
Rethinking Virtual Network Embedding:
Substrate Support for Path Splitting and Migration

Minlan Yu, Yung Yi, Jennifer Rexford, Mung Chiang
Princeton University Princeton, NJ

{minlanyu,yyi,jrex,chiangm}@princeton.edu

ABSTRACT
Network virtualization is a powerful way to run multiple
architectures or experiments simultaneously on a shared in-
frastructure. However, making efficient use of the underly-
ing resources requires effective techniques for virtual network
embedding—mapping each virtual network to specific nodes
and links in the substrate network. Since the general embed-
ding problem is computationally intractable, past research
restricted the problem space to allow efficient solutions, or
focused on designing heuristic algorithms. In this paper, we
advocate a different approach: rethinking the design of the
substrate network to enable simpler embedding algorithms
and more efficient use of resources, without restricting the
problem space. In particular, we simplify virtual link em-
bedding by: i) allowing the substrate network to split a
virtual link over multiple substrate paths and ii) employing
path migration to periodically re-optimize the utilization of
the substrate network. We also explore node-mapping al-
gorithms that are customized to common classes of virtual-
network topologies. Our simulation experiments show that
path splitting, path migration, and customized embedding
algorithms enable a substrate network to satisfy a much
larger mix of virtual networks.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks; G.1.6 [Numerical Analysis]: Opti-
mization

General Terms
Algorithms; Design

Keywords
Virtual Network Embedding; Path Splitting; Path Migra-
tion; Network Virtualization; Optimization

1. INTRODUCTION
Network virtualization has emerged as a powerful way to

allow multiple network architectures, each customized to a
particular application or user community, to run on a com-
mon substrate. For example, virtualization can enable mul-
tiple researchers to evaluate new network protocols simulta-
neously on a shared experimental facility [3, 7, 2, 10]. In ad-
dition, network virtualization could serve as the foundation
of a future Internet that allows multiple service providers to

offer customized end-to-end services over a common phys-
ical infrastructure [14, 27]. For example, Voice over IP
(VoIP) could run on a virtual network that provides pre-
dictable performance (by allocating dedicated resources and
employing routing protocols that ensure fast recovery from
equipment failures), whereas online banking could run on a
virtual network that provides security guarantees (through
self-certifying addresses and secure routing protocols).

Making efficient use of the substrate resources requires
effective techniques for virtual network (VN) embedding—
mapping a new virtual network, with constraints on the vir-
tual nodes and links, on to specific physical nodes and links
in the substrate network. However, the VN embedding prob-
lem is extremely challenging, for four main practical reasons:

Node and link constraints. Each VN request has re-
source constraints, such as processing resources on the nodes
and bandwidth resources on the links, that the embedding
must satisfy. For example, to run a controlled experiment,
a researcher may need 1 GHz of CPU for each virtual node
and 10 Mbps for each virtual link. In addition, the VN
may impose additional constraints on node location or link
propagation delay. For example, a commercial gaming ser-
vice may need virtual nodes in several major cities, as well
as virtual links with propagation delays less than 50 msec.
The combination of node and link constraints make the em-
bedding problem computationally difficult to solve.

Admission control. Since the substrate resources are
limited, some VN requests must be rejected or postponed to
avoid violating the resource guarantees for existing virtual
networks. That is, the substrate must reserve node and link
resources, and perform admission control on new requests to
ensure that sufficient resources are available. For example, a
virtual network that requires 1 GHz of CPU for each virtual
node may be rejected if no physical nodes have enough unal-
located processing capacity. Once accepted, the virtual net-
works receive their guaranteed resources through scheduling
techniques for sharing the node and link resources.

Online requests. The VN requests are not known in ad-
vance, and may arrive dynamically and stay in the network
for an arbitrary period of time before departing. For exam-
ple, a researcher may start a new experiment at any time, to
run for some duration based on the needs of the experiment.
Similarly, a service provider may deploy a new service at any
time, and continue supporting the service indefinitely, possi-
bly discontinuing the service when it is no longer profitable.
To be practical, the embedding algorithm must handle VN
requests as they arrive, rather than handling a large collec-
tion of requests at once. Online problems are typically much

ACM SIGCOMM Computer Communication Review 19 Volume 38, Number 2, April 2008

more difficult to solve, because the embedding algorithm has
little (if any) visibility into the future request arrivals.

Diverse topologies. The virtual networks may have di-
verse topologies. For example, researchers may run experi-
ments under a variety of topologies to explore how their pro-
tocol performs in different settings. Also, a service provider
may tailor the virtual-network topology to the application,
such as a hub-and-spoke to provide customers with access to
a centralized server, or a tree to distribute streaming video
to a group of receivers. Although virtual networks may have
a wide variety of structures, certain kinds of topologies—
such as a hub-and-spoke or a tree—may be especially com-
mon in practice. Handling arbitrary topologies, while effi-
ciently supporting the most common topologies, introduces
an additional challenge for the embedding algorithm.

These four properties make the VN embedding problem
very difficult. In fact, the problem is computationally in-
tractable, even if some of these four properties are ignored.
Due to the combination of node and link constraints, the VN
embedding problem is NP-hard, even in the offline case. (For
example, assigning virtual nodes to the substrate network
without violating bandwidth constraints can be reduced to
the multiway separator problem, which is NP-hard [6].) Even
if the locations of the virtual nodes are pre-determined, em-
bedding the virtual links with bandwidth constraints is still
NP-hard, as discussed in more detail in Section 3. The on-
line problem is even more difficult to solve. Traditional
techniques for solving online problems (e.g., dynamic pro-
gramming) are impractical here because the properties of
incoming VN requests are generally unpredictable and the
search space is prohibitively huge when the substrate net-
work is large.

Previous research has addressed these computational chal-
lenges by restricting the problem space in one or more di-
mensions to enable efficient heuristics [31, 13, 23, 26], at the
expense of limiting the practical applicability of the solu-
tions. For example, the papers either solve an offline vari-
ant of the problem [31, 23], consider only bandwidth con-
straints [13, 23], or do not perform admission control [31,
23, 13]. In this paper, we take a different approach—we
reconsider the capabilities of the underlying substrate net-
work, to make the substrate network more supportive of the
VN embedding problem. This allows us to create simpler
embedding algorithms that make more efficient use of the
substrate resources, without compromising on the four chal-
lenges listed above. Since network virtualization is still in its
infancy, we believe it is important to explore how to design
the substrate to best satisfy its goals.

In particular, we investigate how to simplify the problem
of virtual-link embedding by allowing the substrate network
to map a virtual link to multiple substrate paths with a flex-
ible path-splitting ratio. In addition, for efficient handling
of online requests, we allow the substrate to periodically
re-optimize the mapping of existing virtual links, either by
selecting new underlying paths or adapting the splitting ra-
tios for the existing paths. Flexible path splitting is realiz-
able in practice without disrupting the basic properties of
a link—such as predictable bandwidth, propagation delay,
and in-order packet delivery, as discussed in more detail in
Section 3.3. Flexible path splitting allows us to map vir-
tual links to the substrate in polynomial time, while making
much more efficient use of substrate bandwidth and increas-
ing robustness to substrate failures. This feature allows us

Table 1: Notations of VN Embedding Problem

Gs Substrate network

Ns Nodes of substrate network

Ls Links of substrate network

As
N Node attribute of substrate network

As
L Link attribute of substrate network

Ps Paths on substrate network

Gv Virtual network

Nv Nodes of virtual network

Lv Links of virtual network

Cv
N Node constraint of substrate network

Cv
L Link constraint of substrate network

RN Resources allocated for virtual network nodes

RL Resources allocated for virtual network links

A

B C

D E

F G

15

15

15

40 40

20

a

b

c

d e

20

20

10

a

b

c H I

10

10 10

20

20
10

5

Substrate networkVN request 1

VN request 2

d e10

10

10

10
70

40 60

80
100

40

60

60

60

5 5

Atlanta New Jersey

Figure 1: An example of VN embedding

to satisfy the first three of the four challenges listed above.
To address the fourth challenge, we introduce customized
node-embedding algorithms for common topologies like a
hub-and-spoke.

The remainder of this paper is organized as follows. In
Section 2, we define the VN embedding problem and present
a simple embedding algorithm that does not assume any spe-
cial capabilities from the substrate. This algorithm is similar
to the techniques proposed in previous research, extended
to support admission control and online requests. The algo-
rithm serves as a basis of comparison for our new algorithm
for substrates that support path splitting and migration, as
discussed in Section 3. Section 4 presents simulations that
evaluate our algorithm and quantify the benefits of a more
flexible substrate. In Section 5, we present our customized
node-embedding algorithm for hub-and-spoke topologies, and
promising initial simulation results. Section 6 compares our
algorithms with related work, and Section 7 concludes the
paper.

2. VIRTUAL NETWORK EMBEDDING
In this section, we first describe the general VN embed-

ding problem. Then, we present an original solution to this
problem without assuming that the substrate can split a
virtual link over multiple underlying paths.

2.1 Virtual Network Embedding Problem
Substrate network. We denote the substrate network by

an undirected graph Gs = (Ns, Ls, As
N , As

L), where Ns and
Ls refer to the set of nodes and links, respectively. We use
superscript to refer to substrate or virtual network, and use

ACM SIGCOMM Computer Communication Review 20 Volume 38, Number 2, April 2008

subscript to refer to nodes or links, unless otherwise speci-
fied. Substrate nodes and links are associated with their at-
tributes, denoted by As

N and As
L, respectively. In this paper,

we consider CPU capacity and location for node attributes,
and bandwidth capacity for link attributes. We also denote
by Ps the set of all loop-free paths in the substrate network.

The right side of Figure 1 shows a substrate network. The
numbers near the links represent available bandwidths and
the numbers in rectangles are the available CPU resources
at the nodes.

Virtual network request. We denote by an undirected
graph Gv = (Nv , Lv, Cv

N , Cv
L) a virtual network request. A

VN request typically has link and node constraints that are
specified in terms of attributes of the substrate network. We
denote by Cv

L and Cv
N the set of link and node constraints,

respectively. Figure 1 depicts two VN requests: the VN re-
quest 1 requires the bandwidth 20 over the links (a, b) and
(a, c), and the CPU resource 10 at all nodes, a, b, and c; the
VN request 2 is: “connect two nodes d, e ∈ Nv with con-
straints that node d should be in Atlanta (where substrate
nodes D and G are located), and node e should be in New
Jersey (where substrate nodes E and I are located), with ten
units of bandwidth on the virtual link between them.”

VN embedding. A virtual network embedding for a VN
request is defined as a mapping M from Gv to a subset of
Gs, such that the constraints in Gv are satisfied, i.e.,

M : Gv �→ (N ′,P ′, RN , RL),

where N ′ ⊂ Ns and P ′ ⊂ Ps, and RN and RL are the node
and link resources allocated for the VN requests. The VN
network embedding can be naturally decomposed into node
and link mapping as follows:

Node Mapping: MN : (Nv, Cv
N) �→ (N ′, RN),

Link Mapping: ML : (Lv, Cv
L) �→ (P ′, RL).

The right side of Figure 1 shows the VN embedding solu-
tions for the two VN requests. For example, the nodes a, b,
and c in VN request 1 are mapped to the substrate nodes A,
E, and F, and the virtual links (a, b) and (a, c) are mapped
to the substrate paths (A,D,E) and (A,D,F) with the CPU
and bandwidth constraints all satisfied. A similar mapping
occurs for VN request 2.

Objectives. Our main interest is to propose an efficient
embedding algorithm for the online problem, where VN re-
quests arrive and depart over time. From the substrate net-
work provider’s point of view, a natural objective of an on-
line embedding algorithm would be to maximize the revenue.
We introduce the notion of revenue that corresponds to the
economic benefit of accepting VN requests. We denote by
R(Gv(t)) the revenue of serving the VN requests at time t.
Then, our objective is to maximize the long-term average
revenue, given by the following:

lim
T→∞

PT
t=0 R(Gv(t))

T
. (1)

The revenue can be defined in various ways according to
economic models. In this paper, we focus on bandwidth
and CPU as the main substrate network resources. Then,
a natural choice of the revenue for a VN request would be
the weighted sum of revenues for bandwidth and CPU, each
of which is proportional to the amount of the requested re-
sources. Similar to the work in [31], we introduce a tun-
able weight α that allows the substrate provider to strike

Req comes
Req leaves

fixed nodes

Embedding output for this time window

Req. Queue new Reqs. time window

Reqs postponed

Link Mapping

Node Mapping
Reqs postponed

Figure 2: The baseline algorithm overview

a balance between the relative costs of the two classes of
resources.

Thus, for a VN request Gv, we define its revenue R(Gv(t))
at any particular time t that the virtual network Gv is run-
ning as:

R(Gv(t)) =
X

lv∈Lv

bw(lv) + α
X

nv∈Nv

CPU(nv), (2)

where bw(lv) and CPU(nv) are the bandwidth and CPU
requirements for the virtual link lv and the virtual node
nv, respectively. We note that the bandwidth revenue (i.e.,
the first term in Equation (2)) is not affected by the sub-
strate paths that the virtual links are mapped to, in partic-
ular, physical distance or the number of hops of the mapped
paths. This seems to be reasonable, since VN requests only
care about the satisfiability of their constraints in the sub-
strate network and will not pay for longer distance.

To achieve the goal in Equation (1), it is crucial to embed
incoming VN requests efficiently, such that the substrate
resource is minimally occupied. This is because an inefficient
embedding of a virtual network at time t may restrict the
substrate’s ability to accept future requests. Section 4.2
shows the relationship of revenue and efficiency.

2.2 Baseline VN Embedding Algorithm
In this subsection, we propose a simple embedding algo-

rithm that does not exploit any special capabilities from
the substrate network. The algorithm is motivated by the
techniques proposed in related work (e.g., [31, 26]) with ex-
tensions to perform admission control and handle online re-
quests. Figure 2 depicts our algorithm.

Our algorithm collects a group of incoming requests dur-
ing a time window and then tries to allocate substrate re-
sources to satisfy the constraints required by the requests.
Some requests may be deferred due to lack of bandwidth or
CPU resources in the substrate network, and returned to
the request queue. The requests in the queue are dropped
if they cannot be served within some delay, which, specified
by a request, corresponds to the time that a request is will-
ing to wait. The requests in the request queue are processed
again in the subsequent time windows.

We process all VN requests arriving within the time win-
dow as well as in the request queue, in decreasing order of
their revenues. We map virtual nodes onto the substrate for
all the considered VN requests, and then map the virtual
links for the requests that successfully finish the node map-
ping stage. An alternative way, which we do not choose,

ACM SIGCOMM Computer Communication Review 21 Volume 38, Number 2, April 2008

Algorithm 1 Greedy Node Mapping Algorithm

Step 1 Sort the requests according to their revenues.
Step 2 If no requests left, stop.
Step 3 Take one request with the largest revenue.
Step 4 Find the subset S of substrate nodes that sat-

isfy restrictions and available CPU capacity (larger
than that specified by the request.) If S == ∅, store
this request in the queue, and GOTO Step 2.

Step 5 For each virtual node, find the substrate node in
S with the “maximum available resources” H (de-
fined in Equation (3)), and GOTO Step 2.

is to map the nodes and links of one request first, before
mapping the other requests. In the baseline VN embedding
algorithm, both methods produce similar mapping results,
but our method is more efficient because of batch processing
in the node/link mapping stage.

The optimal embedding algorithm is computationally in-
tractable as discussed in Section 1. Our baseline VN em-
bedding algorithm heuristically tries to achieve the goal in
Equation (1) over each time window. Indeed, the algorithm
contributes to instantaneous revenue maximization by giv-
ing higher priority to the requests with more revenue and
accepting as many requests as possible in the node mapping.
Additionally, the algorithm tends to make efficient utiliza-
tion of the substrate bandwidth resources by mapping vir-
tual links to shortest paths in the substrate network, leaving
more resources for future requests.

2.2.1 Node Mapping Algorithm
We employ a “greedy” node mapping algorithm, since it

is computationally too expensive to employ other strategies,
such as iterative methods [23] and simulated annealing [13,
20]. The motivation of the greedy algorithm is to map the
virtual nodes to the substrate nodes with the maximum sub-
strate resources so as to minimize the use of the resources at
the bottleneck nodes/links [31]. This is beneficial to future
requests which require specific substrate nodes with scarce
resources.

In our algorithm, we collect all outstanding requests, and
then map all the virtual nodes in these requests to the
substrate nodes. VN requests sometimes impose some re-
strictions on their nodes. The examples of node restric-
tions include geographic location and special functionality
at the substrate node. These node restrictions are quite
common in practice, e.g., servers near their customers in
content-delivery service, programmable routers, and a node
with Internet-2 network connectivity. Requests with restric-
tions reduce the search space for placing the virtual nodes
(Step 4). For example, location-specific requests usually
limit their virtual nodes to particular geographic regions.

Then, we keep track of the available node/link resources of
the substrate network. Note that for a substrate node ns ∈
Ns, we do not use CPU(ns) alone as the metric of available
resource, because we not only want to make sure that there is
enough CPU capacity available, but also consider bandwidth
capacity to prepare for the subsequent link mapping stage.
Therefore, we define the amount of available resources for a
substrate node ns by:

H(ns) = CPU(ns)
X

ls∈L(ns)

bw(ls), (3)

where L(ns) is the set of all adjacent substrate links of ns,

Algorithm 2 Link Mapping Algorithm

Step 1 Sort the requests that successfully completed the
node-mapping stage by their revenues.

Step 2 If no requests left, stop.
Step 3 Take one request with the largest revenue.
Step 4 For each virtual link of the request, we search

the k-shortest paths for increasing k, and stop the
search if we can find one with enough bandwidth
capacity.

Step 5 If fail in Step 3 for some virtual link, then defer
this request, and store it in the request queue.

Step 6 GOTO Step 2.

CPU(ns) is the remaining CPU resource of ns, and bw(ls)
is the unoccupied bandwidth resource for the substrate link
ls. The definition in (3) is similar to that in [31] with slight
difference that the number of virtual links and nodes are
used to measure the resources, not the actual amount of
CPU and bandwidth resources. With this definition, for a
virtual node, we find the substrate node with the maximum
available resources (Step 5).

2.2.2 Link Mapping Algorithm
When the substrate nodes are selected for mapping, we

map the virtual links to specific substrate links. Finding an
optimal mapping from a virtual link to a single substrate
path with fixed node mapping reduces to the Unsplittable
Flow Problem (UFP), which is NP-hard [21, 22]. Therefore,
we use the k-shortest path algorithm as an approximation
approach in order to minimize bandwidth consumption by
the virtual network.

We search the k-shortest paths for increasing values of k,
until we find a path which has enough bandwidth to map
the corresponding virtual link. Our k-shortest-path link-
mapping algorithm can be solved in O(M+N log N+k) time
in a substrate network with N nodes and M links [12]. Both
for computational efficiency and efficient use of substrate
resources, k should be kept small.

3. PATH SPLITTING AND MIGRATION
Restricting each virtual link to a single substrate path

makes the link-embedding problem computationally intractable,
and the resulting embeddings inefficient. In this section, we
first argue that the substrate network should support flex-
ible splitting of virtual links over multiple substrate paths,
and present a new link-embedding algorithm that capital-
izes on the flexibility. Next, we describe how to periodically
re-optimize the mapping of existing virtual links to allow
the substrate network to accept more new requests. Finally,
we explain how substrate support for path splitting and mi-
gration can be implemented in practice.

3.1 Path Splitting

3.1.1 Motivation for Flexible Path Splitting
To motivate substrate support for path splitting, consider

the example in Figure 3. Initially the substrate network
runs a single virtual network with three virtual nodes and
two virtual links that each require 20 units of bandwidth.
The virtual nodes are mapped to physical nodes A, E, and F,
and the two virtual links are mapped to the paths (A,D,E)
and (A,D,F), as shown in the lower left part of the figure.
Now, suppose a new VN request arrives with a single virtual

ACM SIGCOMM Computer Communication Review 22 Volume 38, Number 2, April 2008

A

B C

D E

F G

15

15

15

40 40

20

a

b

c
d e

Existing
VN Req 1

New arriving
VN Req 220

20
30

a

b

c H I

10

10 10

20

20

Reject

Without
path splitting

Path splitting
Accept

10

A

B C

D E

F G

15

15

15

40 40

20
a

b

c H I

10

10 10

20

20
10

20
10

Substrate network at time t-1 Substrate network at time t

55

Figure 3: Illustration of the benefit of path splitting

link that requires 30 units of bandwidth. Unfortunately, no
one path in the substrate network can accommodate the new
request. However, the new VN could be mapped to nodes D
and E, if the substrate could allocate 20 units of bandwidth
on the path (D, E) and 10 on the path (D, G, H, I, E). That
is, directing two-thirds of the traffic over the (D, E) path
and one-third over the (D, G, H, I, E) path would allow the
substrate to accept the second request.

Path splitting enables better resource utilization by har-
nessing the small pieces of available bandwidth, allowing the
substrate to accept more VN requests. In addition, flexible
path splitting makes the link-embedding problem compu-
tationally tractable. A virtual link l with some capacity
constraint, say Cl, is mapped into multiple paths in the
substrate network, such that the sum of reserved end-to-
end bandwidth along the multiple paths is equal to Cl. The
division of traffic over the substrate paths is specified as
a splitting ratio, such as a ratio of 2:1 in the example in
Figure 3. Under flexible splitting over multiple paths, the
link-embedding problem can be reduced to the Multicom-
modity Flow Problem (MFP) [5], which can be solved in
polynomial time.

The benefits of having multiple paths have been estab-
lished in other contexts, such as load balancing and relia-
bility. In fact, even having just two paths can significantly
reduce the maximum load on a network, compared to solu-
tions that limit the traffic flow to a single path [24, 19]. Hav-
ing multiple paths also enables faster recovery from network
failures. For example, if a link or node fails, the network
can quickly switch the affected traffic to other paths simply
by changing the splitting ratios. In contrast, in a single-
path setting, a failure requires establishing a new end-to-
end path, leading to a more severe service disruption. Due
to the computational, performance, and reliability benefits,
we believe flexible path splitting should be a key feature
in future virtualized network infrastructures, and the rest of
this paper will provide the algorithmic and simulation-based
evidence to support this view.

3.1.2 Link Mapping Algorithm with Path Splitting
We describe the link mapping algorithm supporting path

splitting to enable efficient solutions in Algorithm 3. In Step
1, we first construct linear constraints for the virtual links.
For simplicity, consider a request with only one link lv with
the capacity constraint C, where two end nodes of lv are
denoted by nv

1 and nv
2 . We denote by MN (nv

1) = ns
1 and

MN (nv
2) = ns

2 the substrate nodes chosen for nv
1 and nv

2 ,

Req comes
Req leaves

fixed nodes

Embedding output for this time window

Req. Queue
new Reqs. time window

Reqs postponed
Unsplittable

Node Mapping
Reqs postponed

Path Migration

Splittable

Link Mapping

Link Mapping

Node Remapping

Reqs postponed

Figure 4: Algorithm for path splitting and migration

respectively, by the node-mapping algorithm in Section 2.2.
The pair of substrate nodes (ns

1, ns
2) is a commodity, and

finding multiple substrate paths for lv is equivalent to find-
ing flows from source ns

1 to destination ns
2 in the substrate

network with available bandwidth on the substrate links.
Thus, a group of, say r, virtual links generates a group of

r commodities. The algorithm tries to find all the paths for
r commodities based on the following linear constraints:

∀ls ∈ Ls,

rX

i=1

f(ci, l
s) ≤ bw(ls) (4)

where f(ci, l
s) is the bandwidth on the substrate link ls

that we allocate to commodity ci, or its corresponding vir-
tual link. After generating the r commodities and the lin-
ear constraints, we solve the resulting multicommodity flow
problem (Step 2).

Even with flexible path splitting, the MFP problem may
not have a feasible solution because one or more substrate
links do not have enough available capacity. The algorithm
revisits the node-mapping decisions for these virtual links
(Steps 4, 5, and 6). The failure in the MFP computation
implies that one or more substrate links violate the linear
constraints in Equation (4). Fortunately, the MFP algo-
rithm can easily output the substrate links that violate the
constraint, as well as the extent of the violation. The node-
remapping stage focuses its attention on the substrate link
with the largest violation (bottleneck link) , i.e., the ls ∈ Ls

with the highest value of
Pr

i=1 f(ci, l
s) − bw(ls).

We randomly choose one virtual link that is originally
mapped to the path including the bottleneck link, and map
one end of this virtual link to another substrate node with
maximum remaining resource H (defined in Equation (3)),
in order to avoid occupying this bottleneck link. The node
remapping revisits the node mapping decision for the new
requests. However, the remapping process does not change
the resource allocation for virtual networks already running
in the substrate. We try this node remapping for a pre-
defined number of times Ttry and make sure each time we
choose a different bottleneck link. If the MFP is still infea-
sible after Ttry trials, we defer the request that requires the
most bandwidth on the bottleneck substrate link and return

ACM SIGCOMM Computer Communication Review 23 Volume 38, Number 2, April 2008

Algorithm 3 Link Mapping Algorithm for Requests with
Path Splitting

MFP Computation:
Step 1 For all requests with splittability, construct linear

constraint on the commodities for each substrate
link.

Step 2 Solve MFP (Multicommodity Flow Problem).
Step 3 If feasible, stop.
Node Remapping:
Step 4 If infeasible, find the “bottleneck” substrate link.
Step 5 Randomly choose one virtual link that is originally

mapped at the bottleneck link, pick one end of the
virtual link and map it to another substrate node
with maximum remaining resource H (defined in
Equation (3)). Then GOTO Step 2 with new linear
constraints.

Step 6 If remapping of virtual nodes for Ttry times does not
produce a feasible solution, eliminate one of the VN
requests having the “largest” impact on infeasibil-
ity. Then, construct the linear constrains only with
the remaining requests, and GOTO Step 2.

it to the request queue, and then try to solve the MFP with
the remaining requests again. Larger values of Ttry increase
the computational overhead but improve the likelihood of
finding a successful embedding.

In practice, some virtual networks may have strict require-
ments that preclude path splitting As such, we envision our
algorithm would handle a mix of both kinds of VN requests.
As illustrated in Figure 4, we first apply Algorithm 2 for
requests that do not allow path splitting, before applying
Algorithm 3 for requests that allow path splitting. Unfor-
tunately, node-remapping is difficult to perform for the un-
splittable virtual links, since the embedding algorithm pro-
cesses one virtual link at a time. For the collection of virtual
links that fail to find a suitable path, we cannot easily iden-
tify the most congested substrate link in a computationally
efficient manner. To maintain computational simplicity, we
do not consider node-remapping for these requests. In the
evaluation, we quantify the benefits of path splitting, with
and without the node-remapping step.

3.2 Path Migration
To deal with the online nature of the VN embedding prob-

lem, we introduce the idea of path migration, i.e., changing
the route or splitting ratio of a virtual link. This turns out to
be another advantage of allowing multipath in the substrate
network.

3.2.1 Motivation for Path Migration
Since VN requests arrive and depart over time, the sub-

strate network can easily drift into an inefficient configura-
tion, where resources are increasingly fragmented, forcing
the substrate to reject future requests or route new virtual
links over more expensive (longer) paths. Theoretically, one
could try to address these challenges with predictive mod-
els of future requests, coupled with mathematical techniques
like dynamic programming. However, the arrival and depar-
ture of requests is unpredictable and the underlying search
space is too large for dynamic programming to be practical.
Instead, we argue the substrate network should be able to
“rebalance” the mapping of virtual networks to make more
efficient use of the substrate resources and to maximize the

A

B C

D E

F

15

15

15

40 40

20

a

b

c

Existing
VN Req 1

20

20

a

b

c

20

20
A

B C

D E

F

15

15

15

40 40

20
a

b

c

d

e

20

10
10

30

5 5

Substrate network at time t-1 Substrate network at time t

d e

New arriving
VN Req 2

30 Reject

Without
migration

With
migrationAccept

Figure 5: Illustration of the benefit of migration

chance of accepting future requests. In particular, the ability
to migrate virtual links to different substrate paths—while
keeping the node mapping intact—can further improve the
substrate’s ability to accept future requests.

To motivate substrate support for path migration, con-
sider the example in Figure 5. Initially the substrate net-
works runs a single virtual network with three nodes (mapped
to physical nodes A, E, and F) and two virtual links that
each require 20 units of bandwidth (mapped to the paths
(A,D,E) and (A,D,F)). Now, suppose a new VN request
arrives with a single virtual link that requires 30 units of
bandwidth. Unfortunately, no pair of nodes in the sub-
strate network can accommodate the new request, even if
path splitting is permitted. For example, in the left side of
Figure 5, nodes D and E have a path (D,E) with 20 units
of bandwidth, a path (D,B,C,E) with 5 units of bandwidth,
and a path (D, A, B, C, E) with 0 units of bandwidth—
not enough to support a virtual link requiring 30 units of
bandwidth. However, migrating some of the traffic for the
first virtual network to a different path would enable the
substrate to accept the new request. In particular, the sub-
strate could carry half of the traffic for virtual link (a,b) on
a new path (A, B, C, E) to free up additional capacity on
the substrate link (D, E). Then, the second virtual network
can have link (d,e) mapped to substrate path (D,E).

3.2.2 Migration Algorithm
In the migration algorithm described in Algorithm 4, we

fix the node mapping of the virtual networks already running
on the substrate. We perform path migration by rerunning
the link-mapping algorithm with requests that allow path
splitting (Algorithm 3). Path migration is performed by
either changing the splitting ratios for the existing paths or
selecting new underlying paths.

If only adjusting the splitting ratios is allowable rather
than setting up any new paths, we have to make sure that
the flows coming from a commodity only traverse the sub-
strate paths originally taken in the link mapping stage. Thus,
we add the following linear constraints to the constraints in
Equation (4) (Step 2):

f(ci, l
s) = 0, ∀ls ∈ Ls,∀ci, l

s /∈ P s(ci), (5)

where P s(ci) is the set of original substrate paths the virtual
link (or corresponding commodity ci) was mapped to. Then
we solve the MFP problem again with the new constraints
of both Equations (4) and (5). If we are allowed to select

ACM SIGCOMM Computer Communication Review 24 Volume 38, Number 2, April 2008

Algorithm 4 Path Migration Algorithm

For all the served requests,
Step 1 Select the request set S whose durations are larger

than a threshold Tdur.
Step 2 If only changing splitting ratio is allowed, add linear

constraints (Equation (5)), so that each virtual link
is forced to be mapped to the paths it originally
take in the link mapping step. If setting up new
path is also allowed, skip this step.

Step 3 Rerun the link mapping algorithm with path split-
ting, and migrate the related paths.

new underlying paths, we rerun the link-mapping algorithm
with only the constraints in Equation (4).

Path migration allows us to (periodically) treat the online
embedding problem as an offline problem, to capitalize on
the efficiency gains that are possible when handling a large
collection of requests together. As such, we expect the ben-
efits of path migration to be highest when the time window
(for grouping requests) is small, and less significant as the
window grows larger.

In practice, migrating paths introduces overhead to estab-
lish new paths, switch the traffic onto the new paths, and
tear down the old paths. As such, the benefits of path migra-
tion should be weighed against the overheads. To illustrate
this, we expect that VN requests would be quite diverse in
their durations, which corresponds to their running time in
the substrate network, ranging from a few months to sev-
eral hours. As an example, a content distribution network
like Akamai [1] may run infinitely, whereas an impromptu
conference or video game may last for a few hours. The
algorithm should not migrate short-lived virtual networks
that are likely to exit the system soon after the migration
completes. Thus, our algorithm only considers the requests
whose durations are larger than some threshold Tdur (Step
1). Fortunately, migrating long-running virtual networks
should offer ample benefits in practice, since many short-
lived virtual networks will come and go while they run.
Virtual-network requests would indicate their likely dura-
tion, or we can infer that a virtual network that has run
for a long time is likely to continue running for a long time,
analogous to previous research on migration in the context
of job scheduling [17].

3.3 Implementation Issues
Path splitting can be implemented in the substrate net-

work without significant overhead. When the virtual node
directs a packet over the virtual link, the substrate sends the
packet over one of the paths based on the target splitting
ratio. Path splitting may cause out-of-order packet delivery.
Some virtual networks do not care about out-of-order pack-
ets; or they can reorder the out-of-order packets by them-
selves, e.g. those applications with only UDP flows. We can
also make the virtual networks oblivious to the traffic split-
ting by preventing the disruptions of out-of-order packets in
the substrate, e.g., using hash-based splitting.

Out-of-order delivery is a primary concern for packets in
the same flow—a group of packets between the same end
hosts or part of the same transport-level connection. Hash-
based splitting prevents out-of-order delivery by directing all
packets from the same flow to the same path. The substrate
router first divides the hash space into weighted partitions
that each correspond to one substrate path. Then, we ap-

ply hashing to the packets based on their header bits and
forward the packets to the corresponding substrate path.
This hash-based scheme is efficient and, in fact, is widely
used in IP networks to split traffic evenly over equal-cost
multipath [15, 8]. For those non-IP packets, the virtual
network would need to tell the substrate which bits in the
header indicate packets in the same flow, so that the hash-
ing can be based on those fields. There are also techniques
for more generalized, enhanced multipath routing to realize
path splitting, see e.g., [18].

Path migration is closely related to path splitting, and is
easily implemented either by selecting new underlying paths
or adapting the splitting ratios for the existing paths. In
addition, path migration will not cause significant service
disruptions for two reasons: (i) we only need a slight change
of flow splitting ratio for the already-existing paths; (ii) we
can create the new path in advance before moving the traf-
fic to avoid service disruption. The substrate router can
use consistent hashing to minimize the fraction of flows that
must change paths when the splitting ratio changes or new
paths are created [9]. Therefore, path migration should not
unduly influence the performance experienced by the virtual
network.

In our current work, we have focused on path migration
while keeping the node-mapping intact, to minimize the dis-
ruption experienced by the virtual networks. However, in
ongoing work we plan to explore node migration to provide
even greater flexibility in handling new VN requests. We
believe node migration should be feasible for several rea-
sons. First, long-running services usually have their own
maintenance windows, where they drain traffic off a server
to upgrade the software. These maintenance windows can
be used for node migration. Second, with ample warning
and prior planning, we can minimize the negative effects of
node migration on an ongoing service. Node migration can
be done quite quickly in practice, e.g., within a few sec-
onds [29], and the virtual node can continue running in the
old location until the migration completes.

4. PERFORMANCE EVALUATION
In this section, we first describe the performance evalu-

ation environment, and then present our main evaluation
results. Our evaluation focuses primarily on quantifying the
benefits of substrate support for flexible path splitting and
migration in the VN embedding problem.

4.1 Evaluation Environment
We implemented a VN embedding simulator (publicly avail-

able at [4]) to evaluate our embedding algorithm and the
advantages of path splitting and migration.

The actual characteristics of substrate and virtual net-
works are not well understood since network virtualization
is still an open field. Therefore, we use synthetic networks to
study the trends and quantify the benefits of path splitting
and migration.

Substrate network. We use the GT-ITM tool [30] to
generate a substrate network topology. The GT-ITM tool
has been popularly used in research that requires practi-
cal network topology generation. The substrate network is
configured to have 100 nodes and around 500 links, a scale
that corresponds to a medium-sized ISP The CPU resources
at nodes and the link bandwidths at links follow a uniform
distribution from 0 to 100 units.

ACM SIGCOMM Computer Communication Review 25 Volume 38, Number 2, April 2008

0 20 40 60 80 100
Splitting Ratio (%)

4

6

8

10

12
A

ve
ra

ge
 R

ev
en

ue
 O

ve
r

T
im

e
E[bw] = 50, Baseline Algorithm
E[bw] = 50, Path Splitting
E[bw] = 50, Path Splitting & Migration
E[bw] = 25

Figure 6: Revenue changes with
RPS(%) (E[CPU]:0, DELAY:3, α:0,
Ttry:1)

0 20 40 60 80 100
Splitting Ratio (%)

4

6

8

10

12

A
ve

ra
ge

 R
ev

en
ue

 O
ve

r
T

im
e Baseline Algorithm

Path Splitting
Path Splitting & Migration

Figure 7: Revenue changes with
RPS(%) (E[BW]:50, E[CPU]:0, DELAY:6,
α:0, Ttry:1)

0 20 40 60 80 100
Splitting Ratio (%)

4

6

8

10

12

A
ve

ra
ge

 R
ev

en
ue

 O
ve

r
T

im
e

Ttry = 0
Ttry = 1
Ttry = 2

Figure 8: Influence of Node
Remapping (E[BW]:50, E[CPU]:0, DE-

LAY:3, α:0)

Virtual network request. In one VN request, the num-
ber of VN nodes is randomly determined by a uniform distri-
bution between 2 and 10 in Figures 6–12, following a similar
setup to previous work [31]. We also test larger requests
whose number of are chosen uniformly between 2 and 20 in
Figure 11.

Each pair of virtual nodes are randomly connected with
probability 0.5. This means that for a n-node virtual net-
work, we have n(n − 1)/4 links on average. The arrivals of
VN requests are modeled by a Poisson process with mean
five requests per time window. The duration of the requests
follows an exponential distribution with 10 time windows on
average. We run all of our simulations for 500 time windows,
which corresponds to about 2500 requests on average in one
instance of simulation.

The parameters and their symbols that we vary in all our
simulations are summarized in the following table:

E[CPU] average CPU requirement on a virtual node
E[BW] average bandwidth requirement on a virtual link

RPS(%) percentage of the requests allowing path splitting
DELAY time a request is willing to wait (see Section 2.2)

α weight constant in revenue function (Equation (2))
Ttry number of rounds in node remapping

Comparison method. Comparing our algorithm with
previous work is difficult because these earlier embedding
algorithms do not start with the same problem formulation.
They do not handle one or more of the first three challenges
in Section 1 (i.e., combined node and link constraints, ad-
mission control, or online requests). Instead, we use the
algorithm in Section 2.2, which embodies many of the key
ideas from prior work, as a baseline for comparison.

4.2 Evaluation Results
Our evaluation results quantify the benefits of path split-

ting and migration in various environments. We present our
simulation results by summarizing the key observations.

(1) More requests allowing path splitting leads to larger
revenues, which is further improved by path migra-
tion. Figures 6 shows the long-term average revenue with
increasing percentages of the requests permitting path split-
ting for different average link bandwidth requirements. In
these experiments, we remove the influence of CPU in the
constraint and the revenue (i.e., E[CPU]=0 and α=0). Each
request which cannot be served immediately will wait for

at most 3 time windows in the queue (DELAY=3) and node
remapping in Algorithm 3 is tried just once, i.e., Ttry = 1.

In Figure 6, the performance of the baseline algorithm
in Section 2 does not depend on RPS(%), since the base-
line algorithm maps each virtual link into a single path in
the substrate network. However, with more requests allow-
ing path splitting, the substrate network resources are effi-
ciently utilized at current time window, which enables the
system to accept more requests, leading to an increase in
the average revenue. When all the requests allow path split-
ting, our algorithm achieves about 120% revenue increase
over the baseline algorithm. Even with half of the requests
permitting path splitting, we still gain about 65% revenue
increase.

Figure 6 also shows that path migration further increases
the revenue. For example, when RPS(%)=100, our algorithm
with path migration achieves additional 15% revenue in-
crease over the algorithm only with path splitting. This im-
plies that path splitting is a dominant factor in the revenue
increase, and path migration further builds on path split-
ting to adapt to the online VN embedding problem more
flexibly. More benefits are expected to be obtained by node
migration, at the expense of more service disruption.

When the bandwidth requirement is low (E[BW]=25) and
substrate resources are ample, we can accept all the requests
for both algorithms. Naturally, the revenue remains the
same, whether the requests allow path splitting or not. We
will show later in Figure 12 that in this case, our algorithm
reduces cost more than the baseline algorithm. Note that
in Figure 6, the revenues differ when E = 25 and E =50
due to its dependence on the amount of required (average)
bandwidth in the requests.

(2) Path splitting still increases revenue when CPU
requirements are considered. Figure 9 shows the long-
term revenues with both CPU and bandwidth requirements,
where the average CPU requirement is set to be 25 and other
parameters are the same as those in Figure 6.

We observe a similar increase in revenue from path split-
ting. We achieve more than 100% revenue increase over
the baseline algorithm, when RPS(%)=100; and about 50%
when RPS(%)=50. However, the benefits from migration are
less dramatic. This is due to the fact that we only employ
path migration, which does not offer any benefits when the
node CPU resource is the bottleneck. Note that revenue in-
crease with the CPU requirement is less than that without
the CPU requirement. This is anticipated, because when

ACM SIGCOMM Computer Communication Review 26 Volume 38, Number 2, April 2008

0 20 40 60 80 100
Splitting Ratio (%)

0

0.5

1

1.5

2
A

ve
ra

ge
 R

ev
en

ue
 O

ve
r

T
im

e Baseline Algorithm
Path Splitting
Path Splitting & Migration

Figure 9: Effect of CPU require-
ment (E[BW]:50, E[CPU]:25, DELAY:3,
α:0, Ttry:1)

0 0.2 0.4 0.6 0.8 1
Weight Constant in Revenue (a)

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 R
ev

en
ue

 O
ve

r
T

im
e

Baseline Algorithm
Path Splitting
Path Splitting & Migration

Figure 10: Effect of α (RPS(%):100,
E[BW]:50, E[CPU]:25, DELAY:3, Ttry:1)

0 20 40 60 80 100
Splitting Ratio (%)

4

6

8

10

12

14

16

A
ve

ra
ge

 R
ev

en
ue

 O
ve

r
T

im
e

Baseline Algorithm
Path Splitting
Path Splitting & Migration

Figure 11: Effect of larger virtual
networks (nodes:2-20, E[BW]:25,
E[CPU]:0, α:0, Ttry:1)

CPU requirements tends to reduce the number of accepted
requests.

To further evaluate effects of CPU resource constraints,
in Figure 10, we have tested different weight constants α in
the revenue definition (Equation (2)) while keeping all the
other parameters the same. The benefits of path splitting
over the baseline algorithm decrease as α increases, since
path splitting and migration only improve the bandwidth
resource utilization in the link mapping stage. For example,
when CPU and bandwidth are almost equally evaluated in
the revenue function, we achieve more than 100% of revenue
increase over the baseline algorithm; when CPU resource
becomes the main factor (α=1), our algorithm with path
splitting still achieves around 60% more revenue than the
baseline algorithm.

(3) Node remapping contributes modestly to revenue
increase. Revenue is not significantly influenced by
the delay we choose. All previous experiments were made
with Ttry = 1, i.e., we ran one round of node remapping in
Algorithm 3. In Figure 8, we show the result of the path
splitting algorithm without node remapping (i.e., Ttry =
0), where the revenue only decreases by 4%. This implies
that the revenue increase shown in earlier simulations mainly
comes from path splitting itself. With increasing values of
Ttry, we could achieve more substantial increases in revenue
at the expense of computation time, because we must rerun
the link mapping stage for Ttry times more than the path
splitting solution without node remapping.

Figure 7 shows that our benefits of path splitting and mi-
gration are not influenced by delay we choose (DELAY=3),
since the result for DELAY=6 is similar to Figure 6 where DE-

LAY=3. This is because the substrate resources are almost
fully used with requests coming and departing over time,
so that the deferred requests cannot be accepted even if it
waits for more time.

(4) Path splitting and migration can still help improve
revenue for larger requests. Figure 11 examines the ben-
efits of path splitting and migration for larger requests, i.e.,
the number of nodes in each VN request uniformly ranges
between 2 and 20. We first keep the total amount of re-
source requirement the same as that in the earlier experi-
ments. Figure 11 shows that with all the requests allowing
path splitting, the revenue increases by 50% with path split-
ting. This benefit is less than the 120% increase of revenue
in Figure 6 with E[BW] = 50. This is due to the fact that

without change of total resource requirement, larger requests
lead to more links and thus less bandwidth per link. In other
experiments when we increase the scale of requests without
changing the average bandwidth per link, then we are able
to achieve more benefits. We omit this result due to space
limitation.

0 20 40 60 80 100
Splitting Ratio (%)

12

13

14

15

16

17

A
ve

ra
ge

 B
an

dw
id

th
 C

os
t O

ve
r

T
im

e
Baseline Algorithm
Path Splitting
Path Splitting & Migration

Figure 12: Effect on cost (E[BW]:25, E[CPU]:0, DELAY:3,
α:0, Ttry:1)

(5) Without admission control, path splitting and mi-
gration reduces cost. In case when the substrate network
resources are sufficient, but the number of incoming VN re-
quests per time-window is small, we can probably service all
the requests, irrespective of using of path splitting or not,
i.e., the long-term revenue achieved will be the same for the
baseline algorithm and the algorithm with path splitting.
However, the algorithm allowing path splittability saves sub-
strate network resources.

First, we discuss notions of cost to quantify efficiency in
resource utilization. The bandwidth cost for a VN request
should be defined to reflect the entire amount of bandwidth
used to map the request to the physical substrate network.
For a single virtual link in the request, it would be natural
to use its required bandwidth multiplied by the length of
the substrate path that the virtual link is mapped to. With
path splitting, we count the bandwidth allocated on each
path of the virtual link and sum them up. Thus, we define

ACM SIGCOMM Computer Communication Review 27 Volume 38, Number 2, April 2008

Algorithm 5 Customized Node Mapping Algorithm for Re-
quests with Hub-and-spoke

Steps 1, 2, and 3: Same as in Greedy Node Mapping
(Algorithm 1).
Step 4 If the request has hub-and-spoke topology,

4.1 For each hub node, find the substrate node
with the maximum available resource in S.

4.2 For each spoke node, find the shortest path be-
tween a substrate node in S and the substrate
node mapped to the corresponding hub node.

else, apply Step 4 in Greedy Node Mapping.
Step 5 Same as in Greedy Node Mapping.

the cost of virtual network Gv by:

Cbw(Gv) =
X

lv∈Lv

X

p∈P s(lv)

hops(p)bw(p, lv), (6)

where P s(lv) is the path(s) the virtual link lv is mapped
on, hops(p) is the number of hops of path p, and bw(p, lv)
is the amount of bandwidth allocated to that virtual link.
Similarly, we define the CPU cost of virtual network Gv by:

CCPU(Gv) =
X

nv∈Nv

CPU(nv), (7)

where CPU(nv) is the amount of CPU virtual node nv re-
quires.

In Figure 12, we have simulated the case where the re-
source requirement of requests is low (E[BW]=25, E[CPU]=0),
where other parameters are the same as before, i.e., (DE-

LAY=3, α=1, Ttry=1).
We observe that with the increase in percentage of re-

quests permitting path splitting, we reduce the bandwidth
cost Cbw over the baseline algorithm by making more ef-
ficient use of the network. When RPS(%)=100, we reduce
10% cost than the baseline algorithm. Path migration fur-
ther reduces the bandwidth cost by 7%. The CPU cost
CCPU remains the same (CCPU = 3.1) with the increase of
RPS(%), since all the requests are accepted, whether they
allow path splitting or not.

5. CUSTOMIZED NODE MAPPING
Although virtual networks may have arbitrary topologies,

we expect some classes of topologies to be relatively com-
mon, since they meet the needs of the key applications in
network virtualization. For example, a hub-and-spoke topol-
ogy is commonly used to connect multiple sites to a central-
ized server, e.g., gaming and CDN (Content Distribution
Network), and a tree topology is commonly used to dis-
tribute content efficiently to a large collection of receivers,
e.g. multicast distribution of IPTV.

The popularity of a small set of topological structures can
be leveraged for better solutions to the VN embedding prob-
lem. In our ongoing work, we present node-mapping tech-
niques that are customized to specific topologies, starting
with the simple hub-and-spoke topology.

As an example, we propose a customized node mapping
(which is extended from the Greedy Node Mapping in Al-
gorithm 1) with hub-and-spoke topologies, as summarized
in Algorithm 5. The customized node mapping algorithm
differs from the greedy node mapping in that we choose the
substrate nodes differently for hub and spokes nodes. The
maximum available resource is allocated only for the hub

nodes (Step 4.1), and the spoke nodes are mapped into
the substrate nodes that have the shortest path to the sub-
strate node hosting the virtual hub node (Step 4.2). This
is motivated by the fact that the hub node handles much
more traffic than the individual spokes. In Step 4.2, we
also achieve significant cost reduction, since cost is generally
proportional to the distance (i.e., number of hops), whereas
the greedy algorithm allocates large substrate resource to
“unimportant nodes” (i.e., the spokes). The wasted re-
sources keep the greedy node mapping algorithm from leav-
ing enough resources available to satisfy the future requests.

We did the evaluation on our customized node mapping al-
gorithm with the requests of hub-and-spoke topologies and
compare it with the greedy node mapping. Our prelimi-
nary experiments show that that our customized algorithm
performs better than the greedy algorithm when the per-
centage of hub-and-spoke topologies among all the requests
increases. By taking advantage of the topology information,
our customized algorithm allocates the hub-and-spoke re-
quest more efficiently than the greedy algorithm. Thus, our
algorithm can allow more requests and achieve a higher av-
erage revenue over time. This result is omitted due to page
limit. We are currently exploring and evaluating other algo-
rithms that are customized for different common topologies,
like trees.

6. RELATED WORK
Previous research has explored how to embed Virtual Pri-

vate Networks (VPNs) in a shared provider topology [11, 16].
VPNs usually has a standard topology, such as full mesh and
hub-and-spoke [25]. The resource constraints in a VPN are
typically just bandwidth requirements, specified by a traffic
matrix (i.e., the traffic volume for each pair of nodes), rather
than node constraints (e.g., processing resources). VN em-
bedding problem is different with VPN design problem in
that VN embedding problem must deal with both node and
link constraints for arbitrary topology.

Related work on VN embedding addresses the hardness of
the problem by relaxing one or more of the key properties of
the problem. These key properties include (i) whether re-
quests are processed online or not, (ii) whether the requests
have link constraints, node constraints, or both, (iii) whether
admission control is performed to reject requests when re-
sources are insufficient, and (iv) what virtual topologies are
supported.

Several of the previous studies focus on the offline prob-
lem, where all VN requests are known in advance. Zhu and
Ammar [31] assume that the substrate network resources are
unlimited, and aim at achieving load balancing in the sub-
strate network without the need for admission control. The
VN-embedding problem for the requests with general topol-
ogy is solved by subdividing the requests into multiple star
topologies to allocate more substrate resource to the center
of each decomposed star topology. Our greedy node embed-
ding algorithm (Algorithm 1) is based on the key idea of this
paper. Lu and Turner [23] also consider an offline problem
for only a single virtual network with a backbone-star topol-
ogy, where their goal is to minimize the cost. They assume
that only bandwidth constraints are imposed, and the sub-
strate network resources are unlimited with no admission
control needed.

In regard to the online problem, Fan and Ammar [13] con-
sider dynamic topology reconfiguration policies for virtual

ACM SIGCOMM Computer Communication Review 28 Volume 38, Number 2, April 2008

networks with dynamic communication requirements, but
no consideration of the node constraints such as CPU. They
also assume that substrate network resources are unlimited
to accept all requests (i.e., no admission control) and try to
find a strategy to minimize cost. Zhu and Ammar [31] also
solve the online problem by recalculating the whole embed-
ding solution periodically. The Assign algorithm [26] used
in Emulab testbed considers the online embedding problem
with the bandwidth constraint. The node constraint in Em-
ulab is provided as the exclusive use of nodes, i.e., different
virtual networks cannot share a substrate node. Admission
control is not explicitly addressed in [26], but it can be in-
ferred that emulab rejects a request if the substrate band-
width/node resources are insufficient. Emulab’s PlanetLab
portal [28] provides resource allocation service for users to
access to PlanetLab testbed. It searches for the PlanetLab
nodes with low CPU and memory loads for the users.

Our work considers all the four challenges outlined in Sec-
tion 1. In particular, we improve the link mapping algorithm
through substrate support for path splitting and migration.

7. CONCLUSION
A key problem in the current study of network virtual-

ization, the VN embedding problem, has various constraints
that make it computationally intractable. In this paper,
rather than significantly restrict the problem space to make
the problem tractable, we rethink the VN embedding prob-
lem by proposing a more flexible substrate network to better
support virtual network embedding. This flexibility includes
path splitting and migration. Path splitting (i.e. multipath)
has been a recurring theme in many network research top-
ics, and we demonstrate the power of multipath in substrate
network for more cost-effective virtual network embedding.
From both the theoretical and engineering perspective, we
show that allowing substrate path splitting and migration
would help us to attain better resource utilization. Through
our publicly available simulator, we demonstrate the bene-
fits of these approaches in making the embedding problem
computationally easier, and the resulting embeddings more
efficient.

8. REFERENCES
[1] Akamai content distribution network.

http://www.akamai.com/.
[2] GENI. http://www.geni.net/.
[3] Planetlab. https://www.planet-lab.org/.
[4] Virtual Network Embedding Simulator.

http://www.cs.princeton.edu/~minlanyu/embed.tar.gz.
[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network

Flows: Theory, Algorithms, and Applications. Prentice
Hall, 1993.

[6] D. G. Andersen. Theoretical approaches to node
assignment. Unpublished Manuscript, http:
//www.cs.cmu.edu/~dga/papers/andersen-assign.ps,
2002.

[7] T. Anderson, L. Peterson, S. Shenker, and J. Turner.
Overcoming the Internet impasse through virtualization.
IEEE Computer Magazine, 38(4):34–41, 2005.

[8] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, M. Latapy, C. Magnien, and R. Teixeira.
Avoiding traceroute anomalies with Paris traceroute. In
Proc. Internet Measurement Conference, 2006.

[9] I. Avramopoulos, D. Syrivelis, J. Rexford, and S. Lalis.
Secure availability monitoring using stealth probes.
Technical Report TR-769-06, Princeton University, 2006.

[10] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In VINI veritas: Realistic and controlled
network experimentation. In Proc. ACM SIGCOMM,
September 2006.

[11] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan, and J. E. van der Merwe. Resource
management with hoses: Point-to-cloud services for virtual
private networks. IEEE/ACM Trans. Networking, 2002.

[12] D. Eppstein. Finding the k shortest paths. In Proc. IEEE
Symposium on Foundations of Computer Science, 1994.

[13] J. Fan and M. Ammar. Dynamic topology configuration in
service overlay networks: A study of reconfiguration
policies. In Proc. IEEE INFOCOM, 2006.

[14] N. Feamster, L. Gao, and J. Rexford. How to lease the
Internet in your spare time. ACM Computer
Communication Review, 37(1):61–64, 2007.

[15] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and
J. Rexford. NetScope: Traffic engineering for IP networks.
IEEE Network Magazine, 14(2):11–19, March 2000.

[16] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and
B. Yener. Provisioning a virtual private network: A
network design problem for multicommodity flow. In Proc.
ACM Symposium on Theory of Computing, 2001.

[17] M. Harchol-Balter and A. B. Downey. Exploiting process
lifetime distributions for dynamic load balancing. ACM
Transactions on Computer Systems, 15(3):253–285, 1997.

[18] J. He and J. Rexford. Towards Internet-wide multipath
routing. In IEEE Network Magazine Special Issue on
Scalability, March 2008.

[19] P. Key, L. Massoulie, and D. Towsley. Path selection and
multipath congestion control. In Proc. IEEE INFOCOM,
2007.

[20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science, Number
4598, 13 May 1983, 220, 4598:671–680, 1983.

[21] J. Kleinberg. Approximation algorithms for disjoint paths
problems. PhD thesis, MIT, 1996.

[22] S. G. Kolliopoulos and C. Stein. Improved approximation
algorithms for unsplittable flow problems. In Proc. IEEE
Symposium on Foundations of Computer Science, 1997.

[23] J. Lu and J. Turner. Efficient mapping of virtual networks
onto a shared substrate. Technical Report
WUCSE-2006-35, Washington University, 2006.

[24] M. Mitzenmacher. The power of two choices in randomized
load balancing. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1094–1104, 2001.

[25] S. Raghunath, K. K. Ramakrishnan, S. Kalyanaraman, and
C. Chase. Measurement based characterization and
provisioning of IP VPNs. In Proc. Internet Measurement
Conference, 2004.

[26] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the
network testbed mapping problem. ACM Computer
Communication Review, 33(2):65–81, 2003.

[27] J. S. Turner and D. E. Taylor. Diversifying the Internet. In
Proc. IEEE GLOBECOM, 2005.

[28] K. Webb, M. Hibler, R. Ricci, A. Clements, and
J. Lepreau. Implementing the Emulab-Planetlab portal:
Experience and lessons learned. In Workshop on Real,
Large Distributed Systems (WORLDS), 2004.

[29] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.
Black-box and gray-box strategies for virtual machine
migration. In Proc. Networked Systems Design and
Implementation, 2007.

[30] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
model an internetwork. In Proc. IEEE INFOCOM, 1996.

[31] Y. Zhu and M. Ammar. Algorithms for assigning substrate
network resources to virtual network components. In Proc.
IEEE INFOCOM, 2006.

ACM SIGCOMM Computer Communication Review 29 Volume 38, Number 2, April 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

