where 𝑜𝑖 ∈ objBatch and 𝑜 𝑗 ∈ 𝑂 ′.
Recall that we use the indexes𝐷2𝐷 ,𝐷2𝐷id and 𝑃2𝑃 as introduced

in Section 3.1. The total space complexity of the indexes is O(2 ·
|𝐷 |2 + |𝑃 |2), where the matrices 𝐷2𝐷 and 𝐷2𝐷id occupy O(2 · |𝐷 |2),
and the matrix 𝑃2𝑃 ’s size is O(|𝑃 |2). Besides, each object occupies

O(𝑚 · 𝑇Max), as we need to maintain the discrete samples in its

uncertainty region and the corresponding probabilities at each

timestamp through its lifespan.

5 EXPERIMENTAL STUDIES
We test our SDM framework with the batch processing algorithm

BP. For comparison, we implement the following algorithms.

• BPM: The batch processing algorithm without the probability-

based pruning (Lemma 4). To allow a fair comparison, we employ

another time-parameterized distance-based pruning based on

the maximum moving speed. In particular, given a timestamp 𝑡𝑝 ,

the lower and upper bounds 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 and 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝑈𝐵
for any later time 𝑡 ∈ (𝑡𝑝 , 𝑡𝑓] are obtained based on Equation 8.

• QU: The close contact for each object is processed one by one

by calling the QueryUpdate algorithm (i.e., Algorithm 3).

• QUM: A QU variant whose probability-based pruning is replaced

by the maximum moving speed based pruning used by BPM.

Note that there is no straightforward adaption of the solutions

from [43] to our SDM problem, since (1) the nature of our problem

requires a continuous solution; and (2) their index and solutions

cannot handle the case that uncertainty regions expand with time.

All algorithms are implemented in Java and run on a Mac with a

2GHz Quad-Core Intel i5 CPU and 16GB memory.

1398

Table 3: Parameter Settings

Parameter Description Settings

|𝑂 | Object size 5k, 10k, 15k, 20k, 25k, 30k
𝜖 Distance threshold 1, 2, 3, 4, 5 (meters)

dia Maximum diameter of𝑈𝑅 (𝑜𝑖 , 𝑡𝑙𝑖) 2, 4, 6, 8, 10 (meters)

𝑇Min Shortest update interval 3, 5, 7, 9 (seconds)
𝑇Max Longest update interval 10, 15, 20, 25 (seconds)
𝑇FP Future prediction interval 5, 10, 15, 20 (seconds)
𝑁floor Number of floors 10, 20, 30

5.1 Results on Synthetic Data
5.1.1 Settings.
Indoor Space. Following [43], we use a floor plan based on a real

world shopping mall. Each floor is 600m × 600m with 100 rooms, 4

hallways and 4 staircases. We obtain 141 partitions and 220 doors

on each floor by decomposing those irregular hallways into smaller

but regular ones. To generate a larger floor plan, we duplicate the

floor 20 times, and obtain 2820 partitions and 4400 doors in total.

The stairways are used to connect the two adjacent floors, each

being 4m long. It takes less than 5 seconds to construct the indexes

𝐷2𝐷 , 𝐷2𝐷id and 𝑃2𝑃 . In total, the indexes use approximately 8MB

and are kept in the main memory.

Indoor Moving Objects. Following [24], we generate the indoor
moving objects by the data generator Vita [22], where the objects’

movements follow the random waypoint mobility model [16] with

a maximum speed constraint 𝑠𝑚𝑎𝑥 = 1𝑚/𝑠 . First, we distribute |𝑂 |
objects evenly in the indoor space. Second, we gradually insert

new objects as they enter the indoor space. In each second, the

probability of we have some new objects entering is 1/4. The number

of such entering objects follows the Poisson distribution with mean

𝜆 = 1. Third, we record the objects’ exact locations every second.

When an object updates, the corresponding location is used.

The probability 𝑝𝑟 of an object to update its location follows

the Geometric distribution, where 𝑝𝑟 = 1/(𝑇Max −𝑇Min) for each
second in [𝑇Min,𝑇Max]. An update replaces the old record in OIPT.

The object is removed from the OIPT if it is not updated in a 𝑇Max
time interval since its last update. Nevertheless, the total number

of objects in the OIPT remains roughly the same as time passes, as

new objects are gradually inserted.

Following [43], we model each object 𝑜𝑖 ’s uncertainty region at

𝑡𝑙𝑖 by a circle, with the diameter dia𝑖 picked uniformly at random

from [1, dia]. The pdf follows a Gaussian distribution with the

circle center as the mean, and (dia𝑖/6)2 as the variance. The initial
uncertainty region is represented by ten sampling points, and when

it enlarges as time passes, the number of sampling points increases

accordingly to maintain the same level of sampling density.

Queries.We simulate the monitoring query for an hour, and the

average processing time at each second is reported. For each setting,

we run 5 times and report the average performance. Table 3 lists

the parameter settings with default values in bold.

5.1.2 Efficiency Studies.
Effect of |𝑂 |. Figure 9 shows the results. As QU and QUM on

|𝑂 | = 30k take more than 2 seconds to run, the running times

are not shown for better readability. The running times of all al-

gorithms increase with an increasing |𝑂 |, as a larger |𝑂 | leads to

more candidate object pairs to be explored. Our BP runs faster than

the competitors, and the gap becomes larger when |𝑂 | increases,
which shows the effectiveness of our pruning techniques and batch

processing strategy. Moreover, BP (resp. QU) has a similar running

time trend to BPM (resp. QUM), and we attribute their difference

to the probability-based pruning described in Lemma 4.

Effect of dia. Figure 10 shows the results. The running times of all

algorithms increase with an increasing dia, since an object with a

larger dia is more likely to be involved in some candidate object

pairs with other objects. BP always runs faster than the competitors.

Moreover, BP (resp. QU) has a similar running time with BPM

(resp. QUM) when dia is small (i.e., dia = 2), but runs much faster

than BPM (resp. QUM) when dia is large. This could be explained by
the fact that when dia increases, the area of the initial uncertainty
region becomes larger, and thus the value of 𝛽 is larger. Thus,

the probability-based pruning is more effective and it reduces the

number of candidate pairs that need to be explored.

Effect of 𝜖. Figure 11 shows the results. The running times of

the algorithms are insensitive to the changes of 𝜖 . It is because

the search space of candidate objects from each object/group is

dominated by the diameter of the uncertainty region (which is up

to 𝑇FP · 𝑠max), and thus increasing 𝜖 does not affect the running

time. Moreover, BP always runs faster than the competitors.

Effect of 𝑇Min. Figure 12 shows the results. The running times of

BPM, QU and QUM decrease when𝑇Min increases. This is because a

larger 𝑇Min would lower the number of updates by the objects, and

thus reducing the total number of objects processed. BP’s running

time is stable and BP still outperforms the competitors, as the prun-

ing techniques enable BP to process the objects more efficiently.

Effect of 𝑇Max . Figure 13 shows the results. The running times of

the algorithms increase with an increasing 𝑇Max , which is because

the longer an object keeps alive, the more it has to compare with

other objects, and thus increasing the running time. Nevertheless,

BP runs consistently faster than its competitors, and it finishes

within 0.2s when 𝑇Max = 25.

Effect of 𝑇FP . Figure 14 shows the results. As QUM on 𝑇FP = 20

take more than 1.5 seconds to run, the running time is not shown

for better readability. The running times of the algorithms increase

with an increasing 𝑇FP , and BP (resp. QU) runs much faster than

BPM (resp. QUM). Since𝑇FP · 𝑠𝑚𝑎𝑥 is the maximum possible indoor

distance for which an object can traverse from its initial uncertainty

region, a larger 𝑇FP would lead to a looser distance lower bound

𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 , 𝑡)𝐿𝐵 , especially when the probability-based pruning is

absent, and thus limiting the pruning effectiveness.

Effect of 𝑁floor .We vary the number of floors while maintaining

the same number of objects in the dataset. The results are shown

in Figure 15. The running times of all algorithms decrease with an

increasing number of floors. It is because when the number of floors

increases, the average number of objects on each floor decreases.

As mentioned in Section 4.1, staircases enable an effective way to

reduce the number of candidate pairs, and distributing objects to

more floors will further boost this pruning effect.

Effect of DDF. Besides Gaussian distribution, we run BP with 5

different distance decay functions [24]. The results are shown in

Figure 16, where the full names of the DDF notations can be found

in Table 4. According to the results, the running times of different

DDFs are similar in general, while CL is usually the slowest. This is

1399

BP
QU

 BPM
 QUM

0

0.4

0.8

1.2

1.6

2.0

5k 10k 15k 20k 25k 30k

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of objects

Figure 9: Effect of |𝑂 |.

BP
QU

 BPM
 QUM

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10

R
u

n
n

in
g

 t
im

e
 (

s
)

dia

Figure 10: Effect of dia.

BP
QU

 BPM
 QUM

0

0.2

0.4

0.6

1 2 3 4 5

R
u

n
n

in
g

 t
im

e
 (

s
)

ε

Figure 11: Effect of 𝜖.

BP
QU

 BPM
 QUM

0

0.2

0.4

0.6

3 5 7 9

R
u

n
n

in
g

 t
im

e
 (

s
)

TMin

Figure 12: Effect of 𝑇Min.

BP
QU

 BPM
 QUM

0

0.2

0.4

0.6

10 15 20 25

R
u

n
n

in
g

 t
im

e
 (

s
)

TMax

Figure 13: Effect of 𝑇Max .

BP
QU

 BPM
 QUM

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20

R
u

n
n

in
g

 t
im

e
 (

s
)

TFP

Figure 14: Effect of 𝑇FP .

BP
QU

 BPM
 QUM

0

0.2

0.4

0.6

0.8

10 20 30

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of floors

Figure 15: Effect of 𝑁floor .

Guassian
 CL

 LDL

 I1PL
I2PL
 EDL

0

0.2

0.4

0.6

0.8

5k 10k 15k 20k 25k 30k

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of objects

Figure 16: Effect of DDF.

Table 4: Precision of Output based on Different DDFs

Precision
𝑤 = 3 𝑤 = 5 𝑤 = 10

Gaussian Distribution 0.4609 0.5683 0.6789

Constant Law (CL) 0.4622 0.5786 0.6972

Linear Decay Law (LDL) 0.5351 0.6508 0.7661

Inverse 1
𝑠𝑡

Power Law (I1PL) 0.4929 0.6049 0.7233

Inverse 2
𝑛𝑑

Power Law (I2PL) 0.5274 0.6318 0.7500

Exponential Decay Law (EDL) 0.5243 0.6438 0.7606

because the probability-based pruning is the least effective under

this function, since the 𝛽 values decrease most rapidly over time.

5.1.3 Effectiveness Study. We evaluate the effectiveness of the pro-

posed methods by comparing the prediction results with the actual

expected distances. The synthetic dataset is used which contains

the ground truth location for each object at each second. Thus, we

can compute the actual expected distances from their ground truth

locations. Specifically, we set 𝑇Min = 0 and the probability 𝑝𝑟 of an

object to update its location in each second to 1 in order to obtain

their locations every second. Consider a timestamp 𝑡 , we calcu-

late the pairwise distances for all pairs of objects by their actual

locations to find out those contacting pairs.

We evaluate the precision of the prediction. If the actual contact

happens within 𝑤 seconds after the predicted contact time, we

count it as a hit. Note that our monitoring output has a recall of 1

as all actual contacts will be found at 𝑡𝑐 . We run the experiment for

5 minutes using different DDFs.

The results for 𝑤 = {3, 5, 10} are shown in Table 4. According

to the results, an average of around 50% of the pairs actually make

the contacts within 3 seconds after the prediction, and around 70%

make the contacts within 10 seconds. This means that our contact

prediction algorithm is able to identify the future actual contacts.

5.2 Results on Real Data
Settings.Weused a realWi-Fi based positioning dataset [21], which

contains positioning records in a shoppingmall in Hangzhou, China

on 1 Jan, 2018. The shopping mall has 7-floor, with size of around

108m × 80m, and contains ten staircases, where each is approxi-

mately 20m long. There are 977 partitions connected by 1613 doors.

In total, the dataset contains 680,368 positioning records from 4,412

objects, spanning 24 hours. On average, an object updates its loca-

tion every 15 seconds. Thus, we set 𝑇Max = 30 seconds to take into

account the possibility of missing an update.

We focus on BP here since it outperforms the competitors ac-

cording to the previous experiments. We vary 𝑇FP in {5, 10, 15, 20}.
Effect of dia. Figure 17 shows the results. The running times of

all settings increase with an increasing dia, as more object pairs

need to be processed. The running time also increases when𝑇FP in-

creases. It is because a larger𝑇FP corresponds to a longer prediction

interval, and thus the number of candidate pairs at each timestamp

is increased accordingly.

Effect of 𝜖. Figure 18 shows the results. The running times of

all settings are insensitive to 𝜖 . This is because, when we search

candidate object pairs for an object or a group, only a small portion

of the search space is contributed by 𝜖 , while a much larger portion

comes from the diameter of the uncertainty region.

Effect of 𝑇Min. Figure 19 shows the results. The running times of

all settings decrease when 𝑇Min increases. The number of objects

updated in each second is smaller with a larger 𝑇Min, and fewer

object pairs need to be processed.

Effect of 𝑇Max . Figure 20 shows the results. The running times

increase as𝑇Max increases. This is because, as the objects stay alive

for a longer time, more candidate object pairs need to be processed,

thus increasing the processing time.

1400

TFP=5
TFP=10

TFP=15
TFP=20

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

R
u

n
n

in
g

 t
im

e
 (

s
)

dia

Figure 17: Effect of dia.

TFP=5
TFP=10

TFP=15
TFP=20

0

0.2

0.4

0.6

0.8

1 2 3 4 5

R
u

n
n

in
g

 t
im

e
 (

s
)

ε

Figure 18: Effect of 𝜖.

TFP=5
TFP=10

TFP=15
TFP=20

0

0.2

0.4

0.6

3 5 7 9

R
u

n
n

in
g

 t
im

e
 (

s
)

TMin

Figure 19: Effect of 𝑇Min.

TFP=5
TFP=10

TFP=15
TFP=20

0

0.2

0.4

0.6

15 20 25 30

R
u

n
n

in
g

 t
im

e
 (

s
)

TMax

Figure 20: Effect of 𝑇Max .

Table 5: Existing Indoor Continuous Queries

Object Continuous Distance
Query -aware

Probabilistic 𝑘NN [49] Moving (Online) -

√

Range and 𝑘NN [51] Moving (Online) -

√

Spatio-temporal Join [30] Moving (Historical) - -

Top-𝑘 Popular Location [23] Moving (Historical) - -

Top-𝑘 Dense Region [24] Moving (Online) - -

Distance-aware Join [42, 43] Moving (Online) -

√

Continuous Detour [38] Static

√
-

Continuous Range [52] Static

√ √

Continuous Range [48] Moving (Online)

√
-

SDM (this work) Moving (Online)

√ √

6 RELATEDWORK
Querying Moving Objects in Indoor Space. Lu et al. [29] de-

signed an indoor space model and an indexing framework to fa-

cilitate indoor shortest path finding. Shao et al. [39] proposed the

VIP-Tree and KP-Tree that enable efficient processing of indoor

shortest path queries and spatial keyword queries. Liu et al. [28]

proposed an indoor crowd model, and proposed the indoor crowd-

aware path queries that find the routes that are the fastest or least

crowded. Xie et al. [42, 43] studied the distance-aware join for in-

door moving objects. They designed a composite index scheme and

algorithms to answer the indoor range join query and 𝑘NN query.

Li et al. [24] studied the problems of finding the top-𝑘 popular loca-

tions from uncertain historical indoor positioning data. The authors

also studied searching for online indoor dense regions [23], where

the object location uncertainty is integrated into the definitions for

computing the density of the indoor regions. Yang et al. [49] pro-

posed the probabilistic threshold 𝑘NN query in indoor space. Yu et

al. [51] improved over previous works by proposing a particle filter

based method. Lu et al. [30] studied the spatial-temporal joins on

symbolic indoor tracking data. Although these works also studied

indoor moving objects, they are snapshot queries, i.e., these queries
cannot be used for continuously monitoring and the algorithms do

not involve dynamic result updates, and thus are not applicable to

our problem.

Salgado et al. [38] studied the continuous detour query in in-

door space. Yang et al. [48] studied the continuous monitoring of

moving objects in the symbolic indoor space and proposed an in-

frastructure for indoor range monitoring. Yuan and Schneider [52]

studied the continuous range query in an indoor space. None of

these works consider pairwise distances between objects that are

essential for our social distance monitoring problem.We summarize

and compare all existing queries and our SDM in Table 5.

Continuous Query in Outdoor Space. The continuous inter-

section join over moving objects was studied in [54, 55]. Tang et

al. [40] studied the distributed online tracking problem. Their fo-

cus is to minimize the communication cost between the tracker

(system) and the observers (objects), which is orthogonal to our

problem that focuses on the efficient computation in the system.

Xu et al. [45, 46] formulated the continuous range query over the

multi-attribute trajectories. A large number of works solve the con-

tinuous query problems by the safe region techniques [6, 7, 44]. A

comprehensive survey could be found in [36]. Hu et al. [13] aimed

at settling the location update issue and devised a common inter-

face to monitor mixed types of continuous spatial queries. Wang

et al. [41] investigated the problem of continuous spatial-keyword

query over streaming data. Chow et al. [10] designed a continuous

answer maintenance scheme to maintain a query answer.

Social Distancing and Contact Tracing. Chao et al. [5] studied

the trajectory contact search query for the contact tracing problem.

The query and algorithms are based on historical trajectories, and

thus are not applicable to our problem. Kato et al. [17] proposed a

trajectory-based private contact tracing system that checks whether

the user visits the infected location. Xu et al. [47] proposed a toolbox

called IMO for simulating and querying the infected query objects.

Some studies [1, 35, 50] measure and monitor the social distance

among people by analyzing surveillance videos using machine

learning and deep learning approaches.

7 CONCLUSION
In this paper, we studied continuous indoor social distance monitor-

ing (SDM). SDMmonitors and predicts the distances between object

pairs, and finds those pairs that will be in close contact soon. We

proposed a framework for SDM in an online setting, and developed

efficient algorithms to update the results. Extensive experiments

were conducted on both real and synthetic datasets. The results

verified the efficiency and scalability of our proposals.

For future work, we can take the environment of each room into

account to derive a tailor-made distance threshold for each room.

For example, the threshold for a room without ventilation should

be set to much smaller than a room with air purifiers. It is also

interesting to extend the framework to provide alternative route

suggestions to users who want to avoid contact with others.

ACKNOWLEDGMENTS
This work was supported by Independent Research Fund Denmark

(No. 8022-00366B). Hua Lu is the corresponding author.

1401

REFERENCES
[1] Imran Ahmed, Misbah Ahmad, Joel JPC Rodrigues, Gwanggil Jeon, and Sadia

Din. 2021. A deep learning-based social distance monitoring framework for

COVID-19. Sustainable Cities and Society 65 (2021), 102571.

[2] Oguzhan Alagoz, Ajay K Sethi, Brian W Patterson, Matthew Churpek, and Nasia

Safdar. 2021. Effect of timing of and adherence to social distancing measures

on COVID-19 Burden in the United States: A Simulation Modeling Approach.

Annals of internal medicine 174, 1 (2021), 50–57.
[3] Akinori Asahara, Kishiko Maruyama, Akiko Sato, and Kouichi Seto. 2011.

Pedestrian-movement prediction based on mixed Markov-chain model. In ACM
SIGSPATIAL. 25–33.

[4] Artur Baniukevic, Dovydas Sabonis, Christian S Jensen, and Hua Lu. 2011. Im-

proving wi-fi based indoor positioning using bluetooth add-ons. In MDM. IEEE,

246–255.

[5] Pingfu Chao, Dan He, Lei Li, Mengxuan Zhang, and Xiaofang Zhou. 2021. Effi-

cient Trajectory Contact Query Processing. In DASFAA. Springer, 658–666.
[6] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang, and

Wei Wang. 2010. Multi-guarded safe zone: An effective technique to monitor

moving circular range queries. In ICDE. IEEE, 189–200.
[7] Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, Wei Wang, and Wenjie

Zhang. 2009. Lazy updates: An efficient technique to continuously monitoring

reverse knn. Proceedings of the VLDB Endowment 2, 1 (2009), 1138–1149.
[8] Reynold Cheng, Dmitri V Kalashnikov, and Sunil Prabhakar. 2003. Evaluating

probabilistic queries over imprecise data. In SIGMOD. 551–562.
[9] Reynold Cheng, Dmitri V Kalashnikov, and Sunil Prabhakar. 2004. Querying

imprecise data in moving object environments. TKDE 9 (2004), 1112–1127.

[10] Chi-Yin Chow, Mohamed F Mokbel, and Hong Va Leong. 2011. On efficient and

scalable support of continuous queries in mobile peer-to-peer environments.

IEEE Transactions on Mobile Computing 10, 10 (2011), 1473–1487.

[11] Pavel Davidson, Jussi Collin, and Jarmo Takala. 2010. Application of particle

filters for indoor positioning using floor plans. In 2010 Ubiquitous Positioning
Indoor Navigation and Location Based Service. IEEE, 1–4.

[12] Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas

Jansson, Rickard Karlsson, and P-J Nordlund. 2002. Particle filters for positioning,

navigation, and tracking. IEEE Transactions on signal processing 50, 2 (2002),

425–437.

[13] Haibo Hu, Jianliang Xu, and Dik Lun Lee. 2005. A generic framework for

monitoring continuous spatial queries over moving objects. In SIGMOD. 479–
490.

[14] Peggy L Jenkins, Thomas J Phillips, Elliot J Mulberg, and Steve P Hui. 1992.

Activity patterns of Californians: use of and proximity to indoor pollutant sources.

Atmospheric Environment. Part A. General Topics 26, 12 (1992), 2141–2148.
[15] Christian S Jensen, Dan Lin, and Beng Chin Ooi. 2004. Query and update efficient

B+-tree based indexing of moving objects. In VLDB, Vol. 30. VLDB Endowment,

768–779.

[16] David B Johnson and David A Maltz. 1996. Dynamic source routing in ad hoc

wireless networks. In Mobile computing. Springer, 153–181.
[17] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2020. Secure and Effi-

cient Trajectory-Based Contact Tracing using Trusted Hardware. In 2020 IEEE
International Conference on Big Data (Big Data). IEEE, 4016–4025.

[18] Neil E Klepeis, William C Nelson, Wayne R Ott, John P Robinson, Andy M

Tsang, Paul Switzer, Joseph V Behar, Stephen C Hern, and William H Engelmann.

2001. The National Human Activity Pattern Survey (NHAPS): a resource for

assessing exposure to environmental pollutants. Journal of Exposure Science &
Environmental Epidemiology 11, 3 (2001), 231–252.

[19] Jayakanth Kunhoth, AbdelGhani Karkar, Somaya Al-Maadeed, and Abdulla Al-

Ali. 2020. Indoor positioning and wayfinding systems: a survey. Human-centric
Computing and Information Sciences 10, 1 (2020), 1–41.

[20] Sohee Kwon, Amit D Joshi, Chun-Han Lo, David A Drew, Long H Nguyen,

Chuan-Guo Guo, Wenjie Ma, Raaj S Mehta, Erica T Warner, Christina M Astley,

et al. 2020. Association of social distancing and masking with risk of COVID-19.

medRxiv (2020).

[21] Huan Li, Hua Lu, Gang Chen, Ke Chen, Qinkuang Chen, and Lidan Shou. 2020.

Toward translating raw indoor positioning data into mobility semantics. ACM
Transactions on Data Science 1, 4 (2020), 1–37.

[22] Huan Li, Hua Lu, Xin Chen, Gang Chen, Ke Chen, and Lidan Shou. 2016. Vita:

A versatile toolkit for generating indoor mobility data for real-world buildings.

Proceedings of the VLDB Endowment 9, 13 (2016), 1453–1456.
[23] Huan Li, Hua Lu, Lidan Shou, Gang Chen, and Ke Chen. 2018. Finding most

popular indoor semantic locations using uncertain mobility data. TKDE 31, 11

(2018), 2108–2123.

[24] Huan Li, Hua Lu, Lidan Shou, Gang Chen, and Ke Chen. 2018. In search of indoor

dense regions: An approach using indoor positioning data. TKDE 30, 8 (2018),

1481–1495.

[25] Xiang Lian and Lei Chen. 2008. Monochromatic and bichromatic reverse skyline

search over uncertain databases. In SIGMOD. 213–226.

[26] Xiang Lian and Lei Chen. 2008. Probabilistic group nearest neighbor queries in

uncertain databases. TKDE 20, 6 (2008), 809–824.

[27] Xiang Lian and Lei Chen. 2010. Similarity join processing on uncertain data

streams. TKDE 23, 11 (2010), 1718–1734.

[28] Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, and Lidan Shou.

2021. Towards crowd-aware indoor path planning. Proceedings of the VLDB
Endowment 14, 8 (2021), 1365–1377.

[29] Hua Lu, Xin Cao, and Christian S Jensen. 2012. A foundation for efficient indoor

distance-aware query processing. In ICDE. IEEE, 438–449.
[30] Hua Lu, Bin Yang, and Christian S Jensen. 2011. Spatio-temporal joins on

symbolic indoor tracking data. In ICDE. IEEE, 816–827.
[31] Wesley Mathew, Ruben Raposo, and Bruno Martins. 2012. Predicting future

locations with hidden Markov models. In Proceedings of the 2012 ACM conference
on ubiquitous computing. 911–918.

[32] Jignesh M Patel, Yun Chen, and V Prasad Chakka. 2004. STRIPES: an efficient

index for predicted trajectories. In SIGMOD. 635–646.
[33] Jan Petzold, Andreas Pietzowski, Faruk Bagci, Wolfgang Trumler, and Theo

Ungerer. 2005. Prediction of indoor movements using bayesian networks. In

International Symposium on Location-and Context-Awareness. Springer, 211–222.
[34] Pratap S Prasad and Prathima Agrawal. 2010. Movement prediction in wireless

networks using mobility traces. In 2010 7th IEEE Consumer Communications and
Networking Conference. IEEE, 1–5.

[35] Narinder Singh Punn, Sanjay Kumar Sonbhadra, Sonali Agarwal, and Gaurav Rai.

2020. Monitoring COVID-19 social distancing with person detection and tracking

via fine-tuned YOLO v3 and Deepsort techniques. arXiv preprint arXiv:2005.01385
(2020).

[36] Jianzhong Qi, Rui Zhang, Christian S Jensen, Kotagiri Ramamohanarao, and

Jiayuan He. 2018. Continuous spatial query processing: A survey of safe region

based techniques. ACM Computing Surveys (CSUR) 51, 3 (2018), 1–39.
[37] Shaojie Qiao, Dayong Shen, Xiaoteng Wang, Nan Han, and William Zhu. 2014.

A self-adaptive parameter selection trajectory prediction approach via hidden

Markov models. IEEE Transactions on Intelligent Transportation Systems 16, 1
(2014), 284–296.

[38] Chaluka Salgado, Muhammad Aamir Cheema, and Tanzima Hashem. 2019. Con-

tinuous Detour Queries in Indoor Venues. In SSTD. 150–159.
[39] Zhou Shao, Muhammad Aamir Cheema, David Taniar, Hua Lu, and Shiyu Yang.

2020. Efficiently Processing Spatial and Keyword Queries in Indoor Venues.

TKDE (2020).

[40] Mingwang Tang, Feifei Li, and Yufei Tao. 2015. Distributed online tracking. In

SIGMOD. 2047–2061.
[41] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. 2015.

Ap-tree: Efficiently support continuous spatial-keyword queries over stream. In

ICDE. IEEE, 1107–1118.
[42] Xike Xie, Hua Lu, and Torben Bach Pedersen. 2013. Efficient distance-aware

query evaluation on indoor moving objects. In ICDE. IEEE, 434–445.
[43] Xike Xie, Hua Lu, and Torben Bach Pedersen. 2014. Distance-aware join for

indoor moving objects. TKDE 27, 2 (2014), 428–442.

[44] Hongfei Xu, Yu Gu, Yu Sun, Jianzhong Qi, Ge Yu, and Rui Zhang. 2020. Efficient

processing of moving collective spatial keyword queries. The VLDB Journal 29,
4 (2020), 841–865.

[45] Jianqiu Xu, Zhifeng Bao, and Hua Lu. 2019. Continuous range queries over

multi-attribute trajectories. In ICDE. IEEE, 1610–1613.
[46] Jianqiu Xu, Zhifeng Bao, and Hua Lu. 2021. A Framework to Support Continuous

Range Queries over Multi-Attribute Trajectories. TKDE (2021).

[47] Jianqiu Xu, Hua Lu, and Zhifeng Bao. 2020. IMO: a toolbox for simulating and

querying" infected" moving objects. Proceedings of the VLDB Endowment 13, 12
(2020), 2825–2828.

[48] Bin Yang, Hua Lu, and Christian S Jensen. 2009. Scalable continuous range

monitoring of moving objects in symbolic indoor space. In ACM CIKM. 671–680.

[49] Bin Yang, Hua Lu, and Christian S Jensen. 2010. Probabilistic threshold k nearest

neighbor queries over moving objects in symbolic indoor space. In EDBT. 335–
346.

[50] Dongfang Yang, Ekim Yurtsever, Vishnu Renganathan, Keith A Redmill, and Ümit

Özgüner. 2021. A vision-based social distancing and critical density detection

system for COVID-19. Sensors 21, 13 (2021), 4608.
[51] Jiao Yu, Wei-Shinn Ku, Min-Te Sun, and Hua Lu. 2013. An RFID and particle

filter-based indoor spatial query evaluation system. In EDBT. 263–274.
[52] Wenjie Yuan and Markus Schneider. 2010. Supporting continuous range queries

in indoor space. In MDM. IEEE, 209–214.

[53] Jun Zhang, Dimitris Papadias, Kyriakos Mouratidis, and Manli Zhu. 2004. Spatial

queries in the presence of obstacles. In EDBT. Springer, 366–384.
[54] Rui Zhang, Dan Lin, Kotagiri Ramamohanarao, and Elisa Bertino. 2008. Continu-

ous intersection joins over moving objects. In ICDE. IEEE, 863–872.
[55] Rui Zhang, Jianzhong Qi, Dan Lin, Wei Wang, and Raymond Chi-Wing Wong.

2012. A highly optimized algorithm for continuous intersection join queries over

moving objects. The VLDB Journal 21, 4 (2012), 561–586.

1402

