[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

The third helix of the Antennapedia homeodomain translocates through biological membranes

J Biol Chem. 1994 Apr 8;269(14):10444-50.

Abstract

The 60-amino acid long homeodomain of Antennapedia crosses biological membranes by an energy-independent mechanism, a phenomenon abolished by directed mutagenesis within the polypeptide C-terminal region. This finding led us to study the internalization of several chemically synthesized peptides derived from the third helix of the homeodomain. We report here that a polypeptide of 16 amino acids in length corresponding to the third helix of the homeodomain deleted of its N-terminal glutamate is still capable of translocating through the membrane. A longer peptide of 20 amino acids also translocates, whereas shorter peptides (15 amino acids) are not internalized by the cells. As is also the case for the entire homeodomain, the 20- and 16-amino acid long peptides are internalized at 4 degrees C, suggesting an energy-independent mechanism of translocation not involving classical endocytosis. The two translocated peptides can be recovered, intact, within the cells, strongly suggesting that they are not targeted to the lysosomal compartment. Finally, substitution of two tryptophans by two phenylalanines strongly diminishes translocation, raising the possibility that the internalization of the third helix is not solely based on its general hydrophobicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Antennapedia Homeodomain Protein
  • Biological Transport
  • Cell Membrane / metabolism
  • Cells, Cultured
  • DNA-Binding Proteins / chemistry
  • DNA-Binding Proteins / metabolism*
  • Homeodomain Proteins*
  • Molecular Sequence Data
  • Nuclear Proteins / chemistry
  • Nuclear Proteins / metabolism*
  • Protein Conformation
  • Rats
  • Transcription Factors*

Substances

  • Antennapedia Homeodomain Protein
  • DNA-Binding Proteins
  • Homeodomain Proteins
  • Nuclear Proteins
  • Transcription Factors