More Web Proxy on the site http://driver.im/
Objective: This study aimed to explore the effect of CD276 expression on the sunitinib sensitivity of clear cell renal cell carcinoma (ccRCC) cell and animal models and the potential mechanisms involved.
Methods: CD276 expression levels of ccRCC and normal samples were analyzed via online databases and real-time quantitative PCR (RT-qPCR). CD276 was knocked down in ccRCC cell models (sunitinib-resistant 786-O/R cells and sunitinib-sensitive 786-O cells) using shRNA transfection, and the cells were exposed to a sunitinib (2 µM) environment. Cells proliferation was then analyzed using MTT assay and colony formation experiment. Alkaline comet assay, immunofluorescent staining, and western blot experiments were conducted to assess the DNA damage repair ability of the cells. Western blot was also used to observe the activation of FAK-MAPK pathway within the cells. Finally, a nude mouse xenograft model was established and the nude mice were orally administered sunitinib (40 mg/kg/d) to evaluate the in vivo effects of CD276 knockdown on the therapeutic efficacy of sunitinib against ccRCC.
Results: CD276 was significantly upregulated in both ccRCC clinical tissue samples and cell models. In vitro experiments showed that knocking down CD276 reduced the survival rate, IC50 value, and colony-forming ability of ccRCC cells. Knocking down CD276 increased the comet tail moment (TM) values and γH2AX foci number, and reduced BRCA1 and RAD51 protein levels. Knocking down CD276 also decreased the levels of p-FAK, p-MEK, and p-ERK proteins.
Conclusion: Knocking down CD276 effectively improved the sensitivity of ccRCC cell and animal models to sunitinib treatment.
Keywords: CD276; Clear cell renal cell carcinoma; DNA damage repair; FAK-MAPK pathway; Sunitinib.
© 2024. The Author(s).