[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
SlideShare a Scribd company logo
Functional Design Patterns 
@ScottWlaschin 
fsharpforfunandprofit.com
Functional Design Patterns 
@ScottWlaschin 
fsharpforfunandprofit.com 
X
Functional Design Patterns 
@ScottWlaschin 
fsharpforfunandprofit.com
Functional Programming Patterns (BuildStuff '14)
Functional Programming Patterns (BuildStuff '14)
Functional Programming Patterns (BuildStuff '14)
Functional patterns 
•Apomorphisms 
•Dynamorphisms 
•Chronomorphisms 
•Zygohistomorphic prepromorphisms
Functional patterns 
•Core Principles of FP design 
–Functions, types, composition 
•Functions as parameters 
–Abstraction, Dependency injection 
–Partial application, Continuations, Folds, 
•Chaining functions 
–Error handling, Async 
–Monads 
•Dealing with wrapped data 
–Lifting, Functors 
–Validation with Applicatives 
•Aggregating data and operations 
–Monoids
This talk 
A whirlwind tour of many sights 
Don't worry if you don't understand everything
Functional programming is scary
Functional programming is scary
Object oriented programming is scary
•Single Responsibility Principle 
•Open/Closed principle 
•Dependency Inversion Principle 
•Interface Segregation Principle 
•Factory pattern 
•Strategy pattern 
•Decorator pattern 
•Visitor pattern 
•Functions 
•Functions 
•Functions, also 
•Functions 
•Yes, functions 
•Oh my, functions again! 
•Functions 
•Functions  
OO pattern/principle 
FP pattern/principle 
Seriously, FP patterns are different
A short and mostly wrong history of programming paradigms
•What we envisioned: 
–Smalltalk 
•What we got: 
–C++ 
–Object oriented Cobol 
–PHP 
–Java 
“Worse is better” 
Object-Oriented programming
•What we envisioned: 
–Haskell, OCaml, F#, etc 
•What we got: 
–?? 
Functional programming 
Please don’t let this happen to FP!
CORE PRINCIPLES OF FP DESIGN 
Important to understand!
Core principles of FP design 
Steal from mathematics 
Types are not classes 
Functions are things 
Composition everywhere 
Function
Core principle: Steal from mathematics 
“Programming is one of the most difficult branches of applied mathematics” - E. W. Dijkstra
Why mathematics 
Dijkstra said: 
•Mathematical assertions tend to be unusually precise. 
•Mathematical assertions tend to be general. They are applicable to a large (often infinite) class of instances. 
•Mathematics embodies a discipline of reasoning allowing assertions to be made with an unusually high confidence level.
“Object-oriented programming is an exceptionally bad idea which could only have originated in California.” 
E. W. Dijkstra
Mathematical functions 
Function add1(x) input x maps to x+1 
… 
-1 
0 
1 
2 
3 
… 
Domain (int) 
Codomain (int) 
… 
0 
1 
2 
3 
4 
… 
let add1 x = x + 1 
val add1 : int -> int
Function add1(x) input x maps to x+1 
… 
-1 
0 
1 
2 
3 
… 
Domain (int) 
Codomain (int) 
… 
0 
1 
2 
3 
4 
… 
Mathematical functions 
int add1(int input) 
{ 
switch (input) 
{ 
case 0: return 1; 
case 1: return 2; 
case 2: return 3; 
case 3: return 4; 
etc ad infinitum 
} 
} 
•Input and output values already exist 
•A function is not a calculation, just a mapping 
•Input and output values are unchanged (immutable)
Mathematical functions 
•A (mathematical) function always gives the same output value for a given input value 
•A (mathematical) function has no side effects 
Function add1(x) input x maps to x+1 
… 
-1 
0 
1 
2 
3 
… 
Domain (int) 
Codomain (int) 
… 
0 
1 
2 
3 
4 
…
Functions don't have to be about arithmetic 
Function CustomerName(x) input Customer maps to PersonalName 
… 
Cust1 Cust2 Cust3 Cust3 … 
Customer (domain) 
Name (codomain) 
… 
Alice Bob 
Sue John 
Pam… 
Name CustomerName(Customer input) 
{ 
switch (input) 
{ case Cust1: return “Alice”; 
case Cust2: return “Bob”; 
case Cust3: return “Sue”; 
etc 
} 
}
Functions can work on functions 
Function List.map int->int maps to int list->int list 
… 
add1 times2 subtract3 add42 … 
int->int 
int list -> int list 
… 
eachAdd1 eachTimes2 
eachSubtract3 eachAdd42 
…
Guideline: Strive for purity
The practical benefits of pure functions 
customer.SetName(newName); 
let newCustomer = setCustomerName(aCustomer, newName) 
Pure functions are easy to reason about 
var name = customer.GetName(); 
let name,newCustomer = getCustomerName(aCustomer) 
Reasoning about code that might not be pure: 
Reasoning about code that is pure: 
The customer is being changed.
The practical benefits of pure functions 
let x = doSomething() 
let y = doSomethingElse(x) 
return y + 1 
Pure functions are easy to refactor
The practical benefits of pure functions 
Pure functions are easy to refactor 
let x = doSomething() 
let y = doSomethingElse(x) 
return y + 1
The practical benefits of pure functions 
Pure functions are easy to refactor 
let helper() = let x = doSomething() 
let y = doSomethingElse(x) 
return y 
return helper() + 1
More practical benefits of pure functions 
•Laziness 
–only evaluate when I need the output 
•Cacheable results 
–same answer every time 
–"memoization" 
•No order dependencies 
–I can evaluate them in any order I like 
•Parallelizable 
–"embarrassingly parallel"
How to design a pure function 
Pure Awesomeness!
How to design a pure function 
•Haskell 
–very pure 
•F#, OCaml, Clojure, Scala 
–easy to be pure 
•C#, Java, JavaScript 
–have to make an effort
Core principle: Types are not classes
X
Types are not classes 
Set of valid inputs 
Set of valid outputs 
So what is a type?
Types separate data from behavior 
Lists 
Lists 
List.map 
List.collect 
List.filter 
List.etc
Core principle: Functions are things 
Function
Functions as things 
The Tunnel of Transformation 
Function apple -> banana 
A function is a standalone thing, not attached to a class
Functions as things 
let z = 1 
int-> int->int 
1 
let add x y = x + y
Functions as inputs and outputs 
let useFn f = (f 1) + 2 
let add x = (fun y -> x + y) 
int->(int->int) 
int ->int 
int 
int 
int->int 
let transformInt f x = (f x) + 1 
int->int 
int 
int 
Function as output 
Function as input 
Function as parameter 
(int->int)->int 
int->int
Core principle: Composition everywhere
Function composition 
Function 1 apple -> banana 
Function 2 banana -> cherry
Function composition 
>> 
Function 1 apple -> banana 
Function 2 banana -> cherry
Function composition 
New Function apple -> cherry 
Can't tell it was built from smaller functions!
Types can be composed too 
“algebraic types"
Product types 
× 
= 
Alice, Jan 12th 
Bob, Feb 2nd 
Carol, Mar 3rd 
Set of people 
Set of dates 
type Birthday = Person * Date
Sum types 
Set of Cash values 
Set of Cheque values 
Set of CreditCard values 
+ 
+ 
type PaymentMethod = 
| Cash 
| Cheque of ChequeNumber 
| Card of CardType * CardNumber
DDD & DOMAIN MODELLING
Domain modelling pattern: Use types to represent constraints
Types represent constraints on input and output 
type Suit = Club | Diamond | Spade | Heart 
type String50 = // non-null, not more than 50 chars 
type EmailAddress = // non-null, must contain ‘@’ 
type StringTransformer = string -> string 
type GetCustomer = CustomerId -> Customer option 
Instant mockability
Domain modelling pattern: Types are cheap
Types are cheap 
type Suit = Club | Diamond | Spade | Heart 
type Rank = Two | Three | Four | Five | Six | Seven | Eight 
| Nine | Ten | Jack | Queen | King | Ace 
type Card = Suit * Rank 
type Hand = Card list 
Only one line of code to create a type!
Design principle: Strive for totality
twelveDividedBy(x) input x maps to 12/x 
… 
3 
2 
1 
0 
… 
Domain (int) 
Codomain (int) 
… 
4 
6 
12 
… 
Totality 
int TwelveDividedBy(int input) 
{ 
switch (input) 
{ 
case 3: return 4; 
case 2: return 6; 
case 1: return 12; 
case 0: return ??; 
} 
} 
What happens here?
twelveDividedBy(x) input x maps to 12/x 
… 
3 
2 
1 
-1 
… 
NonZeroInteger 
int 
… 
4 
6 
12 
… 
Totality 
int TwelveDividedBy(int input) 
{ 
switch (input) 
{ 
case 3: return 4; 
case 2: return 6; 
case 1: return 12; 
case -1: return -12; 
} 
} 
Constrain the input 
0 is doesn’t have to be handled 
NonZeroInteger -> int 
0 is missing 
Types are documentation
twelveDividedBy(x) input x maps to 12/x 
… 
3 
2 
1 
0 
-1 
… 
int 
Option<Int> 
… 
Some 4 
Some 6 
Some 12 
None … 
Totality 
int TwelveDividedBy(int input) 
{ 
switch (input) 
{ 
case 3: return Some 4; 
case 2: return Some 6; 
case 1: return Some 12; 
case 0: return None; 
} 
} 
Extend the output 
0 is valid input 
int -> int option 
Types are documentation
Design principle: Use types to indicate errors
Output types as error codes 
LoadCustomer: CustomerId -> Customer 
LoadCustomer: CustomerId -> SuccessOrFailure<Customer> 
ParseInt: string -> int 
ParseInt: string -> int option 
FetchPage: Uri -> String 
FetchPage: Uri -> SuccessOrFailure<String> 
No nulls 
No exceptions 
Use the signature, Luke!
Domain modelling principle: “Make illegal states unrepresentable”
Types can represent business rules 
type EmailContactInfo = 
| Unverified of EmailAddress 
| Verified of VerifiedEmailAddress 
type ContactInfo = 
| EmailOnly of EmailContactInfo 
| AddrOnly of PostalContactInfo 
| EmailAndAddr of EmailContactInfo * PostalContactInfo
Domain modelling principle: Use sum-types instead of inheritance
Using sum vs. inheritance 
interface IPaymentMethod {..} 
class Cash : IPaymentMethod {..} 
class Cheque : IPaymentMethod {..} 
class Card : IPaymentMethod {..} 
type PaymentMethod = 
| Cash 
| Cheque of ChequeNumber 
| Card of CardType * CardNumber 
class Evil : IPaymentMethod {..} 
Definition is scattered around many locations 
What goes in here? What is the common behaviour? 
OO version:
Domain modelling principle: Use sum-types for state machines
type ShoppingCart = 
| EmptyCartState 
| ActiveCartState of ActiveCartData 
| PaidCartState of PaidCartData 
Empty Cart 
Active Cart 
Paid Cart 
Add Item 
Remove Item 
Pay 
Add Item 
Remove Item
Domain modelling principle: It’s ok to expose public data
It’s ok to expose public data 
type PersonalName = { 
FirstName: String50 
MiddleInitial: String1 option 
LastName: String50 } 
Immutable 
Can’t create invalid values
Domain modelling principle: Types are executable documentation
Types are executable documentation 
type Suit = Club | Diamond | Spade | Heart 
type Rank = Two | Three | Four | Five | Six | Seven | Eight 
| Nine | Ten | Jack | Queen | King | Ace 
type Card = Suit * Rank 
type Hand = Card list 
type Deck = Card list 
type Player = {Name:string; Hand:Hand} 
type Game = {Deck:Deck; Players: Player list} 
type Deal = Deck –› (Deck * Card) 
type PickupCard = (Hand * Card) –› Hand
Types are executable documentation 
type CardType = Visa | Mastercard 
type CardNumber = CardNumber of string 
type ChequeNumber = ChequeNumber of int 
type PaymentMethod = 
| Cash 
| Cheque of ChequeNumber 
| Card of CardType * CardNumber
More on DDD and designing with types at fsharpforfunandprofit.com/ddd 
Static types only! Sorry Clojure and JS developers 
HIGH-LEVEL DESIGN
Design paradigm: Functions all the way down
“Functions in the small, objects in the large”
Low-level operation 
ToUpper 
Service 
Domain logic 
High-level use-case 
AddressValidator 
VerifyEmailAddress 
UpdateProfileData 
“Service” is the new “microservice” 
string 
string 
AddressResult 
EmailVerification 
Saga 
Http Response 
Address 
Email 
Http Request
Design paradigm: Transformation-oriented programming
Interacting with the outside world 
type ContactDTO = { 
FirstName: string 
MiddleInitial: string 
LastName: string 
EmailAddress: string 
IsEmailVerified: bool 
} 
type EmailAddress = ... 
type VerifiedEmail = 
VerifiedEmail of EmailAddress 
type EmailContactInfo = 
| Unverified of EmailAddress 
| Verified of VerifiedEmail 
type PersonalName = { 
FirstName: String50 
MiddleInitial: String1 option 
LastName: String50 } 
type Contact = { 
Name: PersonalName 
Email: EmailContactInfo }
Transformation oriented programming 
Input 
Function 
Output
Transformation oriented programming 
Input 
Transformation to internal model 
Internal Model 
Output 
Transformation from internal model 
validation and wrapping happens here 
unwrapping happens here
Outbound tranformation 
Flow of control in a FP use case 
Inbound tranformation 
Customer 
Domain 
Validator 
Update 
Request DTO 
Domain Type 
Send 
ToDTO 
Response DTO 
Works well with domain events, FRP, etc
Flow of control in a OO use case 
Application Services 
Customer 
Domain 
App Service 
App Service 
Validation 
Value 
Entity 
Infrastructure 
Entity 
Customer Repo. 
Value 
Email Message 
Value 
Database Service 
SMTP Service
Interacting with the outside world 
Nasty, unclean outside world 
Nasty, unclean outside world 
Nasty, unclean outside world 
Beautiful, clean, internal model 
Gate with filters 
Gate with filters 
Gate with filters
Interacting with the other domains 
Subdomain/ bounded context 
Gate with filters 
Subdomain/ bounded context 
Gate with filters
Interacting with the other domains 
Bounded context 
Bounded context 
Bounded context
FUNCTIONS AS PARAMETERS
Guideline: Parameterize all the things
Parameterize all the things 
let printList() = 
for i in [1..10] do 
printfn "the number is %i" i
Parameterize all the things 
It's second nature to parameterize the data input: 
let printList aList = 
for i in aList do 
printfn "the number is %i" i
Parameterize all the things 
let printList anAction aList = 
for i in aList do 
anAction i 
FPers would parameterize the action as well: 
We've decoupled the behavior from the data
Parameterize all the things 
public static int Product(int n) 
{ 
int product = 1; 
for (int i = 1; i <= n; i++) 
{ 
product *= i; 
} 
return product; 
} 
public static int Sum(int n) 
{ 
int sum = 0; 
for (int i = 1; i <= n; i++) 
{ 
sum += i; 
} 
return sum; 
}
public static int Product(int n) 
{ 
int product = 1; 
for (int i = 1; i <= n; i++) 
{ 
product *= i; 
} 
return product; 
} 
public static int Sum(int n) 
{ 
int sum = 0; 
for (int i = 1; i <= n; i++) 
{ 
sum += i; 
} 
return sum; 
} 
Parameterize all the things
Parameterize all the things 
let product n = 
let initialValue = 1 
let action productSoFar x = productSoFar * x 
[1..n] |> List.fold action initialValue 
let sum n = 
let initialValue = 0 
let action sumSoFar x = sumSoFar+x 
[1..n] |> List.fold action initialValue 
Lots of collection functions like this: "fold", "map", "reduce", "collect", etc.
Guideline: Be as generic as possible
Generic code 
let printList anAction aList = 
for i in aList do 
anAction i 
// val printList : 
// ('a -> unit) -> seq<'a> -> unit 
Any kind of collection, any kind of action! 
F# and other functional languages make code generic automatically
Generic code 
int -> int 
How many ways are there to implement this function? 
'a -> 'a 
How many ways are there to this function?
Generic code 
int list -> int list 
How many ways are there to implement this function? 
'a list -> 'a list 
How many ways are there to this function?
Generic code 
('a -> 'b) -> 'a list -> 'b list 
How many ways are there to implement this function?
Tip: Function types are "interfaces"
Function types are interfaces 
interface IBunchOfStuff 
{ 
int DoSomething(int x); 
string DoSomethingElse(int x); 
void DoAThirdThing(string x); 
} 
Let's take the Single Responsibility Principle and the Interface Segregation Principle to the extreme... 
Every interface should have only one method!
Function types are interfaces 
interface IBunchOfStuff 
{ 
int DoSomething(int x); 
} 
An interface with one method is a just a function type 
type IBunchOfStuff: int -> int 
Any function with that type is compatible with it 
let add2 x = x + 2 // int -> int 
let times3 x = x * 3 // int -> int
Strategy pattern is trivial in FP 
class MyClass 
{ 
public MyClass(IBunchOfStuff strategy) {..} 
int DoSomethingWithStuff(int x) { 
return _strategy.DoSomething(x) 
} 
} 
Object-oriented strategy pattern: 
Functional equivalent: 
let DoSomethingWithStuff strategy x = 
strategy x
Decorator pattern in FP 
Functional equivalent of decorator pattern 
let add1 x = x + 1 // int -> int
Decorator pattern in FP 
Functional equivalent of decorator pattern 
let add1 x = x + 1 // int -> int 
let logged f x = 
printfn "input is %A" x 
let result = f x 
printfn "output is %A" result 
result
Decorator pattern in FP 
Functional equivalent of decorator pattern 
let add1 x = x + 1 // int -> int 
let logged f x = 
printfn "input is %A" x 
let result = f x 
printfn "output is %A" result 
result 
let add1Decorated = // int -> int 
logged add1 
[1..5] |> List.map add1 
[1..5] |> List.map add1Decorated
Tip Every function is a one parameter function
Writing functions in different ways 
let add x y = x + y 
let add = (fun x y -> x + y) 
let add x = (fun y -> x + y) 
int-> int->int 
int-> int->int 
int-> (int->int)
let three = 1 + 2 
let add1 = (+) 1 
let three = (+) 1 2 
let add1ToEach = List.map add1
Pattern: Partial application
let names = ["Alice"; "Bob"; "Scott"] 
Names |> List.iter hello 
let name = "Scott" 
printfn "Hello, my name is %s" name 
let name = "Scott" 
(printfn "Hello, my name is %s") name 
let name = "Scott" 
let hello = (printfn "Hello, my name is %s") 
hello name
Pattern: Use partial application to do dependency injection
type GetCustomer = CustomerId -> Customer 
let getCustomerFromDatabase connection 
(customerId:CustomerId) = 
// from connection // select customer // where customerId = customerId 
type of getCustomerFromDatabase = 
DbConnection -> CustomerId -> Customer 
let getCustomer1 = getCustomerFromDatabase myConnection 
// getCustomer1 : CustomerId -> Customer 
Persistence agnostic
type GetCustomer = CustomerId -> Customer 
let getCustomerFromMemory map (customerId:CustomerId) = 
map |> Map.find customerId 
type of getCustomerFromMemory = 
Map<Id,Customer> -> CustomerId -> Customer 
let getCustomer2 = getCustomerFromMemory inMemoryMap 
// getCustomer2 : CustomerId -> Customer
Pattern: The Hollywood principle: continuations
Continuations 
int Divide(int top, int bottom) { 
if (bottom == 0) 
{ 
throw new InvalidOperationException("div by 0"); 
} 
else 
{ 
return top/bottom; 
} 
} 
Method has decided to throw an exception
Continuations 
void Divide(int top, int bottom, 
Action ifZero, Action<int> ifSuccess) 
{ 
if (bottom == 0) 
{ 
ifZero(); 
} 
else 
{ 
ifSuccess( top/bottom ); 
} 
} 
Let the caller decide what happens 
what happens next?
Continuations 
let divide ifZero ifSuccess top bottom = 
if (bottom=0) 
then ifZero() 
else ifSuccess (top/bottom) 
F# version 
Four parameters is a lot though!
Continuations 
let divide ifZero ifSuccess top bottom = 
if (bottom=0) 
then ifZero() 
else ifSuccess (top/bottom) 
let ifZero1 () = printfn "bad" 
let ifSuccess1 x = printfn "good %i" x 
let divide1 = divide ifZero1 ifSuccess1 
//test 
let good1 = divide1 6 3 
let bad1 = divide1 6 0 
setup the functions to print a message 
Partially apply the continuations 
Use it like a normal function – only two parameters
Continuations 
let divide ifZero ifSuccess top bottom = 
if (bottom=0) 
then ifZero() 
else ifSuccess (top/bottom) 
let ifZero2() = None 
let ifSuccess2 x = Some x 
let divide2 = divide ifZero2 ifSuccess2 
//test 
let good2 = divide2 6 3 
let bad2 = divide2 6 0 
setup the functions to return an Option 
Use it like a normal function – only two parameters 
Partially apply the continuations
Continuations 
let divide ifZero ifSuccess top bottom = 
if (bottom=0) 
then ifZero() 
else ifSuccess (top/bottom) 
let ifZero3() = failwith "div by 0" 
let ifSuccess3 x = x 
let divide3 = divide ifZero3 ifSuccess3 
//test 
let good3 = divide3 6 3 
let bad3 = divide3 6 0 
setup the functions to throw an exception 
Use it like a normal function – only two parameters 
Partially apply the continuations
MONADS
Pyramid of doom: null testing example 
let example input = 
let x = doSomething input 
if x <> null then 
let y = doSomethingElse x 
if y <> null then 
let z = doAThirdThing y 
if z <> null then 
let result = z 
result 
else 
null 
else 
null 
else 
null 
I know you could do early returns, but bear with me...
Pyramid of doom: async example 
let taskExample input = 
let taskX = startTask input 
taskX.WhenFinished (fun x -> 
let taskY = startAnotherTask x 
taskY.WhenFinished (fun y -> 
let taskZ = startThirdTask y 
taskZ.WhenFinished (fun z -> 
z // final result
Pyramid of doom: null example 
let example input = 
let x = doSomething input 
if x <> null then 
let y = doSomethingElse x 
if y <> null then 
let z = doAThirdThing y 
if z <> null then 
let result = z 
result 
else 
null 
else 
null 
else 
null 
Nulls are a code smell: replace with Option!
Pyramid of doom: option example 
let example input = 
let x = doSomething input 
if x.IsSome then 
let y = doSomethingElse (x.Value) 
if y.IsSome then 
let z = doAThirdThing (y.Value) 
if z.IsSome then 
let result = z.Value 
Some result 
else 
None 
else 
None 
else 
None 
Much more elegant, yes? 
No! This is fugly! 
Let’s do a cut & paste refactoring
Pyramid of doom: option example 
let example input = 
let x = doSomething input 
if x.IsSome then 
let y = doSomethingElse (x.Value) 
if y.IsSome then 
let z = doAThirdThing (y.Value) 
if z.IsSome then 
let result = z.Value 
Some result 
else 
None 
else 
None 
else 
None
Pyramid of doom: option example 
let doWithX x = 
let y = doSomethingElse x 
if y.IsSome then 
let z = doAThirdThing (y.Value) 
if z.IsSome then 
let result = z.Value 
Some result 
else 
None 
else 
None 
let example input = 
let x = doSomething input 
if x.IsSome then 
doWithX x 
else 
None
Pyramid of doom: option example 
let doWithX x = 
let y = doSomethingElse x 
if y.IsSome then 
let z = doAThirdThing (y.Value) 
if z.IsSome then 
let result = z.Value 
Some result 
else 
None 
else 
None 
let example input = 
let x = doSomething input 
if x.IsSome then 
doWithX x 
else 
None
Pyramid of doom: option example 
let doWithY y = 
let z = doAThirdThing y 
if z.IsSome then 
let result = z.Value 
Some result 
else 
None 
let doWithX x = 
let y = doSomethingElse x 
if y.IsSome then 
doWithY y 
else 
None 
let example input = 
let x = doSomething input 
if x.IsSome then 
doWithX x 
else 
None
Pyramid of doom: option example refactored 
let doWithZ z = 
let result = z 
Some result 
let doWithY y = 
let z = doAThirdThing y 
if z.IsSome then 
doWithZ z.Value 
else 
None 
let doWithX x = 
let y = doSomethingElse x 
if y.IsSome then 
doWithY y.Value 
else 
None 
let optionExample input = 
let x = doSomething input 
if x.IsSome then 
doWithX x.Value 
else 
None 
Three small pyramids instead of one big one! 
This is still ugly! 
But the code has a pattern...
Pyramid of doom: option example refactored 
let doWithZ z = 
let result = z 
Some result 
let doWithY y = 
let z = doAThirdThing y 
if z.IsSome then 
doWithZ z.Value 
else 
None 
let doWithX x = 
let y = doSomethingElse x 
if y.IsSome then 
doWithY y.Value 
else 
None 
let optionExample input = 
let x = doSomething input 
if x.IsSome then 
doWithX x.Value 
else 
None 
But the code has a pattern...
let doWithY y = 
let z = doAThirdThing y 
if z.IsSome then 
doWithZ z.Value 
else 
None
let doWithY y = 
let z = doAThirdThing y 
z |> ifSomeDo doWithZ 
let ifSomeDo f x = 
if x.IsSome then 
f x.Value 
else 
None
let doWithY y = 
y 
|> doAThirdThing 
|> ifSomeDo doWithZ 
let ifSomeDo f x = 
if x.IsSome then 
f x.Value 
else 
None
let example input = 
doSomething input 
|> ifSomeDo doSomethingElse 
|> ifSomeDo doAThirdThing 
|> ifSomeDo (fun z -> Some z) 
let ifSomeDo f x = 
if x.IsSome then 
f x.Value 
else 
None
A switch analogy 
Some 
None 
Input ->
Connecting switches 
on Some 
Bypass on None
Connecting switches
Connecting switches
Composing switches 
>> 
>> 
Composing one-track functions is fine...
Composing switches 
>> 
>> 
... and composing two-track functions is fine...
Composing switches 
 
 
... but composing switches is not allowed!
Composing switches 
Two-track input 
Two-track input 
One-track input 
Two-track input 
 

Building an adapter block 
Two-track input 
Slot for switch function 
Two-track output
Building an adapter block 
Two-track input 
Two-track output
let bind nextFunction optionInput = 
match optionInput with 
| Some s -> nextFunction s 
| None -> None 
Building an adapter block 
Two-track input 
Two-track output
let bind nextFunction optionInput = 
match optionInput with 
| Some s -> nextFunction s 
| None -> None 
Building an adapter block 
Two-track input 
Two-track output
let bind nextFunction optionInput = 
match optionInput with 
| Some s -> nextFunction s 
| None -> None 
Building an adapter block 
Two-track input 
Two-track output
let bind nextFunction optionInput = 
match optionInput with 
| Some s -> nextFunction s 
| None -> None 
Building an adapter block 
Two-track input 
Two-track output
Pattern: Use bind to chain options
Pyramid of doom: using bind 
let bind f opt = 
match opt with 
| Some v -> f v 
| None -> None 
let example input = 
let x = doSomething input 
if x.IsSome then 
let y = doSomethingElse (x.Value) 
if y.IsSome then 
let z = doAThirdThing (y.Value) 
if z.IsSome then 
let result = z.Value 
Some result 
else 
None 
else 
None 
else 
None
let example input = 
doSomething input 
|> bind doSomethingElse 
|> bind doAThirdThing 
|> bind (fun z -> Some z) 
Pyramid of doom: using bind 
let bind f opt = 
match opt with 
| Some v -> f v 
| None -> None 
No pyramids! 
Code is linear and clear. 
This pattern is called “monadic bind”
Pattern: Use bind to chain tasks
Connecting tasks 
When task completes 
Wait 
Wait
Pyramid of doom: using bind for tasks 
let taskBind f task = 
task.WhenFinished (fun taskResult -> 
f taskResult) 
let taskExample input = 
startTask input 
|> taskBind startAnotherTask 
|> taskBind startThirdTask 
|> taskBind (fun z -> z) 
a.k.a “promise” “future” 
This pattern is also a “monadic bind”
Computation expressions 
let example input = 
maybe { 
let! x = doSomething input 
let! y = doSomethingElse x 
let! z = doAThirdThing y 
return z 
} 
let taskExample input = 
task { let! x = startTask input 
let! y = startAnotherTask x 
let! z = startThirdTask z 
return z 
} 
Computation expression 
Computation expression
Pattern: Use bind to chain error handlers
Example use case 
Name is blank Email not valid 
Receive request 
Validate and canonicalize request 
Update existing user record 
Send verification email 
Return result to user 
User not found Db error 
Authorization error Timeout 
"As a user I want to update my name and email address" 
type Request = { userId: int; name: string; email: string } 
- and see sensible error messages when something goes wrong!
Use case without error handling 
string UpdateCustomerWithErrorHandling() 
{ 
var request = receiveRequest(); 
validateRequest(request); 
canonicalizeEmail(request); 
db.updateDbFromRequest(request); 
smtpServer.sendEmail(request.Email) 
return "OK"; 
}
Use case with error handling 
string UpdateCustomerWithErrorHandling() 
{ 
var request = receiveRequest(); 
var isValidated = validateRequest(request); 
if (!isValidated) { 
return "Request is not valid" 
} 
canonicalizeEmail(request); 
db.updateDbFromRequest(request); 
smtpServer.sendEmail(request.Email) 
return "OK"; 
}
Use case with error handling 
string UpdateCustomerWithErrorHandling() 
{ 
var request = receiveRequest(); 
var isValidated = validateRequest(request); 
if (!isValidated) { 
return "Request is not valid" 
} 
canonicalizeEmail(request); 
var result = db.updateDbFromRequest(request); 
if (!result) { 
return "Customer record not found" 
} 
smtpServer.sendEmail(request.Email) 
return "OK"; 
}
Use case with error handling 
string UpdateCustomerWithErrorHandling() 
{ 
var request = receiveRequest(); 
var isValidated = validateRequest(request); 
if (!isValidated) { 
return "Request is not valid" 
} 
canonicalizeEmail(request); 
try { 
var result = db.updateDbFromRequest(request); 
if (!result) { 
return "Customer record not found" 
} 
} catch { 
return "DB error: Customer record not updated" 
} 
smtpServer.sendEmail(request.Email) 
return "OK"; 
}
Use case with error handling 
string UpdateCustomerWithErrorHandling() 
{ 
var request = receiveRequest(); 
var isValidated = validateRequest(request); 
if (!isValidated) { 
return "Request is not valid" 
} 
canonicalizeEmail(request); 
try { 
var result = db.updateDbFromRequest(request); 
if (!result) { 
return "Customer record not found" 
} 
} catch { 
return "DB error: Customer record not updated" 
} 
if (!smtpServer.sendEmail(request.Email)) { 
log.Error "Customer email not sent" 
} 
return "OK"; 
}
Use case with error handling 
string UpdateCustomerWithErrorHandling() 
{ 
var request = receiveRequest(); 
var isValidated = validateRequest(request); 
if (!isValidated) { 
return "Request is not valid" 
} 
canonicalizeEmail(request); 
try { 
var result = db.updateDbFromRequest(request); 
if (!result) { 
return "Customer record not found" 
} 
} catch { 
return "DB error: Customer record not updated" 
} 
if (!smtpServer.sendEmail(request.Email)) { 
log.Error "Customer email not sent" 
} 
return "OK"; 
}
A structure for managing errors 
Request 
Success 
Validate 
Failure 
let validateInput input = 
if input.name = "" then 
Failure "Name must not be blank" 
else if input.email = "" then 
Failure "Email must not be blank" 
else 
Success input // happy path 
type TwoTrack<'TEntity> = 
| Success of 'TEntity 
| Failure of string
name50 
Bind example 
let nameNotBlank input = 
if input.name = "" then 
Failure "Name must not be blank" 
else Success input 
let name50 input = 
if input.name.Length > 50 then 
Failure "Name must not be longer than 50 chars" 
else Success input 
let emailNotBlank input = 
if input.email = "" then 
Failure "Email must not be blank" 
else Success input 
nameNotBlank 
emailNotBlank
Switches again 
Success! 
Failure 
Input ->
Connecting switches 
Validate 
UpdateDb 
on success 
bypass
Connecting switches 
Validate 
UpdateDb
Connecting switches 
Validate 
UpdateDb 
SendEmail
Connecting switches 
Validate 
UpdateDb 
SendEmail
Functional flow without error handling 
let updateCustomer = 
receiveRequest 
|> validateRequest 
|> canonicalizeEmail 
|> updateDbFromRequest 
|> sendEmail 
|> returnMessage 
Before 
One track
Functional flow with error handling 
let updateCustomerWithErrorHandling = 
receiveRequest 
|> validateRequest 
|> canonicalizeEmail 
|> updateDbFromRequest 
|> sendEmail 
|> returnMessage 
After 
See fsharpforfunandprofit.com/rop 
Two track
MAPS AND APPLICATIVES
World of normal values 
int string bool 
World of options 
int option string option bool option
World of options 
World of normal values 
int string bool 
int option string option bool option 

World of options 
World of normal values 
int string bool 
int option string option bool option 

How not to code with options 
Let’s say you have an int wrapped in an Option, and you want to add 42 to it: 
let add42 x = x + 42 
let add42ToOption opt = 
if opt.IsSome then 
let newVal = add42 opt.Value 
Some newVal 
else 
None 

World of options 
World of normal values 
add42
World of options 
World of normal values 
add42
Lifting 
World of options 
World of normal values 
'a -> 'b 
'a option -> 'b option 
Option.map
The right way to code with options 
Let’s say you have an int wrapped in an Option, and you want to add 42 to it: 
let add42 x = x + 42 
let add42ToOption = Option.map add42 
Some 1 |> add42ToOption 
Some 1 |> Option.map add42 

Pattern: Use “map” to lift functions
Lifting to lists 
World of lists 
World of normal values 
'a -> 'b 
'a list-> 'b list 
List.map
Lifting to async 
World of async 
World of normal values 
'a -> 'b 
'a async > 'b async 
Async.map
The right way to code with wrapped types 
Most wrapped types provide a “map” 
let add42 x = x + 42 
Some 1 |> Option.map add42 
[1;2;3] |> List.map add42
Guideline: If you create a wrapped generic type, create a “map” for it.
Maps 
type TwoTrack<'TEntity> = 
| Success of 'TEntity 
| Failure of string 
let mapTT f x = 
match x with 
| Success entity -> Success (f entity) 
| Failure s -> Failure s
Tip: Use applicatives for validation
Series validation 
name50 
emailNotBlank 
Problem: Validation done in series. 
So only one error at a time is returned
Parallel validation 
name50 
emailNotBlank 
Split input 
Combine output 
Now we do get all errors at once! 
But how to combine?
Creating a valid data structure 
type Request= { 
UserId: UserId; 
Name: String50; 
Email: EmailAddress} 
type RequestDTO= { 
UserId: int; 
Name: string; 
Email: string}
How not to do validation 
// do the validation of the DTO 
let userIdOrError = validateUserId dto.userId 
let nameOrError = validateName dto.name 
let emailOrError = validateEmail dto.email 
if userIdOrError.IsSuccess 
&& nameOrError.IsSuccess 
&& emailOrError.IsSuccess then 
{ 
userId = userIdOrError.SuccessValue 
name = nameOrError.SuccessValue 
email = emailOrError.SuccessValue 
} 
else if userIdOrError.IsFailure 
&& nameOrError.IsSuccess 
&& emailOrError.IsSuccess then 
userIdOrError.Errors 
else ... 

Lifting to TwoTracks 
World of two-tracks 
World of normal values 
createRequest userId name email 
createRequestTT userIdOrError nameOrError emailOrError 
lift 3 parameter function
The right way 
let createRequest userId name email = 
{ 
userId = userIdOrError.SuccessValue 
name = nameOrError.SuccessValue 
email = emailOrError.SuccessValue 
} 
let createRequestTT = lift3 createRequest
The right way 
let createRequestTT = lift3 createRequest 
let userIdOrError = validateUserId dto.userId 
let nameOrError = validateName dto.name 
let emailOrError = validateEmail dto.email 
let requestOrError = 
createRequestTT userIdOrError nameOrError emailOrError 

The right way 
let userIdOrError = validateUserId dto.userId 
let nameOrError = validateName dto.name 
let emailOrError = validateEmail dto.email 
let requestOrError = 
createRequest 
<!> userIdOrError 
<*> nameOrError 
<*> emailOrError 

Guideline: If you use a wrapped generic type, look for a set of “lifts” associated with it
Guideline: If you create a wrapped generic type, also create a set of “lifts” for clients to use with it 
But I’m not going explain how right now!
MONOIDS
Mathematics Ahead
Thinking like a mathematician 
1 + 2 = 3 
1 + (2 + 3) = (1 + 2) + 3 
1 + 0 = 1 
0 + 1 = 1
1 + 2 = 3 
Some things 
A way of combining them
2 x 3 = 6 
Some things 
A way of combining them
max(1,2) = 2 
Some things 
A way of combining them
"a" + "b" = "ab" 
Some things 
A way of combining them
concat([a],[b]) = [a; b] 
Some things 
A way of combining them
1 + 2 
1 + 2 + 3 
1 + 2 + 3 + 4 
Is an integer 
Is an integer 
A pairwise operation has become an operation that works on lists!
1 + (2 + 3) = (1 + 2) + 3 
Order of combining doesn’t matter 
1 + 2 + 3 + 4 (1 + 2) + (3 + 4) 
((1 + 2) + 3) + 4 
All the same
1 - (2 - 3) = (1 - 2) - 3 
Order of combining does matter
1 + 0 = 1 
0 + 1 = 1 
A special kind of thing that when you combine it with something, just gives you back the original something
42 * 1 = 42 
1 * 42 = 42 
A special kind of thing that when you combine it with something, just gives you back the original something
"" + "hello" = "hello" "hello" + "" = "hello" 
“Zero” for strings
The generalization 
•You start with a bunch of things, and some way of combining them two at a time. 
•Rule 1 (Closure): The result of combining two things is always another one of the things. 
•Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. 
•Rule 3 (Identity element): There is a special thing called "zero" such that when you combine any thing with "zero" you get the original thing back. 
A monoid!
•Rule 1 (Closure): The result of combining two things is always another one of the things. 
•Benefit: converts pairwise operations into operations that work on lists. 
1 + 2 + 3 + 4 
[ 1; 2; 3; 4 ] |> List.reduce (+)
1 * 2 * 3 * 4 
[ 1; 2; 3; 4 ] |> List.reduce (*) 
•Rule 1 (Closure): The result of combining two things is always another one of the things. 
•Benefit: converts pairwise operations into operations that work on lists.
"a" + "b" + "c" + "d" 
[ "a"; "b"; "c"; "d" ] |> List.reduce (+) 
•Rule 1 (Closure): The result of combining two things is always another one of the things. 
•Benefit: converts pairwise operations into operations that work on lists.
•Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. 
•Benefit: Divide and conquer, parallelization, and incremental accumulation. 
1 + 2 + 3 + 4
•Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. 
•Benefit: Divide and conquer, parallelization, and incremental accumulation. 
(1 + 2) (3 + 4) 
3 + 7
•Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. 
•Benefit: Divide and conquer, parallelization, and incremental accumulation. 
(1 + 2 + 3)
•Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. 
•Benefit: Divide and conquer, parallelization, and incremental accumulation. 
(1 + 2 + 3) + 4
•Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. 
•Benefit: Divide and conquer, parallelization, and incremental accumulation. 
(6) + 4
Issues with reduce 
•How can I use reduce on an empty list? 
•In a divide and conquer algorithm, what should I do if one of the "divide" steps has nothing in it? 
•When using an incremental algorithm, what value should I start with when I have no data?
•Rule 3 (Identity element): There is a special thing called "zero" such that when you combine any thing with "zero" you get the original thing back. 
•Benefit: Initial value for empty or missing data
Pattern: Simplifying aggregation code with monoids
type OrderLine = {Qty:int; Total:float} 
let orderLines = [ 
{Qty=2; Total=19.98} 
{Qty=1; Total= 1.99} 
{Qty=3; Total= 3.99} ] 
let addLine line1 line2 = 
let newQty = line1.Qty + line2.Qty 
let newTotal = line1.Total + line2.Total 
{Qty=newQty; Total=newTotal} 
orderLines |> List.reduce addLine 
Any combination of monoids is also a monoid
Pattern: Convert non-monoids to monoids
Customer + Customer + Customer 
Customer Stats + Customer Stats + Customer Stats 
Reduce 
Map 
Not a monoid 
A monoid 
Summary Stats
Hadoop make me a sandwich 
https://twitter.com/daviottenheimer/status/532661754820829185
Guideline: Convert expensive monoids to cheap monoids
Log file (Mon) 
+ 
Log File (Tue) 
+ 
Log File (Wed) 
= 
Really big file 
Summary (Mon) 
+ 
Summary (Tue) 
+ 
Summary (Wed) 
Map 
Strings are monoids 
A monoid 
Much more efficient for incremental updates 
“Monoid homomorphism”
Pattern: Seeing monoids everywhere
Monoids in the real world 
Metrics guideline: Use counters rather than rates 
Alternative metrics guideline: Make sure your metrics are monoids 
• incremental updates 
• can handle missing data
Is function composition a monoid? 
>> 
Function 1 apple -> banana 
Function 2 banana -> cherry 
New Function apple -> cherry 
Not the same thing. 
Not a monoid 
Is function composition a monoid? 
>> 
Function 1 apple -> apple 
Same thing 
Function 2 apple -> apple 
Function 3 apple -> apple 
A monoid! 
Is function composition a monoid? 
“Functions with same type of input and output” 
Functions where the input and output are the same type are monoids! What shall we call these kinds of functions?
Is function composition a monoid? 
“Functions with same type of input and output” 
“Endomorphisms” 
Functions where the input and output are the same type are monoids! What shall we call these kinds of functions? 
All endomorphisms are monoids
Endomorphism example 
let plus1 x = x + 1 // int->int 
let times2 x = x * 2 // int->int 
let subtract42 x = x – 42 // int->int 
let functions = [ 
plus1 
times2 
subtract42 ] 
let newFunction = // int->int 
functions |> List.reduce (>>) 
newFunction 20 // => 0 
Endomorphisms 
Put them in a list 
Reduce them 
Another endomorphism
Event sourcing 
Any function containing an endomorphism can be converted into a monoid. 
For example: Event sourcing 
Is an endomorphism 
Event 
-> State 
-> State
Event sourcing example 
let applyFns = [ 
apply event1 // State -> State 
apply event2 // State -> State 
apply event3] // State -> State 
let applyAll = // State -> State 
applyFns |> List.reduce (>>) 
let newState = applyAll oldState 
• incremental updates 
• can handle missing events 
Partial application of event 
A function that can apply all the events in one step
Bind 
Any function containing an endomorphism can be converted into a monoid. 
For example: Option.Bind 
Is an endomorphism 
(fn param) 
-> Option 
-> Option
Event sourcing example 
let bindFns = [ 
Option.bind (fun x-> 
if x > 1 then Some (x*2) else None) 
Option.bind (fun x-> 
if x < 10 then Some x else None) 
] 
let bindAll = // Option->Option 
bindFns |> List.reduce (>>) 
Some 4 |> bindAll // Some 8 
Some 5 |> bindAll // None 
Partial application of Bind
Predicates as monoids 
type Predicate<'A> = 'A -> bool 
let predAnd pred1 pred2 x = 
if pred1 x 
then pred2 x 
else false 
let predicates = [ 
isMoreThan10Chars // string -> bool 
isMixedCase // string -> bool 
isNotDictionaryWord // string -> bool 
] 
let combinedPredicate = // string -> bool 
predicates |> List.reduce (predAnd) 
Not an endomorphism 
But can still be combined
Pattern: Monads are monoids
Series combination 
= 
>> 
Result is same kind of thing (Closure) 
Order not important (Associative) 
Monoid!
Parallel combination 
= 
+ 
Same thing (Closure) 
Order not important (Associative) 
Monoid!
Monad laws 
•The Monad laws are just the monoid definitions in diguise 
–Closure, Associativity, Identity 
•What happens if you break the monad laws? 
–You lose monoid benefits such as aggregation
A monad is just a monoid in the category of endofunctors!
THANKS!

More Related Content

Functional Programming Patterns (BuildStuff '14)

  • 1. Functional Design Patterns @ScottWlaschin fsharpforfunandprofit.com
  • 2. Functional Design Patterns @ScottWlaschin fsharpforfunandprofit.com X
  • 3. Functional Design Patterns @ScottWlaschin fsharpforfunandprofit.com
  • 7. Functional patterns •Apomorphisms •Dynamorphisms •Chronomorphisms •Zygohistomorphic prepromorphisms
  • 8. Functional patterns •Core Principles of FP design –Functions, types, composition •Functions as parameters –Abstraction, Dependency injection –Partial application, Continuations, Folds, •Chaining functions –Error handling, Async –Monads •Dealing with wrapped data –Lifting, Functors –Validation with Applicatives •Aggregating data and operations –Monoids
  • 9. This talk A whirlwind tour of many sights Don't worry if you don't understand everything
  • 13. •Single Responsibility Principle •Open/Closed principle •Dependency Inversion Principle •Interface Segregation Principle •Factory pattern •Strategy pattern •Decorator pattern •Visitor pattern •Functions •Functions •Functions, also •Functions •Yes, functions •Oh my, functions again! •Functions •Functions  OO pattern/principle FP pattern/principle Seriously, FP patterns are different
  • 14. A short and mostly wrong history of programming paradigms
  • 15. •What we envisioned: –Smalltalk •What we got: –C++ –Object oriented Cobol –PHP –Java “Worse is better” Object-Oriented programming
  • 16. •What we envisioned: –Haskell, OCaml, F#, etc •What we got: –?? Functional programming Please don’t let this happen to FP!
  • 17. CORE PRINCIPLES OF FP DESIGN Important to understand!
  • 18. Core principles of FP design Steal from mathematics Types are not classes Functions are things Composition everywhere Function
  • 19. Core principle: Steal from mathematics “Programming is one of the most difficult branches of applied mathematics” - E. W. Dijkstra
  • 20. Why mathematics Dijkstra said: •Mathematical assertions tend to be unusually precise. •Mathematical assertions tend to be general. They are applicable to a large (often infinite) class of instances. •Mathematics embodies a discipline of reasoning allowing assertions to be made with an unusually high confidence level.
  • 21. “Object-oriented programming is an exceptionally bad idea which could only have originated in California.” E. W. Dijkstra
  • 22. Mathematical functions Function add1(x) input x maps to x+1 … -1 0 1 2 3 … Domain (int) Codomain (int) … 0 1 2 3 4 … let add1 x = x + 1 val add1 : int -> int
  • 23. Function add1(x) input x maps to x+1 … -1 0 1 2 3 … Domain (int) Codomain (int) … 0 1 2 3 4 … Mathematical functions int add1(int input) { switch (input) { case 0: return 1; case 1: return 2; case 2: return 3; case 3: return 4; etc ad infinitum } } •Input and output values already exist •A function is not a calculation, just a mapping •Input and output values are unchanged (immutable)
  • 24. Mathematical functions •A (mathematical) function always gives the same output value for a given input value •A (mathematical) function has no side effects Function add1(x) input x maps to x+1 … -1 0 1 2 3 … Domain (int) Codomain (int) … 0 1 2 3 4 …
  • 25. Functions don't have to be about arithmetic Function CustomerName(x) input Customer maps to PersonalName … Cust1 Cust2 Cust3 Cust3 … Customer (domain) Name (codomain) … Alice Bob Sue John Pam… Name CustomerName(Customer input) { switch (input) { case Cust1: return “Alice”; case Cust2: return “Bob”; case Cust3: return “Sue”; etc } }
  • 26. Functions can work on functions Function List.map int->int maps to int list->int list … add1 times2 subtract3 add42 … int->int int list -> int list … eachAdd1 eachTimes2 eachSubtract3 eachAdd42 …
  • 28. The practical benefits of pure functions customer.SetName(newName); let newCustomer = setCustomerName(aCustomer, newName) Pure functions are easy to reason about var name = customer.GetName(); let name,newCustomer = getCustomerName(aCustomer) Reasoning about code that might not be pure: Reasoning about code that is pure: The customer is being changed.
  • 29. The practical benefits of pure functions let x = doSomething() let y = doSomethingElse(x) return y + 1 Pure functions are easy to refactor
  • 30. The practical benefits of pure functions Pure functions are easy to refactor let x = doSomething() let y = doSomethingElse(x) return y + 1
  • 31. The practical benefits of pure functions Pure functions are easy to refactor let helper() = let x = doSomething() let y = doSomethingElse(x) return y return helper() + 1
  • 32. More practical benefits of pure functions •Laziness –only evaluate when I need the output •Cacheable results –same answer every time –"memoization" •No order dependencies –I can evaluate them in any order I like •Parallelizable –"embarrassingly parallel"
  • 33. How to design a pure function Pure Awesomeness!
  • 34. How to design a pure function •Haskell –very pure •F#, OCaml, Clojure, Scala –easy to be pure •C#, Java, JavaScript –have to make an effort
  • 35. Core principle: Types are not classes
  • 36. X
  • 37. Types are not classes Set of valid inputs Set of valid outputs So what is a type?
  • 38. Types separate data from behavior Lists Lists List.map List.collect List.filter List.etc
  • 39. Core principle: Functions are things Function
  • 40. Functions as things The Tunnel of Transformation Function apple -> banana A function is a standalone thing, not attached to a class
  • 41. Functions as things let z = 1 int-> int->int 1 let add x y = x + y
  • 42. Functions as inputs and outputs let useFn f = (f 1) + 2 let add x = (fun y -> x + y) int->(int->int) int ->int int int int->int let transformInt f x = (f x) + 1 int->int int int Function as output Function as input Function as parameter (int->int)->int int->int
  • 44. Function composition Function 1 apple -> banana Function 2 banana -> cherry
  • 45. Function composition >> Function 1 apple -> banana Function 2 banana -> cherry
  • 46. Function composition New Function apple -> cherry Can't tell it was built from smaller functions!
  • 47. Types can be composed too “algebraic types"
  • 48. Product types × = Alice, Jan 12th Bob, Feb 2nd Carol, Mar 3rd Set of people Set of dates type Birthday = Person * Date
  • 49. Sum types Set of Cash values Set of Cheque values Set of CreditCard values + + type PaymentMethod = | Cash | Cheque of ChequeNumber | Card of CardType * CardNumber
  • 50. DDD & DOMAIN MODELLING
  • 51. Domain modelling pattern: Use types to represent constraints
  • 52. Types represent constraints on input and output type Suit = Club | Diamond | Spade | Heart type String50 = // non-null, not more than 50 chars type EmailAddress = // non-null, must contain ‘@’ type StringTransformer = string -> string type GetCustomer = CustomerId -> Customer option Instant mockability
  • 53. Domain modelling pattern: Types are cheap
  • 54. Types are cheap type Suit = Club | Diamond | Spade | Heart type Rank = Two | Three | Four | Five | Six | Seven | Eight | Nine | Ten | Jack | Queen | King | Ace type Card = Suit * Rank type Hand = Card list Only one line of code to create a type!
  • 55. Design principle: Strive for totality
  • 56. twelveDividedBy(x) input x maps to 12/x … 3 2 1 0 … Domain (int) Codomain (int) … 4 6 12 … Totality int TwelveDividedBy(int input) { switch (input) { case 3: return 4; case 2: return 6; case 1: return 12; case 0: return ??; } } What happens here?
  • 57. twelveDividedBy(x) input x maps to 12/x … 3 2 1 -1 … NonZeroInteger int … 4 6 12 … Totality int TwelveDividedBy(int input) { switch (input) { case 3: return 4; case 2: return 6; case 1: return 12; case -1: return -12; } } Constrain the input 0 is doesn’t have to be handled NonZeroInteger -> int 0 is missing Types are documentation
  • 58. twelveDividedBy(x) input x maps to 12/x … 3 2 1 0 -1 … int Option<Int> … Some 4 Some 6 Some 12 None … Totality int TwelveDividedBy(int input) { switch (input) { case 3: return Some 4; case 2: return Some 6; case 1: return Some 12; case 0: return None; } } Extend the output 0 is valid input int -> int option Types are documentation
  • 59. Design principle: Use types to indicate errors
  • 60. Output types as error codes LoadCustomer: CustomerId -> Customer LoadCustomer: CustomerId -> SuccessOrFailure<Customer> ParseInt: string -> int ParseInt: string -> int option FetchPage: Uri -> String FetchPage: Uri -> SuccessOrFailure<String> No nulls No exceptions Use the signature, Luke!
  • 61. Domain modelling principle: “Make illegal states unrepresentable”
  • 62. Types can represent business rules type EmailContactInfo = | Unverified of EmailAddress | Verified of VerifiedEmailAddress type ContactInfo = | EmailOnly of EmailContactInfo | AddrOnly of PostalContactInfo | EmailAndAddr of EmailContactInfo * PostalContactInfo
  • 63. Domain modelling principle: Use sum-types instead of inheritance
  • 64. Using sum vs. inheritance interface IPaymentMethod {..} class Cash : IPaymentMethod {..} class Cheque : IPaymentMethod {..} class Card : IPaymentMethod {..} type PaymentMethod = | Cash | Cheque of ChequeNumber | Card of CardType * CardNumber class Evil : IPaymentMethod {..} Definition is scattered around many locations What goes in here? What is the common behaviour? OO version:
  • 65. Domain modelling principle: Use sum-types for state machines
  • 66. type ShoppingCart = | EmptyCartState | ActiveCartState of ActiveCartData | PaidCartState of PaidCartData Empty Cart Active Cart Paid Cart Add Item Remove Item Pay Add Item Remove Item
  • 67. Domain modelling principle: It’s ok to expose public data
  • 68. It’s ok to expose public data type PersonalName = { FirstName: String50 MiddleInitial: String1 option LastName: String50 } Immutable Can’t create invalid values
  • 69. Domain modelling principle: Types are executable documentation
  • 70. Types are executable documentation type Suit = Club | Diamond | Spade | Heart type Rank = Two | Three | Four | Five | Six | Seven | Eight | Nine | Ten | Jack | Queen | King | Ace type Card = Suit * Rank type Hand = Card list type Deck = Card list type Player = {Name:string; Hand:Hand} type Game = {Deck:Deck; Players: Player list} type Deal = Deck –› (Deck * Card) type PickupCard = (Hand * Card) –› Hand
  • 71. Types are executable documentation type CardType = Visa | Mastercard type CardNumber = CardNumber of string type ChequeNumber = ChequeNumber of int type PaymentMethod = | Cash | Cheque of ChequeNumber | Card of CardType * CardNumber
  • 72. More on DDD and designing with types at fsharpforfunandprofit.com/ddd Static types only! Sorry Clojure and JS developers 
  • 74. Design paradigm: Functions all the way down
  • 75. “Functions in the small, objects in the large”
  • 76. Low-level operation ToUpper Service Domain logic High-level use-case AddressValidator VerifyEmailAddress UpdateProfileData “Service” is the new “microservice” string string AddressResult EmailVerification Saga Http Response Address Email Http Request
  • 78. Interacting with the outside world type ContactDTO = { FirstName: string MiddleInitial: string LastName: string EmailAddress: string IsEmailVerified: bool } type EmailAddress = ... type VerifiedEmail = VerifiedEmail of EmailAddress type EmailContactInfo = | Unverified of EmailAddress | Verified of VerifiedEmail type PersonalName = { FirstName: String50 MiddleInitial: String1 option LastName: String50 } type Contact = { Name: PersonalName Email: EmailContactInfo }
  • 79. Transformation oriented programming Input Function Output
  • 80. Transformation oriented programming Input Transformation to internal model Internal Model Output Transformation from internal model validation and wrapping happens here unwrapping happens here
  • 81. Outbound tranformation Flow of control in a FP use case Inbound tranformation Customer Domain Validator Update Request DTO Domain Type Send ToDTO Response DTO Works well with domain events, FRP, etc
  • 82. Flow of control in a OO use case Application Services Customer Domain App Service App Service Validation Value Entity Infrastructure Entity Customer Repo. Value Email Message Value Database Service SMTP Service
  • 83. Interacting with the outside world Nasty, unclean outside world Nasty, unclean outside world Nasty, unclean outside world Beautiful, clean, internal model Gate with filters Gate with filters Gate with filters
  • 84. Interacting with the other domains Subdomain/ bounded context Gate with filters Subdomain/ bounded context Gate with filters
  • 85. Interacting with the other domains Bounded context Bounded context Bounded context
  • 88. Parameterize all the things let printList() = for i in [1..10] do printfn "the number is %i" i
  • 89. Parameterize all the things It's second nature to parameterize the data input: let printList aList = for i in aList do printfn "the number is %i" i
  • 90. Parameterize all the things let printList anAction aList = for i in aList do anAction i FPers would parameterize the action as well: We've decoupled the behavior from the data
  • 91. Parameterize all the things public static int Product(int n) { int product = 1; for (int i = 1; i <= n; i++) { product *= i; } return product; } public static int Sum(int n) { int sum = 0; for (int i = 1; i <= n; i++) { sum += i; } return sum; }
  • 92. public static int Product(int n) { int product = 1; for (int i = 1; i <= n; i++) { product *= i; } return product; } public static int Sum(int n) { int sum = 0; for (int i = 1; i <= n; i++) { sum += i; } return sum; } Parameterize all the things
  • 93. Parameterize all the things let product n = let initialValue = 1 let action productSoFar x = productSoFar * x [1..n] |> List.fold action initialValue let sum n = let initialValue = 0 let action sumSoFar x = sumSoFar+x [1..n] |> List.fold action initialValue Lots of collection functions like this: "fold", "map", "reduce", "collect", etc.
  • 94. Guideline: Be as generic as possible
  • 95. Generic code let printList anAction aList = for i in aList do anAction i // val printList : // ('a -> unit) -> seq<'a> -> unit Any kind of collection, any kind of action! F# and other functional languages make code generic automatically
  • 96. Generic code int -> int How many ways are there to implement this function? 'a -> 'a How many ways are there to this function?
  • 97. Generic code int list -> int list How many ways are there to implement this function? 'a list -> 'a list How many ways are there to this function?
  • 98. Generic code ('a -> 'b) -> 'a list -> 'b list How many ways are there to implement this function?
  • 99. Tip: Function types are "interfaces"
  • 100. Function types are interfaces interface IBunchOfStuff { int DoSomething(int x); string DoSomethingElse(int x); void DoAThirdThing(string x); } Let's take the Single Responsibility Principle and the Interface Segregation Principle to the extreme... Every interface should have only one method!
  • 101. Function types are interfaces interface IBunchOfStuff { int DoSomething(int x); } An interface with one method is a just a function type type IBunchOfStuff: int -> int Any function with that type is compatible with it let add2 x = x + 2 // int -> int let times3 x = x * 3 // int -> int
  • 102. Strategy pattern is trivial in FP class MyClass { public MyClass(IBunchOfStuff strategy) {..} int DoSomethingWithStuff(int x) { return _strategy.DoSomething(x) } } Object-oriented strategy pattern: Functional equivalent: let DoSomethingWithStuff strategy x = strategy x
  • 103. Decorator pattern in FP Functional equivalent of decorator pattern let add1 x = x + 1 // int -> int
  • 104. Decorator pattern in FP Functional equivalent of decorator pattern let add1 x = x + 1 // int -> int let logged f x = printfn "input is %A" x let result = f x printfn "output is %A" result result
  • 105. Decorator pattern in FP Functional equivalent of decorator pattern let add1 x = x + 1 // int -> int let logged f x = printfn "input is %A" x let result = f x printfn "output is %A" result result let add1Decorated = // int -> int logged add1 [1..5] |> List.map add1 [1..5] |> List.map add1Decorated
  • 106. Tip Every function is a one parameter function
  • 107. Writing functions in different ways let add x y = x + y let add = (fun x y -> x + y) let add x = (fun y -> x + y) int-> int->int int-> int->int int-> (int->int)
  • 108. let three = 1 + 2 let add1 = (+) 1 let three = (+) 1 2 let add1ToEach = List.map add1
  • 110. let names = ["Alice"; "Bob"; "Scott"] Names |> List.iter hello let name = "Scott" printfn "Hello, my name is %s" name let name = "Scott" (printfn "Hello, my name is %s") name let name = "Scott" let hello = (printfn "Hello, my name is %s") hello name
  • 111. Pattern: Use partial application to do dependency injection
  • 112. type GetCustomer = CustomerId -> Customer let getCustomerFromDatabase connection (customerId:CustomerId) = // from connection // select customer // where customerId = customerId type of getCustomerFromDatabase = DbConnection -> CustomerId -> Customer let getCustomer1 = getCustomerFromDatabase myConnection // getCustomer1 : CustomerId -> Customer Persistence agnostic
  • 113. type GetCustomer = CustomerId -> Customer let getCustomerFromMemory map (customerId:CustomerId) = map |> Map.find customerId type of getCustomerFromMemory = Map<Id,Customer> -> CustomerId -> Customer let getCustomer2 = getCustomerFromMemory inMemoryMap // getCustomer2 : CustomerId -> Customer
  • 114. Pattern: The Hollywood principle: continuations
  • 115. Continuations int Divide(int top, int bottom) { if (bottom == 0) { throw new InvalidOperationException("div by 0"); } else { return top/bottom; } } Method has decided to throw an exception
  • 116. Continuations void Divide(int top, int bottom, Action ifZero, Action<int> ifSuccess) { if (bottom == 0) { ifZero(); } else { ifSuccess( top/bottom ); } } Let the caller decide what happens what happens next?
  • 117. Continuations let divide ifZero ifSuccess top bottom = if (bottom=0) then ifZero() else ifSuccess (top/bottom) F# version Four parameters is a lot though!
  • 118. Continuations let divide ifZero ifSuccess top bottom = if (bottom=0) then ifZero() else ifSuccess (top/bottom) let ifZero1 () = printfn "bad" let ifSuccess1 x = printfn "good %i" x let divide1 = divide ifZero1 ifSuccess1 //test let good1 = divide1 6 3 let bad1 = divide1 6 0 setup the functions to print a message Partially apply the continuations Use it like a normal function – only two parameters
  • 119. Continuations let divide ifZero ifSuccess top bottom = if (bottom=0) then ifZero() else ifSuccess (top/bottom) let ifZero2() = None let ifSuccess2 x = Some x let divide2 = divide ifZero2 ifSuccess2 //test let good2 = divide2 6 3 let bad2 = divide2 6 0 setup the functions to return an Option Use it like a normal function – only two parameters Partially apply the continuations
  • 120. Continuations let divide ifZero ifSuccess top bottom = if (bottom=0) then ifZero() else ifSuccess (top/bottom) let ifZero3() = failwith "div by 0" let ifSuccess3 x = x let divide3 = divide ifZero3 ifSuccess3 //test let good3 = divide3 6 3 let bad3 = divide3 6 0 setup the functions to throw an exception Use it like a normal function – only two parameters Partially apply the continuations
  • 121. MONADS
  • 122. Pyramid of doom: null testing example let example input = let x = doSomething input if x <> null then let y = doSomethingElse x if y <> null then let z = doAThirdThing y if z <> null then let result = z result else null else null else null I know you could do early returns, but bear with me...
  • 123. Pyramid of doom: async example let taskExample input = let taskX = startTask input taskX.WhenFinished (fun x -> let taskY = startAnotherTask x taskY.WhenFinished (fun y -> let taskZ = startThirdTask y taskZ.WhenFinished (fun z -> z // final result
  • 124. Pyramid of doom: null example let example input = let x = doSomething input if x <> null then let y = doSomethingElse x if y <> null then let z = doAThirdThing y if z <> null then let result = z result else null else null else null Nulls are a code smell: replace with Option!
  • 125. Pyramid of doom: option example let example input = let x = doSomething input if x.IsSome then let y = doSomethingElse (x.Value) if y.IsSome then let z = doAThirdThing (y.Value) if z.IsSome then let result = z.Value Some result else None else None else None Much more elegant, yes? No! This is fugly! Let’s do a cut & paste refactoring
  • 126. Pyramid of doom: option example let example input = let x = doSomething input if x.IsSome then let y = doSomethingElse (x.Value) if y.IsSome then let z = doAThirdThing (y.Value) if z.IsSome then let result = z.Value Some result else None else None else None
  • 127. Pyramid of doom: option example let doWithX x = let y = doSomethingElse x if y.IsSome then let z = doAThirdThing (y.Value) if z.IsSome then let result = z.Value Some result else None else None let example input = let x = doSomething input if x.IsSome then doWithX x else None
  • 128. Pyramid of doom: option example let doWithX x = let y = doSomethingElse x if y.IsSome then let z = doAThirdThing (y.Value) if z.IsSome then let result = z.Value Some result else None else None let example input = let x = doSomething input if x.IsSome then doWithX x else None
  • 129. Pyramid of doom: option example let doWithY y = let z = doAThirdThing y if z.IsSome then let result = z.Value Some result else None let doWithX x = let y = doSomethingElse x if y.IsSome then doWithY y else None let example input = let x = doSomething input if x.IsSome then doWithX x else None
  • 130. Pyramid of doom: option example refactored let doWithZ z = let result = z Some result let doWithY y = let z = doAThirdThing y if z.IsSome then doWithZ z.Value else None let doWithX x = let y = doSomethingElse x if y.IsSome then doWithY y.Value else None let optionExample input = let x = doSomething input if x.IsSome then doWithX x.Value else None Three small pyramids instead of one big one! This is still ugly! But the code has a pattern...
  • 131. Pyramid of doom: option example refactored let doWithZ z = let result = z Some result let doWithY y = let z = doAThirdThing y if z.IsSome then doWithZ z.Value else None let doWithX x = let y = doSomethingElse x if y.IsSome then doWithY y.Value else None let optionExample input = let x = doSomething input if x.IsSome then doWithX x.Value else None But the code has a pattern...
  • 132. let doWithY y = let z = doAThirdThing y if z.IsSome then doWithZ z.Value else None
  • 133. let doWithY y = let z = doAThirdThing y z |> ifSomeDo doWithZ let ifSomeDo f x = if x.IsSome then f x.Value else None
  • 134. let doWithY y = y |> doAThirdThing |> ifSomeDo doWithZ let ifSomeDo f x = if x.IsSome then f x.Value else None
  • 135. let example input = doSomething input |> ifSomeDo doSomethingElse |> ifSomeDo doAThirdThing |> ifSomeDo (fun z -> Some z) let ifSomeDo f x = if x.IsSome then f x.Value else None
  • 136. A switch analogy Some None Input ->
  • 137. Connecting switches on Some Bypass on None
  • 140. Composing switches >> >> Composing one-track functions is fine...
  • 141. Composing switches >> >> ... and composing two-track functions is fine...
  • 142. Composing switches   ... but composing switches is not allowed!
  • 143. Composing switches Two-track input Two-track input One-track input Two-track input  
  • 144. Building an adapter block Two-track input Slot for switch function Two-track output
  • 145. Building an adapter block Two-track input Two-track output
  • 146. let bind nextFunction optionInput = match optionInput with | Some s -> nextFunction s | None -> None Building an adapter block Two-track input Two-track output
  • 147. let bind nextFunction optionInput = match optionInput with | Some s -> nextFunction s | None -> None Building an adapter block Two-track input Two-track output
  • 148. let bind nextFunction optionInput = match optionInput with | Some s -> nextFunction s | None -> None Building an adapter block Two-track input Two-track output
  • 149. let bind nextFunction optionInput = match optionInput with | Some s -> nextFunction s | None -> None Building an adapter block Two-track input Two-track output
  • 150. Pattern: Use bind to chain options
  • 151. Pyramid of doom: using bind let bind f opt = match opt with | Some v -> f v | None -> None let example input = let x = doSomething input if x.IsSome then let y = doSomethingElse (x.Value) if y.IsSome then let z = doAThirdThing (y.Value) if z.IsSome then let result = z.Value Some result else None else None else None
  • 152. let example input = doSomething input |> bind doSomethingElse |> bind doAThirdThing |> bind (fun z -> Some z) Pyramid of doom: using bind let bind f opt = match opt with | Some v -> f v | None -> None No pyramids! Code is linear and clear. This pattern is called “monadic bind”
  • 153. Pattern: Use bind to chain tasks
  • 154. Connecting tasks When task completes Wait Wait
  • 155. Pyramid of doom: using bind for tasks let taskBind f task = task.WhenFinished (fun taskResult -> f taskResult) let taskExample input = startTask input |> taskBind startAnotherTask |> taskBind startThirdTask |> taskBind (fun z -> z) a.k.a “promise” “future” This pattern is also a “monadic bind”
  • 156. Computation expressions let example input = maybe { let! x = doSomething input let! y = doSomethingElse x let! z = doAThirdThing y return z } let taskExample input = task { let! x = startTask input let! y = startAnotherTask x let! z = startThirdTask z return z } Computation expression Computation expression
  • 157. Pattern: Use bind to chain error handlers
  • 158. Example use case Name is blank Email not valid Receive request Validate and canonicalize request Update existing user record Send verification email Return result to user User not found Db error Authorization error Timeout "As a user I want to update my name and email address" type Request = { userId: int; name: string; email: string } - and see sensible error messages when something goes wrong!
  • 159. Use case without error handling string UpdateCustomerWithErrorHandling() { var request = receiveRequest(); validateRequest(request); canonicalizeEmail(request); db.updateDbFromRequest(request); smtpServer.sendEmail(request.Email) return "OK"; }
  • 160. Use case with error handling string UpdateCustomerWithErrorHandling() { var request = receiveRequest(); var isValidated = validateRequest(request); if (!isValidated) { return "Request is not valid" } canonicalizeEmail(request); db.updateDbFromRequest(request); smtpServer.sendEmail(request.Email) return "OK"; }
  • 161. Use case with error handling string UpdateCustomerWithErrorHandling() { var request = receiveRequest(); var isValidated = validateRequest(request); if (!isValidated) { return "Request is not valid" } canonicalizeEmail(request); var result = db.updateDbFromRequest(request); if (!result) { return "Customer record not found" } smtpServer.sendEmail(request.Email) return "OK"; }
  • 162. Use case with error handling string UpdateCustomerWithErrorHandling() { var request = receiveRequest(); var isValidated = validateRequest(request); if (!isValidated) { return "Request is not valid" } canonicalizeEmail(request); try { var result = db.updateDbFromRequest(request); if (!result) { return "Customer record not found" } } catch { return "DB error: Customer record not updated" } smtpServer.sendEmail(request.Email) return "OK"; }
  • 163. Use case with error handling string UpdateCustomerWithErrorHandling() { var request = receiveRequest(); var isValidated = validateRequest(request); if (!isValidated) { return "Request is not valid" } canonicalizeEmail(request); try { var result = db.updateDbFromRequest(request); if (!result) { return "Customer record not found" } } catch { return "DB error: Customer record not updated" } if (!smtpServer.sendEmail(request.Email)) { log.Error "Customer email not sent" } return "OK"; }
  • 164. Use case with error handling string UpdateCustomerWithErrorHandling() { var request = receiveRequest(); var isValidated = validateRequest(request); if (!isValidated) { return "Request is not valid" } canonicalizeEmail(request); try { var result = db.updateDbFromRequest(request); if (!result) { return "Customer record not found" } } catch { return "DB error: Customer record not updated" } if (!smtpServer.sendEmail(request.Email)) { log.Error "Customer email not sent" } return "OK"; }
  • 165. A structure for managing errors Request Success Validate Failure let validateInput input = if input.name = "" then Failure "Name must not be blank" else if input.email = "" then Failure "Email must not be blank" else Success input // happy path type TwoTrack<'TEntity> = | Success of 'TEntity | Failure of string
  • 166. name50 Bind example let nameNotBlank input = if input.name = "" then Failure "Name must not be blank" else Success input let name50 input = if input.name.Length > 50 then Failure "Name must not be longer than 50 chars" else Success input let emailNotBlank input = if input.email = "" then Failure "Email must not be blank" else Success input nameNotBlank emailNotBlank
  • 167. Switches again Success! Failure Input ->
  • 168. Connecting switches Validate UpdateDb on success bypass
  • 170. Connecting switches Validate UpdateDb SendEmail
  • 171. Connecting switches Validate UpdateDb SendEmail
  • 172. Functional flow without error handling let updateCustomer = receiveRequest |> validateRequest |> canonicalizeEmail |> updateDbFromRequest |> sendEmail |> returnMessage Before One track
  • 173. Functional flow with error handling let updateCustomerWithErrorHandling = receiveRequest |> validateRequest |> canonicalizeEmail |> updateDbFromRequest |> sendEmail |> returnMessage After See fsharpforfunandprofit.com/rop Two track
  • 175. World of normal values int string bool World of options int option string option bool option
  • 176. World of options World of normal values int string bool int option string option bool option 
  • 177. World of options World of normal values int string bool int option string option bool option 
  • 178. How not to code with options Let’s say you have an int wrapped in an Option, and you want to add 42 to it: let add42 x = x + 42 let add42ToOption opt = if opt.IsSome then let newVal = add42 opt.Value Some newVal else None 
  • 179. World of options World of normal values add42
  • 180. World of options World of normal values add42
  • 181. Lifting World of options World of normal values 'a -> 'b 'a option -> 'b option Option.map
  • 182. The right way to code with options Let’s say you have an int wrapped in an Option, and you want to add 42 to it: let add42 x = x + 42 let add42ToOption = Option.map add42 Some 1 |> add42ToOption Some 1 |> Option.map add42 
  • 183. Pattern: Use “map” to lift functions
  • 184. Lifting to lists World of lists World of normal values 'a -> 'b 'a list-> 'b list List.map
  • 185. Lifting to async World of async World of normal values 'a -> 'b 'a async > 'b async Async.map
  • 186. The right way to code with wrapped types Most wrapped types provide a “map” let add42 x = x + 42 Some 1 |> Option.map add42 [1;2;3] |> List.map add42
  • 187. Guideline: If you create a wrapped generic type, create a “map” for it.
  • 188. Maps type TwoTrack<'TEntity> = | Success of 'TEntity | Failure of string let mapTT f x = match x with | Success entity -> Success (f entity) | Failure s -> Failure s
  • 189. Tip: Use applicatives for validation
  • 190. Series validation name50 emailNotBlank Problem: Validation done in series. So only one error at a time is returned
  • 191. Parallel validation name50 emailNotBlank Split input Combine output Now we do get all errors at once! But how to combine?
  • 192. Creating a valid data structure type Request= { UserId: UserId; Name: String50; Email: EmailAddress} type RequestDTO= { UserId: int; Name: string; Email: string}
  • 193. How not to do validation // do the validation of the DTO let userIdOrError = validateUserId dto.userId let nameOrError = validateName dto.name let emailOrError = validateEmail dto.email if userIdOrError.IsSuccess && nameOrError.IsSuccess && emailOrError.IsSuccess then { userId = userIdOrError.SuccessValue name = nameOrError.SuccessValue email = emailOrError.SuccessValue } else if userIdOrError.IsFailure && nameOrError.IsSuccess && emailOrError.IsSuccess then userIdOrError.Errors else ... 
  • 194. Lifting to TwoTracks World of two-tracks World of normal values createRequest userId name email createRequestTT userIdOrError nameOrError emailOrError lift 3 parameter function
  • 195. The right way let createRequest userId name email = { userId = userIdOrError.SuccessValue name = nameOrError.SuccessValue email = emailOrError.SuccessValue } let createRequestTT = lift3 createRequest
  • 196. The right way let createRequestTT = lift3 createRequest let userIdOrError = validateUserId dto.userId let nameOrError = validateName dto.name let emailOrError = validateEmail dto.email let requestOrError = createRequestTT userIdOrError nameOrError emailOrError 
  • 197. The right way let userIdOrError = validateUserId dto.userId let nameOrError = validateName dto.name let emailOrError = validateEmail dto.email let requestOrError = createRequest <!> userIdOrError <*> nameOrError <*> emailOrError 
  • 198. Guideline: If you use a wrapped generic type, look for a set of “lifts” associated with it
  • 199. Guideline: If you create a wrapped generic type, also create a set of “lifts” for clients to use with it But I’m not going explain how right now!
  • 202. Thinking like a mathematician 1 + 2 = 3 1 + (2 + 3) = (1 + 2) + 3 1 + 0 = 1 0 + 1 = 1
  • 203. 1 + 2 = 3 Some things A way of combining them
  • 204. 2 x 3 = 6 Some things A way of combining them
  • 205. max(1,2) = 2 Some things A way of combining them
  • 206. "a" + "b" = "ab" Some things A way of combining them
  • 207. concat([a],[b]) = [a; b] Some things A way of combining them
  • 208. 1 + 2 1 + 2 + 3 1 + 2 + 3 + 4 Is an integer Is an integer A pairwise operation has become an operation that works on lists!
  • 209. 1 + (2 + 3) = (1 + 2) + 3 Order of combining doesn’t matter 1 + 2 + 3 + 4 (1 + 2) + (3 + 4) ((1 + 2) + 3) + 4 All the same
  • 210. 1 - (2 - 3) = (1 - 2) - 3 Order of combining does matter
  • 211. 1 + 0 = 1 0 + 1 = 1 A special kind of thing that when you combine it with something, just gives you back the original something
  • 212. 42 * 1 = 42 1 * 42 = 42 A special kind of thing that when you combine it with something, just gives you back the original something
  • 213. "" + "hello" = "hello" "hello" + "" = "hello" “Zero” for strings
  • 214. The generalization •You start with a bunch of things, and some way of combining them two at a time. •Rule 1 (Closure): The result of combining two things is always another one of the things. •Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. •Rule 3 (Identity element): There is a special thing called "zero" such that when you combine any thing with "zero" you get the original thing back. A monoid!
  • 215. •Rule 1 (Closure): The result of combining two things is always another one of the things. •Benefit: converts pairwise operations into operations that work on lists. 1 + 2 + 3 + 4 [ 1; 2; 3; 4 ] |> List.reduce (+)
  • 216. 1 * 2 * 3 * 4 [ 1; 2; 3; 4 ] |> List.reduce (*) •Rule 1 (Closure): The result of combining two things is always another one of the things. •Benefit: converts pairwise operations into operations that work on lists.
  • 217. "a" + "b" + "c" + "d" [ "a"; "b"; "c"; "d" ] |> List.reduce (+) •Rule 1 (Closure): The result of combining two things is always another one of the things. •Benefit: converts pairwise operations into operations that work on lists.
  • 218. •Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. •Benefit: Divide and conquer, parallelization, and incremental accumulation. 1 + 2 + 3 + 4
  • 219. •Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. •Benefit: Divide and conquer, parallelization, and incremental accumulation. (1 + 2) (3 + 4) 3 + 7
  • 220. •Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. •Benefit: Divide and conquer, parallelization, and incremental accumulation. (1 + 2 + 3)
  • 221. •Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. •Benefit: Divide and conquer, parallelization, and incremental accumulation. (1 + 2 + 3) + 4
  • 222. •Rule 2 (Associativity): When combining more than two things, which pairwise combination you do first doesn't matter. •Benefit: Divide and conquer, parallelization, and incremental accumulation. (6) + 4
  • 223. Issues with reduce •How can I use reduce on an empty list? •In a divide and conquer algorithm, what should I do if one of the "divide" steps has nothing in it? •When using an incremental algorithm, what value should I start with when I have no data?
  • 224. •Rule 3 (Identity element): There is a special thing called "zero" such that when you combine any thing with "zero" you get the original thing back. •Benefit: Initial value for empty or missing data
  • 225. Pattern: Simplifying aggregation code with monoids
  • 226. type OrderLine = {Qty:int; Total:float} let orderLines = [ {Qty=2; Total=19.98} {Qty=1; Total= 1.99} {Qty=3; Total= 3.99} ] let addLine line1 line2 = let newQty = line1.Qty + line2.Qty let newTotal = line1.Total + line2.Total {Qty=newQty; Total=newTotal} orderLines |> List.reduce addLine Any combination of monoids is also a monoid
  • 228. Customer + Customer + Customer Customer Stats + Customer Stats + Customer Stats Reduce Map Not a monoid A monoid Summary Stats
  • 229. Hadoop make me a sandwich https://twitter.com/daviottenheimer/status/532661754820829185
  • 230. Guideline: Convert expensive monoids to cheap monoids
  • 231. Log file (Mon) + Log File (Tue) + Log File (Wed) = Really big file Summary (Mon) + Summary (Tue) + Summary (Wed) Map Strings are monoids A monoid Much more efficient for incremental updates “Monoid homomorphism”
  • 232. Pattern: Seeing monoids everywhere
  • 233. Monoids in the real world Metrics guideline: Use counters rather than rates Alternative metrics guideline: Make sure your metrics are monoids • incremental updates • can handle missing data
  • 234. Is function composition a monoid? >> Function 1 apple -> banana Function 2 banana -> cherry New Function apple -> cherry Not the same thing. Not a monoid 
  • 235. Is function composition a monoid? >> Function 1 apple -> apple Same thing Function 2 apple -> apple Function 3 apple -> apple A monoid! 
  • 236. Is function composition a monoid? “Functions with same type of input and output” Functions where the input and output are the same type are monoids! What shall we call these kinds of functions?
  • 237. Is function composition a monoid? “Functions with same type of input and output” “Endomorphisms” Functions where the input and output are the same type are monoids! What shall we call these kinds of functions? All endomorphisms are monoids
  • 238. Endomorphism example let plus1 x = x + 1 // int->int let times2 x = x * 2 // int->int let subtract42 x = x – 42 // int->int let functions = [ plus1 times2 subtract42 ] let newFunction = // int->int functions |> List.reduce (>>) newFunction 20 // => 0 Endomorphisms Put them in a list Reduce them Another endomorphism
  • 239. Event sourcing Any function containing an endomorphism can be converted into a monoid. For example: Event sourcing Is an endomorphism Event -> State -> State
  • 240. Event sourcing example let applyFns = [ apply event1 // State -> State apply event2 // State -> State apply event3] // State -> State let applyAll = // State -> State applyFns |> List.reduce (>>) let newState = applyAll oldState • incremental updates • can handle missing events Partial application of event A function that can apply all the events in one step
  • 241. Bind Any function containing an endomorphism can be converted into a monoid. For example: Option.Bind Is an endomorphism (fn param) -> Option -> Option
  • 242. Event sourcing example let bindFns = [ Option.bind (fun x-> if x > 1 then Some (x*2) else None) Option.bind (fun x-> if x < 10 then Some x else None) ] let bindAll = // Option->Option bindFns |> List.reduce (>>) Some 4 |> bindAll // Some 8 Some 5 |> bindAll // None Partial application of Bind
  • 243. Predicates as monoids type Predicate<'A> = 'A -> bool let predAnd pred1 pred2 x = if pred1 x then pred2 x else false let predicates = [ isMoreThan10Chars // string -> bool isMixedCase // string -> bool isNotDictionaryWord // string -> bool ] let combinedPredicate = // string -> bool predicates |> List.reduce (predAnd) Not an endomorphism But can still be combined
  • 245. Series combination = >> Result is same kind of thing (Closure) Order not important (Associative) Monoid!
  • 246. Parallel combination = + Same thing (Closure) Order not important (Associative) Monoid!
  • 247. Monad laws •The Monad laws are just the monoid definitions in diguise –Closure, Associativity, Identity •What happens if you break the monad laws? –You lose monoid benefits such as aggregation
  • 248. A monad is just a monoid in the category of endofunctors!