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Abstract

Conventional image processing and machine learning based on handcrafted fea-
tures struggle to meet the real-time and high-accuracy requirements for industrial
defect detection in complex, sensitive, and dynamic environments. To address
this issue, this paper proposes AENet, a novel real-time defect detection net-
work based on an encoder-decoder model, which achieves high detection accuracy
and efficiency while demonstrating good convergence and generalization. Firstly,
A spatial channel attention (SCA) module in the encoding network is designed
to integrate spatial attention and channel attention using a multi-head 3D
self-attention mechanism. This improves parallelism and detection efficiency. Sec-
ondly, the decoding network of AENet incorporates the Cross-Level Attention
Fusion (CLAF) module, which fuses input features from different layers. Com-
bined with multi-level upsampling, this enhances the representation of defect
features. Furthermore, we insert a simplified aggregator into the encoder-decoder
network of AENet to extract feature information at different scales with low
computational cost. This aggregation process aids in training and inference on
industrial defect datasets by incorporating contextual information. Extensive
experimental results demonstrate that AENet outperforms other segmentation
models in accomplishing defect recognition and segmentation in challenging opti-
cal environments. It exhibits a faster convergence than other networks and a
balance between accuracy and speed. It achieves a recognition precision of over
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96% for almost all types of defects in the actual industrial environment on the
NVIDIA Tesla V100 GPU.

Keywords: Encoder-decoder model, Attention mechanism, Attention fusion,
Industrial defect detection

1 Introduction

Defect detection technology has become an important aspect in the manufacturing
industry. Surface defects are inevitable during the product processing. They have a
detrimental impact on the appearance quality and service life of industrial products.
Therefore, detecting surface defects is an essential part of product quality control.
Conventional surface defect detection often require a significant amount of manpower
and resources. Besides, it usually suffers from issues such as low detection efficiency
and poor accuracy. In recent years, machine vision-based detection methods have
gradually replaced manual labor due to their advantages of high precision, real-time
capabilities, and strong objectivity. This has become a developmental trend in surface
defect detection technology [1–5]. Machine vision-based detection methods are now
widely applied in various fields, including industrial production, medicine, and military
security.

In the actual industrial environment, compared to the surfaces of smooth materi-
als such as Liquid Crystal Display (LCD), Polypropylene (PP), and precision optical
components, photographs of metal surfaces often exhibit phenomena such as uneven
illumination, strong reflections, and significant background noise [3, 6]. Additionally,
advanced defect assessment standards not only require determining the presence of
surface defects but also obtaining precise measurements of their size and type. The
random and unpredictable shapes of metal surface defects make it impractical to apply
visual-semantic methods used in optical character recognition (OCR) [7] or gener-
ate reference images through conditional generative models [8]. This poses significant
challenges for real-time detection of metal surface defects.

Currently, machine vision techniques for surface defect detection mainly rely on
conventional image processing and machine learning. Conventional image processing
methods detect and segment defects based on the principle of local abnormality reflec-
tion. They can be further categorized into structural methods, threshold methods,
spectral methods, and model-based methods [9–11]. These methods require setting
multiple thresholds or boundary conditions in the algorithms to identify various types
of defects. However, these thresholds or boundary conditions are highly sensitive
to factors such as lighting conditions and background colors, lacking adaptability
to real-world detection environments. In different detection environments, they need
adjustment, and the detection algorithms may even require redesigning. The com-
monly used machine learning methods are mostly based on handcrafted features or
shallow learning techniques. Learning methods based on handcrafted features necessi-
tate manual design and annotation of features. Shallow learning techniques may lack
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sufficient discriminative power for complex environmental features, leading to underfit-
ting and overfitting issues when dealing with a large amount of complex data. Both of
these approaches are often tailored to specific scenarios, lacking adaptability, real-time
capability, and robustness in real-world metal defect detection environments.

To address the above issues, this paper proposes an industrial complex surface
defect detection network based on deep neural networks: AENet (Attention-based
Encoder-Decoder Network). AENet adopts an encoder-decoder architecture and inte-
grates spatial attention, channel attention, cross-level attention mechanisms, along
with a simplified aggregator. This design achieves higher detection accuracy and effi-
ciency while demonstrating good convergence and generalization capabilities. The
main contributions of this paper are as follows:

1. AENet, a real-time network for metal surface defect edge enhancement and detec-
tion, is designed based on an encoder-decoder structure. In the encoder, the edge
attention module (SCA) is inserted, which incorporates a multi-head spatial atten-
tion mechanism that integrates local and global attention in multiple dimensions.
It increases the parallelism and detection efficiency.

2. AENet incorporates a simple aggregator, MPP, between the encoder and decoder
to aggregate global information at a lower computational cost. It acquires image
information from different levels to ensure high inference accuracy.

3. The decoder includes the Cross-Level Attention Fusion Module (CLAF), which uti-
lizes spatial attention to achieve weighted fusion of cross-level features and combines
multi-level upsampling to enhance the representation of defect features.

4. Inference results on real industrial datasets demonstrate that AENet achieves the
learning process more efficiently. AENet performs well in aluminum surface defect
detection and segmentation under industrial environmental conditions, achieving a
recognition precision of over 96%. It ensures both inference segmentation accuracy
and exhibits excellent real-time capability and robustness. On the public datasets
Vehicle component defect and CrackForest, it achieves mIoU (mean Intersection
over Union) of 67.56% and 82.00%, respectively.

2 Related work

2.1 Encoder-decoder based work

As a neural network model, the encoder-decoder architecture holds great potential in
machine vision for metal defect detection. Its image feature extraction and encoding-
decoding characteristics make it capable of achieving high detection accuracy and
reliability, making it suitable for metal surface defect detection.

Boukdir et al. [12] proposed a text generation method based on an encoder-decoder
model. The encoder and decoder utilize Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) structures, respectively. Experimental results on
a sign language dictionary dataset demonstrated that this model can generate highly
clear text and exhibits high accuracy and fluency. Lin et al. [13] introduced a wafer
pattern counting, detection, and classification method based on an encoder-decoder
Convolutional Neural Network (CNN) architecture. The encoder network extracts
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features from the wafer patterns, and the decoder network performs counting, detec-
tion, and classification. Wang et al. [14] proposed a high-precision unmanned aerial
vehicle (UAV) localization algorithm based on an encoder-decoder model, utilizing
point cloud super-resolution and image semantic segmentation as auxiliary techniques.
Jie et al. [15] presented a novel Convolutional Neural Network (CNN) model for
object detection, which combines Atrous Spatial Pyramid Pooling (ASPP) with an
encoder-decoder structure.

The aforementioned works all utilize encoder-decoder models for image feature
extraction, applying different neural network models to various detection environ-
ments, achieving high detection accuracy and efficiency. Encoder-decoder models have
the capability to adaptively extract features from a large amount of data and exhibit
strong generalization ability on new data. However, they are susceptible to interfer-
ence from detection environments, particularly in metal industrial production lines
where the environmental conditions are generally poor.

2.2 Attention-based work

The attention mechanism refers to a data-based transfer learning approach used in
deep learning models, which distinguishes different parts of the learned data during
training. Its function is to assign different weights to different parts of the input data,
allowing the deep learning model to focus more on important regions while reducing
interference from irrelevant information.

In the fields of natural language processing and image processing, the attention
mechanism has achieved significant performance improvements in modeling sequence
data and classifying data. Wang et al. [16] proposed an object detection algorithm
based on cascaded feature fusion and multi-level self-attention mechanism. The cas-
caded feature fusion method is used to extract features with different abstraction
levels, and the multi-level self-attention mechanism enhances the representation abil-
ity of feature expressions. Togo et al. [17] also introduced a multi-scale subway tunnel
image defect detection algorithm based on spatial attention mechanism. Peng et al.
[18] presented a novel textile defect detection network based on attention mechanism
and multi-task fusion.

The above works all introduce a single local attention mechanism, enabling the
model to focus more on local regions, thus improving detection accuracy. However,
single attention mechanisms are often designed based on specific scenarios and may
not adapt well to different deep learning tasks and application scenarios.

2.3 Attention fusion

Attention fusion combines multiple attention mechanisms to achieve comprehensive
modeling and exploration of data across different dimensions and features. For various
deep learning tasks and application scenarios, appropriate attention fusion methods
can significantly enhance the performance of the model.

Some researchers have proposed different attention fusion methods, such as CBAM
(Channel and Spatial Attention Module) [19], SENet (Squeeze and Excitation Net-
works) [20], and GLAM (Global Local Attention Model) [21]. In the process of
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implementing attention fusion, conventional methods concatenate or parallel different
attention mechanisms, such as SAGAN (Self-Attention Generative Adversarial Net-
works) [22] and CBAM-ResNet [23]. Furthermore, some researchers have developed
iterative and recursive-based attention fusion methods, such as BAN (Bi-Directional
Attention Network) [24] and SAN (Stacked Attention Networks) [25]. These methods
enhance the accuracy and robustness of the fused attention mechanisms but introduce
complex network structures, which may affect the real-time capability of inference
tasks.

To address real-time industrial defect detection tasks in complex production envi-
ronments, we propose a deep neural network based on an encoder-decoder structure
that integrates multiple attention mechanisms. This approach achieves high detection
accuracy and efficiency while demonstrating excellent convergence and generalization
capabilities.

3 Algorithm design

This section firstly provides a detailed introduction to the proposed network architec-
ture of AENet. It then introduces the attention-enhanced mechanism for metal surface
defect detection in the encoder called the Spatial Channel Attention Enhancement
module (SCA). Next, the Simplified Multi-Scale Pooling module (MPP) is presented,
which enhances the model’s receptive field. Finally, the Cross-Level Attention Fusion
module (CLAF) in the decoder is introduced.

3.1 Network architecture

The main model of AENet proposed in this paper is shown in Figure 1. AENet
primarily consists of three major modules: encoder, aggregator, and decoder.

Given an input image with a size of C×H×W, AENet utilizes a lightweight
network called STDCNet [26] as the backbone encoder to extract hierarchical fea-
tures. STDCNet consists of 5 stages. Stage 1 and 2 are simple convolution-batch
normalization-pooling implementations. Stage 3/4/5 are more complicated structures.
Each of them is separated into several blocks. Among them, downsampling is imple-
mented in the first block, in which the feature size compression can be achieved. The
position encoding module is commonly used in semantic recognition networks to iden-
tify the meaning of longer words. Here in AENet, we use position encoding to classify
defects of different shapes. Additionally, the SCA module is introduced in the encod-
ing structure, which incorporates an edge attention enhancement mechanism. This
allows the network to not only learn global features but also achieve precise recogni-
tion of local regions in the image, enhancing robustness in defect recognition under
poor lighting conditions. The SCA module is added as branches to the downsampling
blocks in stage 3/4/5.

AENet employs the aggregator MPP to extract information from different scales
in the input feature maps. MPP takes the output features of the encoder as input and
generates a globally enriched feature map for the decoder. The decoder of AENet is
designed using the FLD structure [27], consisting of three upsampling layers and two
CLAF stacks. The upsampling layers are used to reduce the channel dimension and
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Fig. 1 Architecture of AENet

restore the image size. CLAF is employed to fuse low-level and high-level features for
better restoration of defect features. In the segmentation head, the sample features
with 1/8th of the original size are dimensionally reduced to reduce the computational
cost when preserving core features. Subsequently, the feature size is expanded to match
the input image through upsampling for pixel-level classification. The design of channel
of features in the decoder achieves a balance in computational cost with the encoder.

3.2 Attention-enhancement mechanism

In this paper, we insert the SCA module as a branch in the backbone network of
the AENet encoder to enhance the representation of both global and local features,
accomplishing the attention-enhancement mechanism. The attention enhancement is
mainly achieved through the fusion of spatial attention and channel attention, which
operate in different dimensions. The detailed structure of the SCA module is shown
in Figure 2. The input features of the SCA module can be described as Equation (1).

X = {Xi}H×W

i=1
∈ RC×H×W (C = dmodel) (1)

Here, C, W, and H represent the number of feature channels, the width, and the
height of the feature map, respectively. dmodel represents the dimensionality of the
encoder’s output features. The SCA module mainly performs four operations on the
input feature map x, including (a) feature acquisition across different channels, (b)
updating the feature map based on spatial dependencies, (c) constructing multidi-
mensional weights fused with attention, and (d) adding broadcast elements for feature
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fusion. The logical algorithm can be represented by Equation (2).

yi = Concat(xi, wv2
· RELU(LN(wv1

·
∑

∀j

(

·
∑

∀m

eWkxm

)−1

· eWkxj · xj))) (2)

x and y represent the inputs and outputs of the global up-down module, respec-
tively, with the same feature size. i is the index of the query position. j and m
enumerate the positions of all pixels. wv1

, wv2
, and wk represent linear transforma-

tions achieved through 1×1 convolutions. LN(·) denotes the normalization layer [28].
δ(·) = wv2

· RELU(LN(wv1
· σ(·))) represents the calm transformation, aiming to

capture dependencies between channels and pixels. σ(·) represents the generated mul-
tidimensional weights fused with dual attention. The Concat operation concatenates
the downsampled features from the encoding network with the attention-enhanced
features in terms of channels. From this, we can obtain a new feature map.

Fig. 2 Design of SCA module

The SCA module adopts a multi-head attention design to enhance attention, where
the number of attention heads is h, corresponding to the different Multi-Aspect Con-
texts in Figure 2. Each individual Multi-Aspect Context is further divided into two
branches: channel attention and spatial attention. The size information of each layer
in SCA is shown in Table 1.

For the channel attention branch, the feature map of size C/h×H×W under-
goes size compression through an adaptive average pooling module, resulting in a
compressed map of size C/h×1×1. Next, the features are processed through two con-
secutive convolutional layers with activation to perceive channel information. Here we
maintain the size of the output features as C/h×1×1. At this stage, feature values
distribution that is only related to the channel can be obtained. Then, we broadcast
the size C/h×1×1 feature map onto the input feature map of size C/h×H×W and
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Table 1 Size information of each node in SCA

Operation
(Channel/Spatial)

Features Size Kernel Size

Global <C/h,H,W>1 C/h×H×W

Pool/Conv <C/h,1,1> <1,H,W> \ 1×1×1
Conv+Relu/Reshape <C/(4h),1,1> <1,1,H×W> C/(4h)×1×1 \
Conv+Hardswish/

Modification+Softmax
<C/h,1,1> <1,1,H×W> C/h×1×1 \

Reshape/Reshape <C/h,H,W> <1,H,W> \ \
A×B <C/h,H,W> \ \

Concat <C,H,W> \
Conv <C,H,W> C×1×1

Layernormal+Relu <C,H,W> \
Pool <C,H/2,W /2> \

perform element-wise multiplication. Finally, we obtain the feature map with channel
attention, which has the same size as the input feature of the SCA module.

For the spatial attention branch, we first use a standard convolution with a kernel
size of 1×1×1 to reduce the dimensionality of the image. This can result in a feature
map of size 1×H×W for further processing. Next, we reshape the feature map to lower
the feature dimension for ease of computation. The reshaped feature map size becomes
1×HW. Then, the Modification and Softmax module of SCA utilizes Algorithm 1 to
update the feature values. In the process, each feature value is able to incorporate the
features of its surrounding pixels. In regions with abrupt grayscale changes, the output
features, after the completion of Algorithm 1, can more sensitively reflect the spatial
grayscale differences in that area. The spatial attention branch eventually restores the
updated features to a size of 1×H×W. By multiplying the results of the two branches,
the three-dimensional features are combined with dual attention.

Algorithm 1: Spacial Modification.
temp avg[ ] and temp max[ ] are registers for local averaging and maximiza-
tion.
k is the size of local receptive field.
L = length(HW).

Data: InputFeatures [1*HW]
Result: OutputFeatures [1*HW]

1 for i in range(L) do

2 start = max(0, i - k);
3 end = min(n, i + k + 1);
4 avg = sum(InputFeatures [start: end])/(end - start);
5 temp avg[i] = avg;
6 temp max[i] = max(InputFeatures[start: end]);
7 OutputFeatures[i] = temp max[i] - temp avg[i];

8 end

Two branches each have their own global weights, defined as α and β. The signif-
icance of global weights lies in the fact that the grayscale features of the image vary
for different attention heads, leading to different requirements for different attention
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mechanisms. Equation (3) represents the mathematical expression of global weights.
α is related to the feature values of each channel. By linearly transforming the feature
values of each channel after the average pooling module, the weight values for each
channel are obtained. β is related to the feature values of different pixels within the
same channel. By linearly transforming the feature values of each channel after dimen-
sion reduction, the weight values for different rows and columns are obtained. Here, dh
is a scaling factor used to counterbalance the impact of different variances in SCA. It
can be computed as dh = dmodel/h. The role of Softmax is to capture the proportion
relationships between different channels and between different pixels within the same
channel, and output the weight matrices with dimensions of C/h×1×1 and 1×H×W.

α = Softmax(
Wα1x1√

dh
,
Wα1x1√

dh
,
Wα1x1√

dh
)

β = Softmax(
Wβ1x1√
H ×W

,
Wβ1x1√
H ×W

,
Wβ1x1√
H ×W

)

(3)

Linear is designed for further extract features and perform downsampling on the
attention-enhanced results. The SCA module concatenates the updated feature data
with the downsampled feature maps from the encoding module to achieve channel
expansion. Through the attention-enhancement mechanism, the feature maps at each
stage undergo feature updates, enhancing the feature extraction capability of the
encoder.

3.3 Simplified aggregator

The aggregator proposed in this paper is a simplified Multiscale Pyramid Pooling
module (MPP), as shown in Figure 3. The design idea is inspired by the human visual
perception mechanism. When observing a scene, the human eye typically simultane-
ously attends to different regions of the scene, such as foreground, background, and
peripheral vision. These regions often exhibit significant scale differences. Therefore,
to comprehensively understand the scene, it is necessary to consider information from
multiple scales simultaneously. However, in contrast to semantic recognition, defect
detection often focuses on extremely small features, requiring feature extraction at
smaller scales.

The main function of the pyramid pooling is to extract information at different
scales from the input feature map. MPP first utilizes the pyramid pooling module to
integrate the input features. MPP is designed with three global average pooling oper-
ations, with pooling window sizes of 2×2, 4×4, and 8×8. The 2×2 pooling divides the
input feature map into four rectangular regions and performs pooling operations on
each region, preserving local detailed information. Similarly, the 4×4 and 8×8 pool-
ings divide the input feature map into 16 and 64 rectangular regions, respectively,
to capture finer-grained local information. The pooled results are then subjected to
convolution and upsampling operations. In the convolution operation, the same con-
volutional kernel is applied to extract feature information, with a kernel size of 1×1.
Finally, the feature vectors at different scales are concatenated and further processed
with convolution to generate refined features.
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Fig. 3 Design of multiscale pyramid pooling module

Compared to the conventional pyramid pooling module, MPP in this paper removes
the 1×1 pooling and replaces it with an 8×8 pooling to extract more pixel features
within smaller rectangular regions, thus improving accuracy. MPP reduces the number
of intermediate and output channels, eliminates shortcuts, and replaces the concate-
nation operation with addition, thereby improving computational efficiency. It is more
suitable for real-time industrial inspection.

3.4 Cross-level attention fusion module

In the decoder, there is a stack of basic blocks along with the Cross-Level Attention
Fusion module (CLAF). As mentioned above, the fusion of multi-level features is
crucial for achieving high-precision segmentation. CLAF employs spatial attention to
enrich the fused feature representation.

Fig. 4 Design of cross level attention fusion module
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The CLAF network architecture is shown in Figure 4. The motivation behind the
spatial attention module is to generate a 2-dimensional weight matrix that represents
the importance of each pixel in the input features by leveraging the spatial relation-
ships between pixels. CLAF utilizes a spatial attention module to generate a pair of
normalized weights, which are then fused with the cross-level input features through
Elementwise Mul and Elementwise Add operations. Specifically, we denote the two-
level input features as Fhigh and Flow. Fhigh represents the output from a deeper-level
module. Flow corresponds to the corresponding part from the encoder. They have the
same channels but different sizes. CLAF first employs bilinear interpolation to upsam-
ple Fhigh to the same size as Flow. Then, the attention module performs dimension
reduction on Fup and Flow using 1×1 convolutions. Here, we design a multi-head mech-
anism for attention, where the number of attention heads is denoted as h and can be
customized. Each head processes C/h channels with a 1×1 convolution and outputs
intermediate features of size 1×H×W. Concat is used to concatenate all the obtained
intermediate features along the channel dimension, followed by a 1×1 convolution to
obtain a feature of size 1×H×W. Finally, Softmax is applied to produce a normalized
weight matrix σ. The aforementioned process can be represented by the Equation (4).

σ = attention(Fup, Flow)

Fout = Fup · σ + Flow · (1− σ)
(4)

To obtain the weighted features, we apply Elementwise Mul operations to Fup and
Flow separately. Finally, CLAF performs Elementwise Add on the weighted features
across levels and outputs the fused feature. The formulaic representation of the spatial
attention module is shown in Equation (5).

Fcat = Concat(Conv1(Fup)...Convh(Fup),Convh+1(Flow)...Conv2h(Flow))

α = Softmax(HardSwish(Conv(Fcat)))
(5)

The feature map after fusion through CLAF, when upsampled, achieves bet-
ter restoration of the original image and emphasizes the features, thereby further
improving the segmentation accuracy.

4 Experiments

4.1 Data and implementation details

Vehicle component defect dataset. The vehicle component defect dataset is a
small-scale industrial defect detection segmentation dataset. It consists of 864 high-
quality images with pixel-level annotations. In this paper, the dataset is divided into
training, validation, and test sets in an 8:1:1 ratio, containing 691, 86, and 87 images,
respectively. The dataset contains three different defect categories: peeling, crack and
scratch. It can be used for experimental research in the field of industrial defect
detection.
BSData dataset. BSData is dataset for instance segmentation and industrial wear
forecasting. It consists of 1104 channel 3 images with 394 image-annotations for the
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surface damage type “pitting”. We divide these 394 images into 2 categories in a 4:1
ratio for training and image segmentation.
RSDDs dataset. RSDDs is a dataset of surface defects on railway tracks. It consists
of two types. Type I RSDDs dataset is captured from the fast lane, which contains 67
images. Type II RSDDs dataset is captured from regular/heavy transportation tracks,
which contains 128 images. Each image of these two types contains at least one type
of defect. We choose the type II RSDDs dataset, and divide it a 4:1 ratio.
CrackForest dataset. CrackForest is a fast road crack detector that achieves excel-
lent accuracy. It is an annotated database of road crack images that can roughly reflect
the condition of urban road surfaces. In this paper, the dataset is divided into train-
ing and test sets, containing 94 and 24 images, respectively. The CrackForest dataset
contains one defect category.
A high-end aerospace aluminum defect dataset. This dataset is an individual
industrial defect detection segmentation dataset and consists of 5,000 surface images
of aluminum materials. It contains 8 different defect categories. We used all the images
for training, and subsequently achieved real-time on-site defect detection using the
hardware system.
Hardware system. For vehicle component defect dataset, BSData dataset, RSDDs
dataset and CrackForest dataset, we use CUDA 10.2 and CUDNN 8.2 on an NVIDIA
Tesla V100 GPU for experiments. For real-time high-end aluminum defect detection,
we use CUDA 10.2 and CUDNN 8.2 on an NVIDIA Tesla V100 GPU for training.
Then we deploy AENet in the system shown in the following Figure 5(a) to complete
on-site defect detection and segmentation. Figure 5(b) shows the actual scene of defect
detection in aluminum materials.

Fig. 5 (a) System architecture for on site defect detection, (b) high end aluminum material defect
detection

Training settings. We choose the stochastic gradient descent (SGD) algorithm with
a momentum of 0.9 as the optimizer and employ a warm-up strategy and ”poly”
learning rate scheduler. To conduct model training, we set the batch size to 16, the
maximum number of iterations to 20,000, the initial learning rate to 0.005, the random
scaling range is [0.5, 2.0] and weight decay to 5e-4. We also apply data augmentation
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techniques to the dataset, including random scaling, random cropping, random hori-
zontal flipping, random color jittering, and normalization. For the Vehicle Component
Defect Dataset, the cropping resolution is set to 512×512. For the BSData Dataset,
the cropping resolution is set to 1130×460. For the CrackForest Dataset, the cropping
resolution is set to 480×320. For the RSDDs Dataset, the cropping resolution is set
to 55×1250. For the Aluminum Surface Defect Dataset, the cropping resolution is set
to 2048×1000. All experiments are conducted using PaddlePaddle [29] on an NVIDIA
Tesla V100 GPU.
Inference settings. To fairly compare the performance of different models on the
datasets introduced above. We perform the model conversion and inference in the same
environment. The predicted images are resized back to the original input image size.
The overall inference time includes image preprocessing, inference and post-processing
time. We evaluate the segmentation accuracy using the standard mean Intersection
over Union (mIoU) as the comparison metric and the time consumption per image
(s/img) as the time comparison metric.

4.2 Detection results on public datasets

4.2.1 Comparison with state-of-the-art models

Under the same training and inference settings, we compared our model with the
state-of-the-art segmentation networks on the public datasets mentioned before. We
present the performance metrics of mIoU and inference latency in Table 2 and Table 3.
As shown in Table 2, The performance of mIoU after convergence varies for different
datasets. For datasets with environmentally sensitive surface minor defects like vehicle
component defect and RSDDs, AENet can achieve the highest mIoU among these
compared networks. In Table 3, all experiments were conducted on NVIDIA Tesla V10
for fair comparison.

Table 2 mIoU of advanced instance segmentation methods on industrial defect datasets

Encoder
mIoU(%)

Vehicle component defect BSData RSDDs CrackForest
Enet - 35.4 40.64 59.01 83.35

EspnetV2 ESPNetV2 56.28 37.16 55.28 80.28
BiSeNetV1 ResNet18 58.38 32.96 53.38 81.38
BiSeNetV2 - 62.05 32.48 57.50 78.79

Sfnet DF1 63.89 34.96 57.89 81.02
STDCSegV1 STDC1 57.48 29.34 59.05 81.35
STDCSegV2 STDC2 58.72 36.55 59.03 81.10
Our model STDC2+SCA 67.56 37.92 59.12 82.00

Figure 6 shows the mIoU comparison of different neural networks at different
training epochs. We consider 20000 iters as the training endpoint. As the training pro-
gresses, the mIoU of AENet steadily increases. Besides, compared to other networks,
AENet has faster convergence. Figure 7 displays the results of inferring industrial
defect images under different contrast, and brightness conditions. The green band in
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Table 3 Inference latency of advanced instance segmentation methods on industrial defect datasets

Hardware
Latency (s/img)

Vehicle component defect BSData RSDDs CrackForest
Enet

NVIDIA Tesla
V100 GPU

0.0282 0.0523 0.0074 0.0187
EspnetV2 0.0255 0.0559 0.0067 0.0173
BiSeNetV1 0.0267 0.0513 0.0071 0.0179
BiSeNetV2 0.0238 0.0477 0.0069 0.0162

Sfnet 0.0344 0.0726 0.0100 0.0231
STDCSegV1 0.0369 0.0714 0.0092 0.0242
STDCSegV2 0.0454 0.0927 0.0128 0.0319
Our model 0.0392 0.0762 0.0106 0.0237

Fig. 6 Comparison of mIoU of different networks with increasing training times on (a)Vehicle com-
ponent defect, (b)BSData, (c)RSDDs and (d)CrackForest

the figure represents the segmentation results. The adjustment of image contrast and
brightness is done to simulate real industrial inspection environments. The conditions
of low contrast and low brightness increase the difficulty of defect recognition. AENet
can outline defects under poor optical conditions. This demonstrate that our proposed
AENet has superior segmentation performance, higher learning efficiency, and good
real-time capability and robustness.

Figures 8-10 show the original images of three public defect datasets as well as
the results of inference using AENet. Defects are marked in green. AENet can accu-
rately distinguish shadows and defects, even if they have similar grayscale features.
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Fig. 7 The segmentation results of vehicle component defect dataset. Groups (a) and (c) represent
the inference results of two different original images in different neural networks, while groups (b)
and (d) represent the inference results in different neural networks after 90% contrast and brightness
changes are made to the original images

Fig. 8 The segmentation results of BSData dataset using proposed AENet

These random images demonstrate AENet’s ability of detection and segmentation of
industrial defects with different sizes and shapes.

4.2.2 Ablation study

This ablation experiment validates the effectiveness of three design modules in AENet,
namely the Edge Attention Module (SCA), the Simplified Pyramid Pooling Module
(MPP), and the Cross-Level Attention Fusion Module (CLAF). The experiment used
the same training and inference settings as before, with STDC2-Seg as the baseline
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Fig. 9 The segmentation results of RSDDs dataset using proposed AENet

Fig. 10 The segmentation results of CrackForest dataset using proposed AENet

model. The results in Table 4 demonstrate that the mIoU consistently improves when
SCA, MPP, and CLAF are sequentially incorporated. For the ablation experiment
task, we train AENet on Vehicle component defect dataset.

The impact of SCA module. The SCA module significantly improves the mIoU
of the network. However, it introduces more parameters compared to MPP and CLAF,
and increases the computational complexity of the inference process. If the number of
SCA modules is blindly increased, the inference speed of the network will be reduced.

The impact of MPP and CLAF module. Due to the simplified design adopted
by MPP itself, there are not many additional parameters added, and so does the
FLOPs. CLAF slightly increases network complexity. An attention mechanism is
designed in it like SCA. CLAF enables AENet to better display segmentation, trading
speed for accuracy.

Although the addition of SCA, MPP and CLAF slightly slows down the inference
speed compared to PPLiteSeg, it achieves higher segmentation accuracy. With the
support of these three modules, AENet achieves an segementation accuracy of 67.56%,
which is a 3.48% improvement over the PPLiteSeg specifically used for semantic
recognition. Therefore, these three design modules are effective in defect detection.
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Table 4 The results of the ablation experiment

mIoU(%) Params(M) FLOPs(G) Latency(s)
Baseline 58.72 12.37 1.412 0.0354

PPLiteSeg 64.08 \ \ 0.0307
Baseline+S1 64.53 13.33 1.533 0.0371

Baseline+S+M2 65.96 13.78 1.548 0.0379
Baseline+S+M+C3 67.56 14.55 1.590 0.0392

1SCA module
2MPP module
3CLAF module

4.3 Real-time inspection

Fig. 11 The results of Real-time industrial aluminum inspection using AENet

We conducted experiments on a high-end aerospace aluminum defect dataset using
the training and inference settings mentioned above. We conduct comparisons between
the original images of 8 defect categories on the aluminum surface. The segmentation
results are shown in Figure 11. The red photographs show the segmentation map, while
the black and white photographs are actual aluminum material. It can be observed
that whether it is a large area defect, such as water marks, scratches, and corrosion,
or a small area defect that is not easily visible to the naked eyes like dot-like-dirt.
AENet can effectively recognize and segment them.

We grouped 500 images used for inference verification. And completed the quantity
statistics of the five most common defect types, as shown in the total item in Table 5.
Then we provided our monitoring results for these defects, as shown in the detected
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Table 5 Precision of real-time defect detection for different types of defects in industrial
aluminum materials

corrosion water mark abrasion point-like-dirt scratch average

Group 1
detected 11 4 27 79 61

95.79%
total 12 4 28 84 62

Group 2
detected 7 3 16 91 54

95.00%
total 7 3 16 99 55

Group 3
detected 13 9 10 55 33

97.56%
total 13 9 11 57 33

Group 4
detected 8 8 14 56 46

94.29%
total 9 8 15 59 49

Group 5
detected 6 3 30 62 66

98.24%
total 6 3 30 64 67

Precision 95.74% 100.00% 97.00% 94.49% 97.74% 96.14%

item in Table 5. The experimental results indicate that AENet exhibits good perfor-
mance against different types of defects. In the real industrial environment, the error
of different groups is less than 4%. AENet can accurately capture subtle defect details
and segment them. This is of great significance for the quality control of aluminum
materials.

5 Conclusion

In this paper, we focus on designing a new real-time industrial defect detection network
called AENet, based on an encoder-decoder structure. AENet uses spatial and chan-
nel dual attention mechanisms to update feature maps. It fuses features with different
levels of abstraction to enhance the representation of features. It can also complete
multi-level feature extraction at a lower computational cost. Extensive comparative
experiments demonstrate that AENet achieves a good balance between defect seg-
mentation accuracy and inference speed, with higher learning efficiency compared to
conventional image segmentation networks, making it robust for real-world industrial
inspection environments. The ablation experiments further validate the effectiveness
of each module, showcasing the benefits of our design. These findings highlight the
promising prospects of encoder-decoder models and attention mechanisms in defect
detection and recognition. Overall, AENet can achieve outstanding performance in
comparative experiments with advanced networks on multiple datasets. And an error
of less than 4% is obtained in on-site industrial aluminum material detection. In
future work, we plan to enhance the segmentation accuracy stability of AENet in more
challenging visual environments and apply our method to a wider range of tasks.
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