[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Improving VQA via Dual-Level Feature Embedding Network

    Yaru Song*, Huahu Xu, Dikai Fang

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 397-416, 2024, DOI:10.32604/iasc.2023.040521 - 11 July 2024

    Abstract Visual Question Answering (VQA) has sparked widespread interest as a crucial task in integrating vision and language. VQA primarily uses attention mechanisms to effectively answer questions to associate relevant visual regions with input questions. The detection-based features extracted by the object detection network aim to acquire the visual attention distribution on a predetermined detection frame and provide object-level insights to answer questions about foreground objects more effectively. However, it cannot answer the question about the background forms without detection boxes due to the lack of fine-grained details, which is the advantage of grid-based features. In… More >

  • Open Access

    ARTICLE

    Multi-Model Fusion Framework Using Deep Learning for Visual-Textual Sentiment Classification

    Israa K. Salman Al-Tameemi1,3, Mohammad-Reza Feizi-Derakhshi1,*, Saeed Pashazadeh2, Mohammad Asadpour2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2145-2177, 2023, DOI:10.32604/cmc.2023.040997 - 30 August 2023

    Abstract Multimodal Sentiment Analysis (SA) is gaining popularity due to its broad application potential. The existing studies have focused on the SA of single modalities, such as texts or photos, posing challenges in effectively handling social media data with multiple modalities. Moreover, most multimodal research has concentrated on merely combining the two modalities rather than exploring their complex correlations, leading to unsatisfactory sentiment classification results. Motivated by this, we propose a new visual-textual sentiment classification model named Multi-Model Fusion (MMF), which uses a mixed fusion framework for SA to effectively capture the essential information and the… More >

  • Open Access

    ARTICLE

    Fast Sentiment Analysis Algorithm Based on Double Model Fusion

    Zhixing Lin1,2, Like Wang3,4, Xiaoli Cui5, Yongxiang Gu3,4,*

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 175-188, 2021, DOI:10.32604/csse.2021.014260 - 23 December 2020

    Abstract Nowadays, as the number of textual data is exponentially increasing, sentiment analysis has become one of the most significant tasks in natural language processing (NLP) with increasing attention. Traditional Chinese sentiment analysis algorithms cannot make full use of the order information in context and are inefficient in sentiment inference. In this paper, we systematically reviewed the classic and representative works in sentiment analysis and proposed a simple but efficient optimization. First of all, FastText was trained to get the basic classification model, which can generate pre-trained word vectors as a by-product. Secondly, Bidirectional Long Short-Term More >

Displaying 1-10 on page 1 of 3. Per Page