[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

PAI-1 Regulates the Cytoskeleton and Intrinsic Stiffness of Vascular Smooth Muscle Cells

Arterioscler Thromb Vasc Biol. 2024 Oct;44(10):2191-2203. doi: 10.1161/ATVBAHA.124.320938. Epub 2024 Jun 13.

Abstract

Background: Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness.

Methods: PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity.

Results: PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content.

Conclusions: PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.

Keywords: RNA, small interfering; actin depolymerizing factors; collagen; gene expression; plasminogen activator inhibitor 1; sequence analysis, RNA; vascular stiffness.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / genetics
  • AMP-Activated Protein Kinases / metabolism
  • Actins / metabolism
  • Animals
  • Aorta / drug effects
  • Aorta / metabolism
  • Cells, Cultured
  • Cytoskeleton / drug effects
  • Cytoskeleton / metabolism
  • Humans
  • Indoleacetic Acids
  • Male
  • Mice
  • Mice, Inbred C57BL*
  • Mice, Knockout*
  • Muscle, Smooth, Vascular* / drug effects
  • Muscle, Smooth, Vascular* / metabolism
  • Myocytes, Smooth Muscle* / drug effects
  • Myocytes, Smooth Muscle* / metabolism
  • Plasminogen Activator Inhibitor 1* / genetics
  • Plasminogen Activator Inhibitor 1* / metabolism
  • Signal Transduction
  • Vascular Stiffness* / drug effects

Substances

  • Plasminogen Activator Inhibitor 1
  • tiplaxtinin
  • SERPINE1 protein, human
  • Actins
  • AMP-Activated Protein Kinases
  • Indoleacetic Acids