本教程演示了如何使用FastAI库训练一个图像分类模型,区分猫和狗。 我们将逐步进行,从数据准备到模型训练和使用。
步骤一:数据准备
<code class="language-python">import os iskaggle = os.environ.get('KAGGLE_KERNEL_RUN_TYPE', '') if iskaggle: !pip install -Uqq fastai 'duckduckgo_search>=6.2' from duckduckgo_search import DDGS from fastcore.all import * import time, json def search_images(keywords, max_images=200): return L(DDGS().images(keywords, max_results=max_images)).itemgot('image')</code>
<code class="language-python">urls = search_images('dog photos', max_images=1) from fastdownload import download_url dest = 'dog.jpg' download_url(urls[0], dest, show_progress=False) from fastai.vision.all import * im = Image.open(dest) im.to_thumb(256,256)</code>
同样地,我们下载一张猫的图片:
<code class="language-python">download_url(search_images('cat photos', max_images=1)[0], 'cat.jpg', show_progress=False) Image.open('cat.jpg').to_thumb(256,256)</code>
dog_or_not/dog
和dog_or_not/cat
文件夹中。 同时,我们调整图像大小以提高效率。<code class="language-python">searches = 'dog', 'cat' path = Path('dog_or_not') for o in searches: dest = (path/o) dest.mkdir(exist_ok=True, parents=True) download_images(dest, urls=search_images(f'{o} photo')) time.sleep(5) resize_images(path/o, max_size=400, dest=path/o)</code>
<code class="language-python">failed = verify_images(get_image_files(path)) failed.map(Path.unlink)</code>
步骤二:模型训练
DataBlock
创建DataLoader,用于加载和处理图像数据。<code class="language-python">dls = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=[Resize(192, method='squish')] ).dataloaders(path, bs=32) dls.show_batch(max_n=6)</code>
<code class="language-python">learn = vision_learner(dls, resnet50, metrics=error_rate) learn.fine_tune(3)</code>
步骤三:模型使用
<code class="language-python">is_dog,_,probs = learn.predict(PILImage.create('dog.jpg')) print(f'This is a: {is_dog}.') print(f"Probability it's a dog: {probs[1]:.4f}")</code>
输出结果:
This is a: dog. Probability it's a dog: 1.0000
这个教程展示了如何利用FastAI快速构建一个简单的图像分类模型。 记住,模型的准确性取决于训练数据的质量和数量。
以上是如何根据 Kaggle 上的数据创建模型的详细内容。更多信息请关注PHP中文网其他相关文章!